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Abstract Carrying out effective and sustainable agriculture hasiyecan impor-
tant issue in recent years. Agricultural production hasdepkup with an ever-
increasing population by taking advantage of a field’s logfeneity. Nowadays,
modern technology such as the global positioning systenSj@Rd a multitude of
developed sensors enable farmers to better measure thast fieterogeneities. For
this small-scale, precise treatment the tgmmcision agriculturehas been coined.
However, the large amounts of data that are (literally) ésted during the grow-
ing season have to be analysed. In particular, the farmetéseisted in knowing
whether a newly developed heterogeneity sensor is poligra@dvantageous or not.
Since the sensor data are readily available, this issuddbewseen from an artifi-
cial intelligence perspective. There it can be treated fasitare selectioproblem.
The additional task of yield prediction can be treated as littimensional regres-
sion problem. This article aims to present an approach tdsvaolving these two
practically important problems using artificial intelligge and data mining ideas
and methodologies.
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1 Introduction

In the recent past, it has become obvious that agricultuptaigng a crucial role
for sustaining the economy and population growth. In indalssed as well as in
developing countries, improvements can be made by intindunodern GPS and
advanced sensor technology to make use of a field’s heteziigeS8ince this het-
erogeneity implies a small-scale, precise crop treatntlieatermprecision agricul-

ture has been introduced. According to [34], precision agrigeltis the sampling,
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mapping, analysis and management of production areasetbagmises the spatial
variability of the cropland.

In artificial intelligence terms, the area of precision aglture (PA) is quite an
interesting one as it involves methods and algorithms fromerous areas that the
artificial intelligence community has been dealing withemdively. When analysing
the data flow that results from using PA, one is quickly rerathdf data mining
an agriculturist collects data from his cropland (e.g., wfestilising or harvesting)
and would like to extract information from those data and thée information to
his (economic) advantage. Obviously, he is also intereistdchowing whether a
particular sensor which has been introduced will evenjuia#l of use to him in
terms of predicting current year’s yield precisely.

Two major parts emerge from the above issue: deciding whetkensor is use-
ful for yield prediction is actually a feature selectionkaand the necessary yield
prediction turns out to be a multi-dimensional regressimblem. Both parts have
been studied extensively in Al and numerous approaches exis

1.1 Research Target and Article Structure

With this contribution we aim at developing a suitable aggioto evaluate sen-
sor data. We are interested in identifying those sensorshndmie most applicable
for measuring a field’s heterogeneity. Hergg@d sensor is supposed to improve
the precision of yield prediction. Eventually, a featuréesgon approach shall be
developed. Since existing work has mainly been devoteditgdsature selection
with a classification task, but not a regression task, thigwaimed at evaluating
regression approaches. Furthermore, some more resedlrble @evoted to finding
a generally applicable regression model which is to be usdiaki feature selection
approach.

In two ways, the feature selection approach taken here isInfixst, the ap-
plication area of precision agriculture data is certainlyesv one. Second, feature
selection has mainly been used for classification taskeansof regression tasks.

Our previous work in this area has been focused on eitheua&tia) regression
models ([26], [27], [29]) or visualising the existing agilture data [28]. Results
from these articles will be incorporated into our featurlestion approach where
appropriate.

After a brief overview of the available data in Section 2, ¢eature selection
approach will be presented in Section 3. The experimengaligand the results are
presented in Section 4. In the end, a conclusion is given atge work is pointed
out.
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2 Data Description

The data available in this work have been obtained in thesy2@03—-2006 on three
fields near Kthen, north of Halle, GermathyAll information available for these
65-, 72- and 32-hectare fieflsvas interpolated using kriging [32] to a grid with
10 by 10 meters grid cell sizes. Each grid cell represents@dewith all available
information. During the growing season of 2006, the latedfivas subdivided into
different strips, where various fertilization strategigsre carried out. For an exam-
ple of various managing strategies, see e.g. [30], whioh st®ws the economic
potential of PA technologies quite clearly. The field grewater wheat, where nitro-
gen fertilizer was distributed over three application tadering the growing season.

Overall, for each field there are seven input attributes -empanied by the re-
spective current year’s yield (2004 or 2006) as the targgbate. Those attributes
will be described in the following. In total, for the FO4 figluere are 5241 records,
for F131 there are 2278 records, for F330 there are 4578decthrereof none with
missing values and none with outliers.

2.1 Nitrogen Fertilizer -N1, N2, N3

The amount of fertilizer applied to each subfield can be gasdlasured. Itis applied
at three points in time into the vegetation period, whichis standard strategy for
most of Northwest Europe [22].

2.2 \egetation -REIP32, REIP49

Thered edge inflection poifREIP) is a second derivative value calculated along the
red edge region of the spectrum, which is situated from 68btinm. Dedicated
REIP sensors are used in-season to measure the plantstiogflecthis spectral
band. Since the plants’ chlorophyll content is assumeddblficorrelate with the
nitrogen availability (see, e.g. [20]), the REIP value akdor deducing the plants’
state of nutrition and thus, the previous crop growth. Fathier information on
certain types of sensors and a more detailed introductea16] or [33]. Plants that
have less chlorophyll will show a lower REIP value as the régeemoves toward
the blue part of the spectrum. On the other hand, plants watterohlorophyll will
have higher REIP values as the red edge moves toward therhiglvelengths. For
the range of REIP values encountered in the available de¢alables 1(b) and 1(c).
The numbers inthe RP32 and RE1P49 names refer to the growing stage of winter
wheat, as defined in [18].

1 GPS: Latitude N 51 40.430, Longitude E 11 58.110
2 We will call themF04, F330andF131, respectively
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2.3 Electric Conductivity -£M 38

A non-invasive method to discover and map a field’s hetereigeis to measure the
soil's conductivity. Commercial sensors such as the EN&@ designed for agri-
cultural use and can measure small-scale conductivity epghdof about 1.5 me-
tres. There is no possibility of interpreting these sensda dlirectly in terms of
its meaningfulness as yield-influencing factor. But in cection with other site-
specific data, as explained in the rest of this section, tbeuél be coherences. For
a more detailed analysis of this particular sensor, see[&.d-or the range of EM
values encountered in the available data, see Tables 11&))to

2.4 YIELD

Here, yield is measured in metric tons per hectq%e) For the yield ranges for the
respective years and sites, see Tables 1(b) and 1(c). Itcshewnoted that for the
F131 and F330 data sets the yield was reduced significandytalload weather
conditions (lack of rain) during the growing season 2006.

2.5 TRACFORCE

The tractive force (or tractive effort) sensor measuregsdree that has to be exerted
when a plough or similar (modern) devices are pulled alomgfitld. Hence, it is
assumed that the upper soil layer and its condition may haeffact on the final
yield. This sensor is only available in the FO4 data set.

2.6 Data Overview
In this work, we evaluate data sets from three different §iefd brief summary of
the available data attributes for both data sets is giverabi€g 1(a) to 1(c).

2.7 Points of Interest

It would be interesting to see how much the influencable fdéotilization” really
influences the yield in the current site-year. Furthermatéhe core of this article,
we are interested in finding out which sensor data are agtusdiful for the purpose

3 trademark of Geonics Ltd, Ontario, Canada
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Table 1: Overview of the FO4, F131 and F330 data sets

(a) Data overview, FO4

Fo4 min | max|mear] std
YIELD03| 1.19({12.38 6.27(1.48
EM38 |17.9786.4533.825.27
N1 0 | 100|57.7|13.5
N2 0 | 100 39.9(16.4
N3 0 | 100 38.5(15.3
REIP32 |721.1727.2725.70.64
REIP49 |722.4729.6728.1/0.65
YIELD04| 6.42|11.37 9.14|0.73

(b) Data overview, F131 (c) Data overview, F330

F131 | min | max|{mean std F330 | min | max|{mean std
YIELDO5| 1.69(10.68 5.69| 0.93 YIELDO5| 4.64(14.1210.62 0.97
EM38 |51.5884.0862.21 8.60 EM38 |25.0849.4933.69 2.94
N1 [47.70 70 [64.32 6.02 N1 24.01 70 (59.4814.42
N2 14.80 100 [51.7115.67 N2 3.0 | 100 |56.3813.35
N3 0 70 (39.6513.73 N3 0.3 [ 91.6(50.0512.12
REIP32 |719.6724.4722.6 0.69 REIP32 |719.2724.4721.5 1.03
REIP49 |722.3727.9725.8 0.95 REIP49 |723.0728.9726.9 0.82
YIELDO6| 1.54| 8.83| 5.21| 0.88 YIELDO6| 1.84| 8.27| 5.90| 0.54

of yield prediction. There may be data attributes which arelévant and others
which may be highly relevant. Thigature selectiomproblem will be described in
the following section.

3 Feature Selection Approach

This section deals with the developed feature selectiomoagp. First, according
to the literature, some decisions have to be made regarbegype and general
structure of feature selection. The ensuing section ptesesuitable algorithm, of
which the details will be presented. The feature selectignrahm incorporates
a regression task, therefore regression models will bespted. Additionally, the
details of error measurement are shown.

3.1 Approach Justification

In the data encountered here, the main reason for applyitegndiaing techniques
is that the interesting features are hidden in a search sydtigh dimensionality.
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Reducing the dimensionality of the data could be done vigpfiamor otherwise
discarding data records, but in our case this would rendeptacision agriculture
approach useless. Therefore, the actual features of taesbatlld be condensed to
those that are most promising for a yield prediction taskndég feature selection
eventually is a means of removing irrelevant and/or redonfiatures.

According to [15], the selection of features can be achiamevo ways. The
first one is to evaluate and rank features according to soitegion. The other one
is to select a minimal subset of features without deterilogdearning performance.
The latter approach can usually be run automatically, wihiéefirst one provides
reasonable guidance to an expert user. Since the dataiartalksin this work is not
aimed at the average user, but should preferably contribsights into the data for
professionals, the “evaluate-and-rank”-approach wilpbesued in the following.

Once we have decided for evaluating and subsequently mri&atures, there
are still a multitude of options to select the most promidegures. There are quite
a few surveys which aim to categorise existing approached) as [1], [2], [8],
[14]. One of the categories is usually how the search forufestis conducted:
forward selectionstarts with an empty set and keeps adding features untilm sto
ping criterion is metBackward eliminatiorstarts with a set including all features
and subsequently keeps removing features. Obviously,dastbs could also yield a
ranked list of features. Since both approaches have thegnagiges and drawbacks,
but backward elimination is computationally heavier, weided to employ forward
selection and leave backward elimination for future work.

A second category is how the feature space is traversed setreh for features
to exclude or include. Doing a complete search is the sttfmigkard option, but
should usually be avoided due to computational constralitesiristic search may
miss optimal subsets, but generates good solutions quigitya certain probability
depending on the heuristic used. Non-deterministic seamctdomly explores the
feature space, obviously limited by the available companal resources. Since this
work is the first to evaluate whether feature selection mag saccessful approach
to decide which agricultural sensor data are useful, we lsimmploy a complete
search. This is possible since the number of features inuvhigable data sets is
small. In future work, different search strategies will valeated.

A third decision to be made is whether to uskiter or wrapperapproach. The
earlier one does not depend on the actual induction (rdgrgssgorithm for eval-
uating the generated subsets. On the contrary, the wrappesach explicitly uses
the induction method (e.g. a regression tree) for evalgatie subset. For a more
detailed explanation, we refer to e.g. [13]. In the follog/iwork, we consider the
wrapper approach because it also enables a comparisonugddeegression tech-
niques. A similar approach is taken by, e.g. [12].



Feature Selection for Wheat Yield Prediction

3.2 Selection and Regression Approach

As mentioned in the previous section, we decided to use fars@lection. A pos-
sible implementation is given in Algorithm 1. The algorithmorks in a straight-
forward way: starting with an empty list of featur8sand a list of all featureB, it
repeatedly moves thieestfeatures for the regression task frdfto S. This series
of steps is repeated until a regression error goal is mEtisrempty.

Algorithm 1 forward selectiorof features

1: S=[], F— features
2: repeat
3 E«[]
4: for j=1...lengthF) do
5: f — F[j] {select j-th featurp
6: Sj — Su f {add current feature t§; }
7 M; < mode(S;) {generate regression model from data
8: E; — evaluat¢M;) {calculate modeling errgr
9: E — E||E; {store erro}
10:  end for

11: S« S|F[min(E)] {add best feature to}S

12:  F «—F —F[min(E)] {remove best feature from}F
13: until min(E) < thresholdoR F = []

14: return S{return list of features, best one fist

3.3 Regression Modeling

This subsection serves as an overview of different regrast@chniques which
may be used on the agriculture data. A more thorough desuripggn be found
in, e.g., [26]. Since the focus here is on feature selectiwa,of the four models
presented in [26] are chosen, namely regression trees apoiswector regression.
On the one hand, the latter technique turned out to be thenahpérformed best on
different data sets. On the other hand, regression treagyga@nlot of understand-
ability which might yield further insights into the data,rfee they have been chosen
here.
The regression task can be formalized as follows: the trgiset

T:{{X]_,...,Xn},yi}iN:]_ 1)

is considered for the training process, wheré= 1, ..., nare continuous input val-
ues andy,i =1... N are continuous output values. Given this training set,dkk t
of the regression techniques is to approximate the underfiginction sufficiently
well. The quality of the approximated function can be meeduny error values.
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Regression trees have seen some usage in agriculture [17]L1Essentially,
they are a special case of decision trees where the outcontige(iree leaves) is a
continuous function instead of a discrete classificatiamttter details can be found
in section 3.3.1.

A technique that has, to the best of our knowledge, not beed ais similar yield
data, but for similar regression tasks, is a derivative qfpsut vector machines
(SVMs). Similar to decision trees, if the target attribusediscrete, SVMs would
solve a classification task, whereas in the case of a contaittribute, a regression
task would be solved. Hence, support vector regression [S¥WIRbe explained in
section 3.3.2.

3.3.1 Regression Tree

Regression trees approximate learning instances by gahiam down the tree from
the root to some leaf node, which provides the value of thgetaattribute. Each
node in the tree represents a split of some attribute of ttamee and each branch
descending from that node corresponds to one part left bt a§the split. The
value of the target attribute for an instance is determingdtarting at the root
node of the tree and testing the attribute specified by thiee n@his determines
whether to proceed left or right of the split. Then we move ddlae tree and repeat
the procedure with the respective subtree. In principkrgleould be more than one
splitin atree node, which would result in more than two sedsrper node. However,
in this application scenario, we do not consider regressess with more than two
subtrees per split node.

Regression as well as decision trees are usually congtricégop-down, greedy
search approach through the space of possible trees [2&]bdsic algorithms for
constructing such trees are CART [4], ID3 [23] and its susoe€4.5 [24]. The idea
here is to ask the question “which attribute should be testéte top of the tree?” To
answer this question, each attribute is evaluated to déternow well it is suited to
split the data. The best attribute is selected and used &ssheode. This procedure
is repeated for the subtrees. An attribute selection @ritehat is employed by ID3
and C4.5 is the entropy and, resulting from it, the inforimatgain. Entropy is a
measure from information theory that describes the vaiiety collection of data
points: the higher the entropy, the higher the variety. Im#rbute split we would
like to lower the entropy of the two resulting split data s&tsis reduction in entropy
is called the information gain. For further information vedar to [21].

However, if the addition of nodes is continued without a #jiestopping crite-
rion, the depth of the tree continues to grow until each teeétovers one instance
of the training data set. This is certainly a perfect treetlfier training data but is
likely to be too specific — the problem of overlearning occéia new, unseen data,
such a specific tree will probably have a high prediction reffberefore, regres-
sion trees are usually pruned to a specific depth which isdetodf between high
accuracy and high generality. This can easily be achievesktiing a lower bound
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for the number of instances covered by a single node belowhuind split should
occur. For our work we used the R implementatiom péart .

3.3.2 Support Vector Regression

Support Vector Machines (SVMs) are a supervised learninthadediscovered
by [3]. However, the task here is regression, so we focus ppat vector regres-
sion (SVR) in the following. A more in-depth discussion canfbund in [9]. Given
the training set, the goal of SVR is to approximate a lineacfion f (x) = (w,x) +b
with w € RN andb € R. This function minimizes an empirical risk function defined
as

N
Romp= 1y 3. Le(§~ 100), @

whereL¢(§ — f(x)) = max((|&| — €),0). |§| is the so-called slack variable, which
has mainly been introduced to deal with otherwise infeagibhstraints of the opti-
mization problem, as has been mentioned in [31]. By usirghiiable, errors are
basically ignored as long as they are smaller than a progefgctedce. The func-
tion here is called-insensitive loss function. Other kinds of functions carubed,
some of which are presented in chapter 5 of [9].

To estimatef (x), a quadratic problem must be solved, of which the dual form,
according to [19] is as follows:

N N
MaXg o+ — = —ai)K(x, %) ai+a)+ S yi(ai—a)
ey SRR Gl SR
3)
with the constraint tha} ; N (ai—af) = 0,a;,a;" € [0,C]. The regularization pa-

rameteiC > 0 determmes the tradeoff between the flatnesk(rf and the allowed
number of points with deviations larger thanAs mentioned in [9], the value &f
is inversely proportional to the number of support vectérsadequate setting &
ande is necessary for a suitable solution to the regression gnobl
FurthermoreK(x;, ;) is known as a kernel function which allows to project the
original data into a higher-dimensional feature space witeés much more likely
to be linearly separable. Some of the most popular kernelsagiial basis functions
(equation 4) and a polynomial kernel (equation 5):

K(X,%) = e‘HXTjLE (4)
K(x,%) = ((x,x)+1)° (5)

The parameters andp have to be determined appropriately for the SVM to gen-
eralize well. This is usually done experimentally. Once gbkition for the above
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optimization problem in equation 3 is obtained, the suppectors can be used to
construct the regression function:

N

f(x) :_Zi(ai —a")K(x,%)+b (6)

In our experiments, we used the R SVM interface to libsvm [Bhwheel071 R
package.

3.4 Performance Measurement

The performance of the models will be determined using tlot noean squared
error (RMSE). For the RMSE, first the difference between dnadarget valugy,

and the model output valueis computed. This difference is squared and averaged
over all training examples before the root of the mean vauaken, see equation 7.

RMSE= (Vi — Yai)? @)

Sl

M=

In [26] it has been established that model parameters senfdata set may be
carried over to a different data set. Hence, it is assumedhbaregTree and SVR
parameters may be fixed. Nevertheless, although compoddiiidieavy, acomplete
searchfeature selection strategy with an automatic fine-tuningnoflel parameters
for the SVR and RegTree model has been used.

For training the models, a cross validation approach isnaks mentioned in
e.g. [10], the data will be split randomly into a training aat a test set. The model
is trained using the training data and after each traingmgiton, the error on the test
data is computed. During training, this error usually de&di towards a minimum.
Beyond this minimum, the error rises — overlearning (or Biterg) occurs: the
model fits the training data perfectly but does not genezaliell. Hence, the model
training is stopped when the error on the test set startsgrishe use a size ratio
of 9:1 for training and test set. The data sets are partitioaadomly 20 times, the
models are trained and the error values are collected.

4 Experimental Results

The three data sets presented in Section 2 are evaluatefhtre purpose of estab-
lishing whether a particular feature (sensor) is usefuyfeld prediction. The target
attribute to predict via regression techniques is the m@8mecurrent year's yield.
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Two techniques have been selected: regression trees apdrsupctor regression.
10-fold cross validation was applied for both techniques.

4.1 Feature Selection with RegTree

Regression trees were created using an auto-prune appvaaich is similar to the
grid search in the following section. A minimum split valug3® is used, therefore
leaves in the final tree will not contain more than 30 data nlad®ns for which the
yield shall be predicted. An additional complexity paraenetp = 0.001 was set,
which determines that a split must at least yield a predictioprovement otcp,
otherwise it is not carried out.

As can be seen in Table 2, the predictive error of the regredsee decreases
steadily as more predictors are added. This behaviour dli@uéxpected, since the
regression tree receives more information to improve iedjotive performance.
However, after adding three or four features, the error sedmost to have leveled,
which would imply that the remaining features are unneagska yield predic-
tion. Generally, the RIP49 feature seems to be the one best suited for prediction.
This should also be expected, since the measuremertie#R occurs late into the
growing season when the crop is nearing harvest. In two otiteothree data sets,
the respective previous year’s yield also seems to play aoitant role. Again, this
should be expected, since areas with high/low yield aren(wit special treatment)
bound to generate high/low yield in the following years adlwihe EM38 mea-
surement ranks third or fourth for the prediction task, ebetier than the RIP32
feature, which is a novel and important result. Even moréuliseight be the con-
clusion thatN1l andn2 , the dressings of fertilizer early into the growing seasin
not bear significant amounts of information in regard tod/iglediction within this
feature selection approach.

Table 2: Results for Feature Selection via Regression Tree

FO4 F131 F330

steq| error|feature error|feature || error|feature
1 |/0.342Y1ELDO3 0.235REIP49 ||0.279N3

2 ||0.262REIP49 0.136Y1ELD05||0.246REIP49
3 |/0.228N3 0.104Em38 0.223EM38

4 1(0.215em38 0.104ReIP32 |[|0.199REIP32
5 |{0.210REIP32 0.104N1 0.189N1

6 ||0.209 TRACFORCE|[0.104N2 0.187Nn2

7 1/0.208N1 0.104N3 0.181YI1ELDO5S
8 {/0.205N2
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4.2 Feature Selection with SVR

For support vector regression, a grid search in the paraisee within reasonable
bounds has been performed when searching for the optimassign parameters,
using thesvm best () R routine. The regularization parame@was set to vary
between 2 and Z, the ¢ parameter between®and 2, while a radial kernel was
used.

Table 3 shows the results for SVR. In each feature selectemthe best model
from this particular step was chosen. Due tod¢benplete searchpproach, the pre-
diction accuracy may decline from one step to the next. Nbetss, SVR agrees
with the RegTree that theERP49 feature is the one bearing most predictive power
since it is chosen in the first or second step. It also agre#seopredictive power in
the respective previous year’s yield, which ranks high id B@d F131, but low in
F330.N1 andnN2 do not improve the prediction significantly. In additiome toverall
prediction error levels are higher than with the simple esgion tree. This might
be due to the grid search approach for selecting the best Sttelnm each step.
This grid search optimized the most important SVR pararsetenile more may be
chosen. Nevertheless, SVR tends to produce comparabléstesu

Table 3: Results for Feature Selection via Support Vectgréssion

FO4 F131 F330

step| error|feature error|feature error|feature
1 {|0.557YI1ELDO3 0.469REIP49 |[0.491N3
2 [|0.509REIP49 0.356Y1ELD05||0.493 REIP49
3 ||0.466N2 0.337N2 0.469EM38
4 1(0.483REIP32 0.335N1 0.519N2
5 1/0.449N1 0.303REIP32 |[0.454N1
6 ||0.471em38 0.333N3 0.508YI1ELDO5
7 {/0.444N3 0.285EM38 0.439REIP32
8 ||0.469 TRACFORCE|

5 Conclusion

In this paper we presented a novel application of a featueeten approach by
using it on agriculture data. We were interested in evabggtie data attributes with
regard to their utility for yield prediction. The preseniggproach employ®rward
feature selectiorand a complete search strategy. With it, two regression teode
(SVR and RegTree) were used to compare the yield prediatisults for the differ-
ent data sets. Both the SVR and RegTree regression modelsqaa slightly differ-
ent, but yet comparable results. Nevertheless, on the arebiwth models returned
understandable and explicable feature rankings, whilgherother hand, provid-
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ing novel knowledge about the data sets and their featurescé] the presented
feature selection approach presents an immediately uapfilication of artificial
intelligence technigues and may be developed further.

5.1 Future Work

Future work will focus on evaluating additional featureesg¢ion approaches like

the reverse process backward elimination Additional regression models are to
be included. Furthermore, different approaches to judtiiegmportance of certain

features may be used, such as principal components anahdisstering.
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