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Abstract Carrying out effective and sustainable agriculture has become an impor-
tant issue in recent years. Agricultural production has to keep up with an ever-
increasing population by taking advantage of a field’s heterogeneity. Nowadays,
modern technology such as the global positioning system (GPS) and a multitude of
developed sensors enable farmers to better measure their fields’ heterogeneities. For
this small-scale, precise treatment the termprecision agriculturehas been coined.
However, the large amounts of data that are (literally) harvested during the grow-
ing season have to be analysed. In particular, the farmer is interested in knowing
whether a newly developed heterogeneity sensor is potentially advantageous or not.
Since the sensor data are readily available, this issue should be seen from an artifi-
cial intelligence perspective. There it can be treated as afeature selectionproblem.
The additional task of yield prediction can be treated as a multi-dimensional regres-
sion problem. This article aims to present an approach towards solving these two
practically important problems using artificial intelligence and data mining ideas
and methodologies.
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1 Introduction

In the recent past, it has become obvious that agriculture isplaying a crucial role
for sustaining the economy and population growth. In industrialised as well as in
developing countries, improvements can be made by introducing modern GPS and
advanced sensor technology to make use of a field’s heterogeneity. Since this het-
erogeneity implies a small-scale, precise crop treatment,the termprecision agricul-
ture has been introduced. According to [34], precision agriculture is the sampling,
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mapping, analysis and management of production areas that recognises the spatial
variability of the cropland.

In artificial intelligence terms, the area of precision agriculture (PA) is quite an
interesting one as it involves methods and algorithms from numerous areas that the
artificial intelligence community has been dealing with extensively. When analysing
the data flow that results from using PA, one is quickly reminded of data mining:
an agriculturist collects data from his cropland (e.g., when fertilising or harvesting)
and would like to extract information from those data and usethis information to
his (economic) advantage. Obviously, he is also interestedin knowing whether a
particular sensor which has been introduced will eventually be of use to him in
terms of predicting current year’s yield precisely.

Two major parts emerge from the above issue: deciding whether a sensor is use-
ful for yield prediction is actually a feature selection task; and the necessary yield
prediction turns out to be a multi-dimensional regression problem. Both parts have
been studied extensively in AI and numerous approaches exist.

1.1 Research Target and Article Structure

With this contribution we aim at developing a suitable approach to evaluate sen-
sor data. We are interested in identifying those sensors which are most applicable
for measuring a field’s heterogeneity. Here, agoodsensor is supposed to improve
the precision of yield prediction. Eventually, a feature selection approach shall be
developed. Since existing work has mainly been devoted to using feature selection
with a classification task, but not a regression task, this work is aimed at evaluating
regression approaches. Furthermore, some more research will be devoted to finding
a generally applicable regression model which is to be used in the feature selection
approach.

In two ways, the feature selection approach taken here is novel: first, the ap-
plication area of precision agriculture data is certainly anew one. Second, feature
selection has mainly been used for classification tasks instead of regression tasks.

Our previous work in this area has been focused on either evaluating regression
models ([26], [27], [29]) or visualising the existing agriculture data [28]. Results
from these articles will be incorporated into our feature selection approach where
appropriate.

After a brief overview of the available data in Section 2, ourfeature selection
approach will be presented in Section 3. The experimental layout and the results are
presented in Section 4. In the end, a conclusion is given and future work is pointed
out.
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2 Data Description

The data available in this work have been obtained in the years 2003–2006 on three
fields near K̈othen, north of Halle, Germany1. All information available for these
65-, 72- and 32-hectare fields2 was interpolated using kriging [32] to a grid with
10 by 10 meters grid cell sizes. Each grid cell represents a record with all available
information. During the growing season of 2006, the latter field was subdivided into
different strips, where various fertilization strategieswere carried out. For an exam-
ple of various managing strategies, see e.g. [30], which also shows the economic
potential of PA technologies quite clearly. The field grew winter wheat, where nitro-
gen fertilizer was distributed over three application times during the growing season.

Overall, for each field there are seven input attributes – accompanied by the re-
spective current year’s yield (2004 or 2006) as the target attribute. Those attributes
will be described in the following. In total, for the F04 fieldthere are 5241 records,
for F131 there are 2278 records, for F330 there are 4578 records, thereof none with
missing values and none with outliers.

2.1 Nitrogen Fertilizer –N1 , N2 , N3

The amount of fertilizer applied to each subfield can be easily measured. It is applied
at three points in time into the vegetation period, which is the standard strategy for
most of Northwest Europe [22].

2.2 Vegetation –REIP32 , REIP49

Thered edge inflection point(REIP) is a second derivative value calculated along the
red edge region of the spectrum, which is situated from 680 to750nm. Dedicated
REIP sensors are used in-season to measure the plants’ reflection in this spectral
band. Since the plants’ chlorophyll content is assumed to highly correlate with the
nitrogen availability (see, e.g. [20]), the REIP value allows for deducing the plants’
state of nutrition and thus, the previous crop growth. For further information on
certain types of sensors and a more detailed introduction, see [16] or [33]. Plants that
have less chlorophyll will show a lower REIP value as the red edge moves toward
the blue part of the spectrum. On the other hand, plants with more chlorophyll will
have higher REIP values as the red edge moves toward the higher wavelengths. For
the range of REIP values encountered in the available data, see Tables 1(b) and 1(c).
The numbers in the REIP32 and REIP49 names refer to the growing stage of winter
wheat, as defined in [18].

1 GPS: Latitude N 51 40.430, Longitude E 11 58.110
2 We will call themF04, F330andF131, respectively
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2.3 Electric Conductivity –EM38

A non-invasive method to discover and map a field’s heterogeneity is to measure the
soil’s conductivity. Commercial sensors such as the EM-383 are designed for agri-
cultural use and can measure small-scale conductivity to a depth of about 1.5 me-
tres. There is no possibility of interpreting these sensor data directly in terms of
its meaningfulness as yield-influencing factor. But in connection with other site-
specific data, as explained in the rest of this section, therecould be coherences. For
a more detailed analysis of this particular sensor, see, e.g. [6]. For the range of EM
values encountered in the available data, see Tables 1(a) to1(c).

2.4 YIELD

Here, yield is measured in metric tons per hectare (t
ha) For the yield ranges for the

respective years and sites, see Tables 1(b) and 1(c). It should be noted that for the
F131 and F330 data sets the yield was reduced significantly due to bad weather
conditions (lack of rain) during the growing season 2006.

2.5 TRACFORCE

The tractive force (or tractive effort) sensor measures theforce that has to be exerted
when a plough or similar (modern) devices are pulled along the field. Hence, it is
assumed that the upper soil layer and its condition may have an effect on the final
yield. This sensor is only available in the F04 data set.

2.6 Data Overview

In this work, we evaluate data sets from three different fields. A brief summary of
the available data attributes for both data sets is given in Tables 1(a) to 1(c).

2.7 Points of Interest

It would be interesting to see how much the influencable factor “fertilization” really
influences the yield in the current site-year. Furthermore,at the core of this article,
we are interested in finding out which sensor data are actually useful for the purpose

3 trademark of Geonics Ltd, Ontario, Canada
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Table 1: Overview of the F04, F131 and F330 data sets

(a) Data overview, F04

F04 min max mean std
YIELD 03 1.19 12.38 6.27 1.48

EM38 17.9786.4533.825.27
N1 0 100 57.7 13.5
N2 0 100 39.9 16.4
N3 0 100 38.5 15.3

REIP32 721.1727.2725.70.64
REIP49 722.4729.6728.10.65

YIELD 04 6.42 11.37 9.14 0.73

(b) Data overview, F131

F131 min max mean std
YIELD 05 1.69 10.68 5.69 0.93

EM38 51.5884.0862.21 8.60
N1 47.70 70 64.32 6.02
N2 14.80 100 51.7115.67
N3 0 70 39.6513.73

REIP32 719.6724.4722.6 0.69
REIP49 722.3727.9725.8 0.95

YIELD 06 1.54 8.83 5.21 0.88

(c) Data overview, F330

F330 min max mean std
YIELD 05 4.64 14.1210.62 0.97

EM38 25.0849.4833.69 2.94
N1 24.0 70 59.4814.42
N2 3.0 100 56.3813.35
N3 0.3 91.6 50.0512.12

REIP32 719.2724.4721.5 1.03
REIP49 723.0728.5726.9 0.82

YIELD 06 1.84 8.27 5.90 0.54

of yield prediction. There may be data attributes which are irrelevant and others
which may be highly relevant. Thisfeature selectionproblem will be described in
the following section.

3 Feature Selection Approach

This section deals with the developed feature selection approach. First, according
to the literature, some decisions have to be made regarding the type and general
structure of feature selection. The ensuing section presents a suitable algorithm, of
which the details will be presented. The feature selection algorithm incorporates
a regression task, therefore regression models will be presented. Additionally, the
details of error measurement are shown.

3.1 Approach Justification

In the data encountered here, the main reason for applying data mining techniques
is that the interesting features are hidden in a search spaceof high dimensionality.
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Reducing the dimensionality of the data could be done via sampling or otherwise
discarding data records, but in our case this would render the precision agriculture
approach useless. Therefore, the actual features of the data should be condensed to
those that are most promising for a yield prediction task. Hence, feature selection
eventually is a means of removing irrelevant and/or redundant features.

According to [15], the selection of features can be achievedin two ways. The
first one is to evaluate and rank features according to some criterion. The other one
is to select a minimal subset of features without deteriorating learning performance.
The latter approach can usually be run automatically, whilethe first one provides
reasonable guidance to an expert user. Since the data analysis task in this work is not
aimed at the average user, but should preferably contributeinsights into the data for
professionals, the “evaluate-and-rank”-approach will bepursued in the following.

Once we have decided for evaluating and subsequently ranking features, there
are still a multitude of options to select the most promisingfeatures. There are quite
a few surveys which aim to categorise existing approaches, such as [1], [2], [8],
[14]. One of the categories is usually how the search for features is conducted:
forward selectionstarts with an empty set and keeps adding features until a stop-
ping criterion is met.Backward eliminationstarts with a set including all features
and subsequently keeps removing features. Obviously, bothcases could also yield a
ranked list of features. Since both approaches have their advantages and drawbacks,
but backward elimination is computationally heavier, we decided to employ forward
selection and leave backward elimination for future work.

A second category is how the feature space is traversed in thesearch for features
to exclude or include. Doing a complete search is the straightforward option, but
should usually be avoided due to computational constraints. Heuristic search may
miss optimal subsets, but generates good solutions quicklywith a certain probability
depending on the heuristic used. Non-deterministic searchrandomly explores the
feature space, obviously limited by the available computational resources. Since this
work is the first to evaluate whether feature selection may bea successful approach
to decide which agricultural sensor data are useful, we simply employ a complete
search. This is possible since the number of features in the available data sets is
small. In future work, different search strategies will be evaluated.

A third decision to be made is whether to use afilter or wrapperapproach. The
earlier one does not depend on the actual induction (regression) algorithm for eval-
uating the generated subsets. On the contrary, the wrapper approach explicitly uses
the induction method (e.g. a regression tree) for evaluating the subset. For a more
detailed explanation, we refer to e.g. [13]. In the following work, we consider the
wrapper approach because it also enables a comparison of theused regression tech-
niques. A similar approach is taken by, e.g. [12].
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3.2 Selection and Regression Approach

As mentioned in the previous section, we decided to use forward selection. A pos-
sible implementation is given in Algorithm 1. The algorithmworks in a straight-
forward way: starting with an empty list of featuresS, and a list of all featuresF , it
repeatedly moves thebestfeatures for the regression task fromF to S. This series
of steps is repeated until a regression error goal is met orF is empty.

Algorithm 1 forward selectionof features

1: S =[ ], F← features
2: repeat
3: E ← [ ]
4: for j = 1. . . length(F) do
5: f ← F [ j] {select j-th feature}
6: Sj ← S∪ f {add current feature toSj}
7: M j ← model(Sj ) {generate regression model from data}
8: E j ← evaluate(M j ) {calculate modeling error}
9: E ← E||E j {store error}

10: end for
11: S← S||F[min(E)] {add best feature to S}
12: F ← F −F[min(E)] {remove best feature from F}
13: until min(E)≤ thresholdOR F = [ ]
14: return S{return list of features, best one first}

3.3 Regression Modeling

This subsection serves as an overview of different regression techniques which
may be used on the agriculture data. A more thorough description can be found
in, e.g., [26]. Since the focus here is on feature selection,two of the four models
presented in [26] are chosen, namely regression trees and support vector regression.
On the one hand, the latter technique turned out to be the one that performed best on
different data sets. On the other hand, regression trees convey a lot of understand-
ability which might yield further insights into the data, hence they have been chosen
here.

The regression task can be formalized as follows: the training set

T = {{x1, . . . ,xn},yi}
N
i=1 (1)

is considered for the training process, wherexi , i = 1, . . . ,n are continuous input val-
ues andyi , i = 1. . . ,N are continuous output values. Given this training set, the task
of the regression techniques is to approximate the underlying function sufficiently
well. The quality of the approximated function can be measured by error values.
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Regression trees have seen some usage in agriculture [7, 11,17]. Essentially,
they are a special case of decision trees where the outcome (in the tree leaves) is a
continuous function instead of a discrete classification. Further details can be found
in section 3.3.1.

A technique that has, to the best of our knowledge, not been used on similar yield
data, but for similar regression tasks, is a derivative of support vector machines
(SVMs). Similar to decision trees, if the target attribute is discrete, SVMs would
solve a classification task, whereas in the case of a continuous attribute, a regression
task would be solved. Hence, support vector regression (SVR) will be explained in
section 3.3.2.

3.3.1 Regression Tree

Regression trees approximate learning instances by sorting them down the tree from
the root to some leaf node, which provides the value of the target attribute. Each
node in the tree represents a split of some attribute of the instance and each branch
descending from that node corresponds to one part left or right of the split. The
value of the target attribute for an instance is determined by starting at the root
node of the tree and testing the attribute specified by this node. This determines
whether to proceed left or right of the split. Then we move down the tree and repeat
the procedure with the respective subtree. In principle, there could be more than one
split in a tree node, which would result in more than two subtrees per node. However,
in this application scenario, we do not consider regressiontrees with more than two
subtrees per split node.

Regression as well as decision trees are usually constructed in a top-down, greedy
search approach through the space of possible trees [21]. The basic algorithms for
constructing such trees are CART [4], ID3 [23] and its successor C4.5 [24]. The idea
here is to ask the question “which attribute should be testedat the top of the tree?” To
answer this question, each attribute is evaluated to determine how well it is suited to
split the data. The best attribute is selected and used as thetest node. This procedure
is repeated for the subtrees. An attribute selection criterion that is employed by ID3
and C4.5 is the entropy and, resulting from it, the information gain. Entropy is a
measure from information theory that describes the varietyin a collection of data
points: the higher the entropy, the higher the variety. In anattribute split we would
like to lower the entropy of the two resulting split data sets. This reduction in entropy
is called the information gain. For further information we refer to [21].

However, if the addition of nodes is continued without a specific stopping crite-
rion, the depth of the tree continues to grow until each tree leaf covers one instance
of the training data set. This is certainly a perfect tree forthe training data but is
likely to be too specific – the problem of overlearning occurs. For new, unseen data,
such a specific tree will probably have a high prediction error. Therefore, regres-
sion trees are usually pruned to a specific depth which is a trade-off between high
accuracy and high generality. This can easily be achieved bysetting a lower bound
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for the number of instances covered by a single node below which no split should
occur. For our work we used the R implementation ofrpart.

3.3.2 Support Vector Regression

Support Vector Machines (SVMs) are a supervised learning method discovered
by [3]. However, the task here is regression, so we focus on support vector regres-
sion (SVR) in the following. A more in-depth discussion can be found in [9]. Given
the training set, the goal of SVR is to approximate a linear function f (x) = 〈w,x〉+b
with w∈ R

N andb∈ R. This function minimizes an empirical risk function defined
as

Remp=
1
N

N

∑
i=1

Lε(ŷ− f (x)), (2)

whereLε(ŷ− f (x)) = max((|ξ | − ε),0). |ξ | is the so-called slack variable, which
has mainly been introduced to deal with otherwise infeasible constraints of the opti-
mization problem, as has been mentioned in [31]. By using this variable, errors are
basically ignored as long as they are smaller than a properlyselectedε. The func-
tion here is calledε-insensitive loss function. Other kinds of functions can beused,
some of which are presented in chapter 5 of [9].

To estimatef (x), a quadratic problem must be solved, of which the dual form,
according to [19] is as follows:

maxα,α∗ −
1
2

N

∑
i=1

N

∑
j=1

(αi −α∗
i )(α j −α∗

j )K(xi ,x j)− ε
N

∑
i= j

(αi +α∗
i )+

N

∑
i=1

yi(αi −α∗
i )

(3)
with the constraint that∑N

j=1(αi −α∗
i ) = 0,αi ,α∗

i ∈ [0,C]. The regularization pa-
rameterC > 0 determines the tradeoff between the flatness off (x) and the allowed
number of points with deviations larger thanε. As mentioned in [9], the value ofε
is inversely proportional to the number of support vectors.An adequate setting ofC
andε is necessary for a suitable solution to the regression problem.

Furthermore,K(xi ,x j) is known as a kernel function which allows to project the
original data into a higher-dimensional feature space where it is much more likely
to be linearly separable. Some of the most popular kernels are radial basis functions
(equation 4) and a polynomial kernel (equation 5):

K(x,xi) = e
−

||x−xi ||
2

2σ2 (4)

K(x,xi) = (〈x,xi〉+1)ρ (5)

The parametersσ andρ have to be determined appropriately for the SVM to gen-
eralize well. This is usually done experimentally. Once thesolution for the above
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optimization problem in equation 3 is obtained, the supportvectors can be used to
construct the regression function:

f (x) =
N

∑
i=1

(αi −α∗
i )K(x,xi)+b (6)

In our experiments, we used the R SVM interface to libsvm [5] with thee1071 R
package.

3.4 Performance Measurement

The performance of the models will be determined using the root mean squared
error (RMSE). For the RMSE, first the difference between an actual target valueya

and the model output valuey is computed. This difference is squared and averaged
over all training examples before the root of the mean value is taken, see equation 7.

RMSE=

√

1
n

n

∑
i= j

(yi −ya,i)2 (7)

In [26] it has been established that model parameters set forone data set may be
carried over to a different data set. Hence, it is assumed that the RegTree and SVR
parameters may be fixed. Nevertheless, although computationally heavy, acomplete
searchfeature selection strategy with an automatic fine-tuning ofmodel parameters
for the SVR and RegTree model has been used.

For training the models, a cross validation approach is taken. As mentioned in
e.g. [10], the data will be split randomly into a training setand a test set. The model
is trained using the training data and after each training iteration, the error on the test
data is computed. During training, this error usually declines towards a minimum.
Beyond this minimum, the error rises – overlearning (or overfitting) occurs: the
model fits the training data perfectly but does not generalize well. Hence, the model
training is stopped when the error on the test set starts rising. We use a size ratio
of 9:1 for training and test set. The data sets are partitioned randomly 20 times, the
models are trained and the error values are collected.

4 Experimental Results

The three data sets presented in Section 2 are evaluated herefor the purpose of estab-
lishing whether a particular feature (sensor) is useful foryield prediction. The target
attribute to predict via regression techniques is the respective current year’s yield.
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Two techniques have been selected: regression trees and support vector regression.
10-fold cross validation was applied for both techniques.

4.1 Feature Selection with RegTree

Regression trees were created using an auto-prune approach, which is similar to the
grid search in the following section. A minimum split value of 30 is used, therefore
leaves in the final tree will not contain more than 30 data observations for which the
yield shall be predicted. An additional complexity parameter cp = 0.001 was set,
which determines that a split must at least yield a prediction improvement ofcp,
otherwise it is not carried out.

As can be seen in Table 2, the predictive error of the regression tree decreases
steadily as more predictors are added. This behaviour should be expected, since the
regression tree receives more information to improve its predictive performance.
However, after adding three or four features, the error seems almost to have leveled,
which would imply that the remaining features are unnecessary for yield predic-
tion. Generally, the REIP49 feature seems to be the one best suited for prediction.
This should also be expected, since the measurement of REIP49 occurs late into the
growing season when the crop is nearing harvest. In two out ofthe three data sets,
the respective previous year’s yield also seems to play an important role. Again, this
should be expected, since areas with high/low yield are (without special treatment)
bound to generate high/low yield in the following years as well. The EM38 mea-
surement ranks third or fourth for the prediction task, evenbetter than the REIP32
feature, which is a novel and important result. Even more useful might be the con-
clusion thatN1 andN2 , the dressings of fertilizer early into the growing season, do
not bear significant amounts of information in regard to yield prediction within this
feature selection approach.

Table 2: Results for Feature Selection via Regression Tree

F04 F131 F330
step error feature error feature error feature

1 0.342Y IELD03 0.235REIP49 0.279 N3
2 0.262REIP49 0.136Y IELD05 0.246REIP49
3 0.228 N3 0.104 EM38 0.223 EM38
4 0.215 EM38 0.104REIP32 0.199REIP32
5 0.210REIP32 0.104 N1 0.189 N1
6 0.209TRACFORCE 0.104 N2 0.187 N2
7 0.208 N1 0.104 N3 0.181Y IELD05
8 0.205 N2
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4.2 Feature Selection with SVR

For support vector regression, a grid search in the parameter space within reasonable
bounds has been performed when searching for the optimal regression parameters,
using thesvm.best() R routine. The regularization parameterC was set to vary
between 23 and 27, theε parameter between 0.5 and 2, while a radial kernel was
used.

Table 3 shows the results for SVR. In each feature selection step the best model
from this particular step was chosen. Due to thecomplete searchapproach, the pre-
diction accuracy may decline from one step to the next. Nevertheless, SVR agrees
with the RegTree that the REIP49 feature is the one bearing most predictive power
since it is chosen in the first or second step. It also agrees onthe predictive power in
the respective previous year’s yield, which ranks high in F04 and F131, but low in
F330.N1 andN2 do not improve the prediction significantly. In addition, the overall
prediction error levels are higher than with the simple regression tree. This might
be due to the grid search approach for selecting the best SVR model in each step.
This grid search optimized the most important SVR parameters, while more may be
chosen. Nevertheless, SVR tends to produce comparable results.

Table 3: Results for Feature Selection via Support Vector Regression

F04 F131 F330
step error feature error feature error feature
1 0.557Y IELD03 0.469REIP49 0.491 N3
2 0.509REIP49 0.356Y IELD05 0.493REIP49
3 0.466 N2 0.337 N2 0.469 EM38
4 0.483REIP32 0.335 N1 0.519 N2
5 0.449 N1 0.303REIP32 0.454 N1
6 0.471 EM38 0.333 N3 0.508Y IELD05
7 0.444 N3 0.285 EM38 0.439REIP32
8 0.469TRACFORCE

5 Conclusion

In this paper we presented a novel application of a feature selection approach by
using it on agriculture data. We were interested in evaluating the data attributes with
regard to their utility for yield prediction. The presentedapproach employsforward
feature selectionand a complete search strategy. With it, two regression models
(SVR and RegTree) were used to compare the yield prediction results for the differ-
ent data sets. Both the SVR and RegTree regression models produced slightly differ-
ent, but yet comparable results. Nevertheless, on the one hand both models returned
understandable and explicable feature rankings, while, onthe other hand, provid-



Feature Selection for Wheat Yield Prediction

ing novel knowledge about the data sets and their features. Hence, the presented
feature selection approach presents an immediately usefulapplication of artificial
intelligence techniques and may be developed further.

5.1 Future Work

Future work will focus on evaluating additional feature selection approaches like
the reverse process ofbackward elimination. Additional regression models are to
be included. Furthermore, different approaches to judgingthe importance of certain
features may be used, such as principal components analysisor clustering.

Acknowledgements The results in this work were generated using R [25]. The scriptscan be
obtained from the author’s research site:http://research.georgruss.de.
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