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Abstract. Precision agriculture (PA) and information technology (IT) are closely
interwoven. The former usually refers to the application ofnowadays’ technol-
ogy to agriculture. Due to the use of sensors and GPS technology, in today’s agri-
culture many data are collected. Making use of those data viaIT often leads to
dramatic improvements in efficiency. For this purpose, the challenge is to change
these raw data into useful information. Techniques or methods are required which
use those data to their full extent – clearly being a data mining task. This paper
presents experimental results on real and recent agriculture data that aid in the
first part of the data mining process: understanding and visualizing the data. Self-
organizing maps and multidimensional scaling techniques will be used to reduce
the high-dimensional input data to two dimensions. The processed data can then
be visualized appropriately on 2D maps. An analysis of correlations and interde-
pendencies in the data set will be given, based on the visualization.

Keywords: Precision Agriculture, Data Mining, Multidimensional Scaling, Self-
Organizing Maps

1 Introduction

The past decade has seen rapidly advancing information technology which has trick-
led down into everyday life. Not only have technological breakthroughs been made in
industry and services, but also in agriculture.

Due to the adoption of modern GPS technology and the use of ever more different
sensor technology on the field, major advances can be made in agriculture. Since the
data resulting from the field are small-scale, precise data,this led to creation of the
termprecision farming. According to [22], precision farming is the sampling, mapping,
analysis and management of production areas that recognizes the spatial variability of
the cropland. It can be seen as a major step from uniform, large-scale cultivation of
soil towards small-field, precise planning of, e.g., fertilizer or pesticide usage. With the
ever-increasing amount of sensors and information about their soil, farmers are not only
harvesting, e.g., potatoes or grain, but also harvesting large amounts of data.

In data mining terms, the area of precision farming (PF) is quite an interesting one
as it involves methods and algorithms from numerous areas that the data mining com-
munity is familiar with. When analyzing the data flow that results from using PF tech-
niques, it is clear that data mining, on top of a farmer’s experience, is one of the main
keys to understanding agriculture: a farmer collects data from his cropland (e.g., when
fertilizing or harvesting) and would like to extract usefulinformation from those data



and make use of this information to his (economic) advantage. A simplified data flow
model can be seen in Figure 1. Therefore, it is clearly necessary to consider using data
mining techniques in the light of precision farming to use those data to their full extent.

1.1 Research Target

With this contribution we aim at evaluating suitable methods to visualize agricultural
data with a high degree of precision and generality. We present different data sets
which shall be visualized. We present experimental resultson real and recent (years
2005/2006) agricultural data. Our work helps in visualizing and understanding the avail-
able data, which are two important steps in data mining. Eventually, our work aims to
proceed towards a framework for evaluating the usefulness of agricultural sensors for
the purpose of yield prediction.

1.2 Article Structure

This article concentrates on the step parallel to modeling the data, as seen in Figure 1,
namely visualizing the data appropriately. First, we give an overview about the data that
we are dealing with in Section 2, including interesting sensor data. Thereafter, we will
present selected techniques for advanced data visualization in Section 3. Section 4 is at
the core of this article: the different data sets will be visualized and conclusions towards
correlations and interdependencies will be drawn. The conclusions will be compared
with farmers’ experience. Section 5 presents a short summary and lays out our future
work.

acquire data

preprocess

optimize/use

build model

evaluate model

visualize data

Fig. 1: Data mining for agriculture data

2 Data Description

The data available in this work have been obtained in the year2006 on a field near
Köthen, north of Halle, Germany3. All information available for these 72- and 32-

3 GPS: Latitude N 51 40.430, Longitude E 11 58.110



hectare fields4 was interpolated using kriging [19] to a grid with 10 by 10 meters grid
cell sizes. Each grid cell represents a record with all available information. During the
growing season of 2006, the field was subdivided into different strips, where various
fertilization strategies were carried out. For an example of various managing strategies,
see e.g. [18], which also shows the economic potential of PA technologies quite clearly.
The field grew winter wheat, where nitrogen fertilizer was distributed over three appli-
cation times during the growing season.

Overall, there are seven input attributes – accompanied by the yield in 2006 as
the target attribute. Those attributes will be described inthe following. In total, for
the smaller field (F131) there are 2278 records, for the larger field (F330) there are
4578 records, thereof none with missing values and none withoutliers.

2.1 Nitrogen Fertilizer – N1, N2, N3

The amount of fertilizer applied to each subfield can be easily measured. It is applied at
three points in time into the vegetation period, which is thestandard strategy for most
of Northwest Europe [11].

2.2 Vegetation –REIP32, REIP49

The red edge inflection point(REIP) is a second derivative value calculated along the
red edge region of the spectrum, which is situated from 680 to750nm. Dedicated REIP
sensors are used in-season to measure the plants’ reflectionin this spectral band. Since
the plants’ chlorophyll content is assumed to highly correlate with the nitrogen avail-
ability (see, e.g. [10]), the REIP value allows for deducingthe plants’ state of nutrition
and thus, the previous crop growth. For further informationon certain types of sensors
and a more detailed introduction, see [8] or [21]. Plants that have less chlorophyll will
show a lower REIP value as the red edge moves toward the blue part of the spectrum.
On the other hand, plants with more chlorophyll will have higher REIP values as the red
edge moves toward the higher wavelengths. For the range of REIP values encountered
in the available data, see Tables 1a and 1b. The numbers in theREIP32 andREIP49
names refer to the growing stage of winter wheat, as defined in[9].

2.3 Electric Conductivity – EM 38

A non-invasive method to discover and map a field’s heterogeneity is to measure the
soil’s conductivity. Commercial sensors such as the EM-385 are designed for agricul-
tural use and can measure small-scale conductivity to a depth of about 1.5 metres. There
is no possibility of interpreting these sensor data directly in terms of its meaningfulness
as yield-influencing factor. But in connection with other site-specific data, as explained
in the rest of this section, there could be coherences. For the range of EM values en-
countered in the available data, see Tables 1a and 1b.

4 We will call themF330andF131, respectively
5 trademark of Geonics Ltd, Ontario, Canada



2.4 YIELD 2005/2006

Here, yield is measured in metric tons per hectare (t
ha), where one metric ton equals

roughly 2204 pounds and one hectare roughly equals 2.47 acres. For the yield ranges
for the respective years and sites, see Tables 1a and 1b. It should be noted that for both
data sets the yield was reduced significantly due to bad weather conditions (lack of rain)
during the growing season 2006.

2.5 Data Overview

In this work, we evaluate data sets from two different fields.A brief summary of the
available data attributes for both data sets is given in Tables 1a and 1b. On each field,
different fertilization strategies have been used. One of those strategies is based on a
technique that uses a multi-layer perceptron (MLP) for prediction and optimization.
This technique has been presented and evaluated in, e.g., [14, 16] or [21]. For each
field, one data set will contain all records, thus containingall the different fertilization
strategies. Another data set for each field will be a subset ofthe first that only contains
those data records where the MLP has been used, respectively. Table 1c serves as a short
overview about the resulting four different data sets.

Table 1: Overview of the F131 and F330 data sets
(a) Data overview, F131

F131 min max mean std
YIELD 05 1.69 10.68 5.69 0.93

EM38 51.5884.0862.21 8.60
N1 47.70 70 64.32 6.02
N2 14.80 100 51.7115.67
N3 0 70 39.6513.73

REIP32 719.6724.4722.6 0.69
REIP49 722.3727.9725.8 0.95

YIELD 06 1.54 8.83 5.21 0.88

(b) Data overview, F330

F330 min max mean std
YIELD 05 4.64 14.1210.62 0.97

EM38 25.0849.4833.69 2.94
N1 24.0 70 59.4814.42
N2 3.0 100 56.3813.35
N3 0.3 91.6 50.0512.12

REIP32 719.2724.4721.5 1.03
REIP49 723.0728.5726.9 0.82

YIELD 06 1.84 8.27 5.90 0.54

(c) Overview on available data sets for specific fertilization strategies for different fields

F131-all YIELD 05,EM38,N1, REIP32,N2, REIP49,N3, YIELD 06,fert. strategy
F131-net subset of F131-all where fertilization strategy isneural network

F330-all YIELD 05,EM38,N1, REIP32,N2, REIP49,N3, YIELD 06,fert. strategy
F330-net subset of F330-all where fertilization strategy isneural network

2.6 Fertilization Strategies

There were three different strategies that have been used toguide the nitrogen fertil-
ization of the fields. F131 contains data resulting from two strategies (F, N) and F330
contains data from three strategies (F, N, S). The three strategies are as follows:



F – uniform distribution of fertilizer according to long-term experience of the farmer
N – fertilizer distribution was guided by an economic optimization with a multi-layer

perceptron model; the model was trained using the above datawith the current
year’s yield as target variable that is to be predicted (see,e.g., [16]).

S – based on a special nitrogen sensor – the sensor’s measurements are used to deter-
mine the amount of nitrogen fertilizer that is to be applied.

2.7 Research Target

The overall research target is to find those indicators of a field’s heterogeneity which
are optimal for yield prediction. Furthermore, from the agricultural perspective, it is
interesting to see how much the influencable factor “fertilization” influences the yield in
the current site-year. There may be additional factors thatcorrelate directly or indirectly
with yield. These could be discovered from the acquired datausing standard regression
or correlation analysis techniques like regression trees or principal component analysis.

Self-organizing maps (SOMs) provide another relatively self-explanatory way to
analyze those high-dimensional yield data visually. They are able to reduce the high di-
mension of the input data onto a two-dimensional map. They can provide insight into the
underlying correlations in the data, as shown in [15]. An additional approach towards
visualizing the data is to use multidimensional scaling techniques for dimensionality
reduction, such as Sammon’s mapping.

In this paper we will present experimental results in visualizing the available data
with SOMs and multidimensional scaling techniques which helps in understanding
them and will ultimately lead to new heterogeneity indicators. The following section
will briefly summarize the two proposed techniques to visualize the data that we have
presented before. SOMs and Sammon’s mapping will be outlined briefly, with the main
focus on data visualization.

3 Data Visualization

This section deals with the basic techniques that we used to visualize the agricultural
yield data. The most essential feature of the visualizationtechniques has to be an appro-
priate dimensionality reduction to two or three dimensions. Furthermore, correlations
between data attributes should easily be recognizable. Computational complexity is a
smaller issue, but can not be neglected once the visualization goes into a production
environment.

In the past, a multitude of techniques have been proposed to visualize high-dimensional
data. A good overview can be found in [3]. Among others, self-organizing maps have
shown to be a successful approach to this problem, as demonstrated in, e.g., [6], [12] or
[15]. Multi-dimensional scaling techniques have been usedto reduce high-dimensional
data to two or three dimensions in, e.g., [2], [4] or [13]. SOMs and MDS will be ex-
plained shortly in the following sections and their differences will be pointed out. Since
both techniques have been shown to be useful in data visualization, they will be applied
to the agriculture data from the preceding section and results will be presented.



3.1 Self-Organizing Maps

Our approach of using SOMs is motivated by the need to better understand the available
yield data and extract knowledge from those data. SOMs have been shown to be a
practical tool for data visualization [5]. Moreover, SOMs can be used for prediction and
correlation analysis, again, mostly visually [6]. As such,the main focus in explaining
Self-Organizing Maps in the following will be on the visual analysis of the resulting
maps.

SOM Theory Self-Organizing Maps have been invented in the 1990s by Teuvo Koho-
nen [7]. They are based on unsupervised competitive learning, which causes the training
to be entirely data-driven and the neurons on the map to compete with each other. Su-
pervised algorithms like MLPs or Support Vector Machines require the target attribute’s
values for each data vector to be known in advance whereas SOMs do not have this lim-
itation.

Grid and Neigborhood: An important feature of SOMs that distinguishes them
from Vector Quantization techniques is that the neurons areorganized on a regular grid.
During training, not only the Best-Matching Neuron, but also its topological neighbors
are updated. With those prerequisites, SOMs can be seen as a scaling method which
projects data from a high-dimensional input space onto a typically two-dimensional
map, preserving similarities between input vectors in the projection.

Structure: A SOM is formed of neurons located on a usually two-dimensional grid
having a rectangular or hexagonal topology. Each neuron of the map is represented by a
weight vectormi = [mi1, · · · ,min]

T , wheren is equal to the respective dimension of the
input vectors. The map’s neurons are connected to adjacent neurons by a neighborhood
relationship, superimposing the structure of the map. The number of neurons on the
map determines the granularity of the resulting mapping, which, in turn, influences the
accuracy and generalization capabilities of the SOM.

Training: After an initialization phase, the training phase begins. One sample vec-
tor x from the input data set is chosen and the similarity between the sample and each
of the neurons on the map is calculated. The Best-Matching Unit (BMU) is determined:
its weight vector is most similar tox. The weight vector of the BMU and its topologi-
cal neighbors are updated, i.e. moved closer to the input vector. The training is usually
carried out in two phases: the first phase has relatively large learning rate and neighbor-
hood radius values to help the map adapt towards new data. Thesecond phase features
smaller values for the learning rate and the radius to fine-tune the map.

Visualization: The reference vectors of the SOM can be presented via a component
plane visualization. The trained SOM can be seen as multi-tiered with the components
of the vectors describing horizontal layers themselves andthe reference vectors being
orthogonal to these layers. From the component planes the distribution of the compo-
nent values and possible correlations between components can easily be obtained.

Practicable FeaturesThe visualization of the component planes is the main feature of
the SOMs that will be utilized in the following section. Correlations between features
can easily be detected. Furthermore, in our case, the data records are labeled with differ-
ent fertilization strategies which enables us to constructa labeled map. In the process of



training the self-organizing map similarities between neighboring map units can easily
be computed. Those are used to construct a U-Matrix which shows those similarities
and enables the distinction of homogeneous clusters and cluster boundaries.

In this work, we have used the Matlab SOM toolbox authored by [20] with the
default presets and heuristics for determining map sizes and learning parameters.

3.2 Multidimensional Scaling: Sammon’s Mapping

Multidimensional scaling(MDS) describes a family of methods that aim to present the
underlying structure of the data in a lower number of dimensions, typically on a two-
dimensional map. MDS estimates the coordinates of a set of objectsY = {y1, . . . ,yn}
in a feature space of low dimensionality, resulting from thedataX = {x1, . . . ,xn}. It
tries to preserve the distances between pairs of objects. Different MDS methods usually
result from using different ways of computing these distances. The distances are stored
in a distance matrix

Dx = (dx
i j ), dx

i j = ||xi −x j ||, i, j = 1, . . . ,n.

The estimation of the coordinates is carried out under the constraint that the error
(calledstress) between the distance matrixDx of the data set and the distance matrix
Dy = (dy

i j ),d
y
i j = ||yi − y j ||, i, j = 1, . . . ,n of the corresponding transformed data set is

minimized.
A commonly used error measure is the so-calledSammon’s mapping[17]:

E =
1

∑n
i=1 ∑n

j=i+1dx
i j

n

∑
i= j

n

∑
j=i+1

(dy
i j −dx

i j )
2

dx
i j

The above equation describes the absolute and the relative quadratic error. Error
minimization can be achieved by using a gradient descent method. As the desired side
effect, the transformed data setY is computed. For further details on the iterative process
of parameter optimization, we refer to [13], which also gives a good overview over
advanced MDS techniques. For the purpose of this paper, we decided to generate the
results using the basic Sammon’s mapping. More informationabout different MDS
methods can be found in, e.g., [1].

It should be noted that the complexity of MDS isO(c·n2), wherec is the (unknown)
number of iterations needed for convergence of the used gradient descent. The main
difference between MDS and the aforementioned SOM is that MDS does not construct
an explicit mapping from the high-dimensional space to the lower-dimensional space.
Instead, it tries to position the lower-dimensional feature suitably. Therefore, in contrast
to SOMs, when new data points have to be visualized, they cannot be mapped directly,
but the MDS procedure has to be carried out again as a whole.

For computing the mapping, the matlab script for Sammon’s mapping from the
University of East Anglia was used6.

6 http://theoval.sys.uea.ac.uk/˜gcc/matlab/#sammon



4 Visualized Results

This section will present some of the experimental results that we have obtained using
SOMs and Sammon’s mapping on agricultural data. For each data set, the SOMs and
the mapping results will be presented and analyzed (Sections 4.1 thru 4.4). One of the
data subsets, F131-net, will be analyzed further with the mapping technique to show
interesting results in Section 4.5. The data sets have been described in Section 2, an
overview has been given in Table 1c.

4.1 SOM results for F330-all

In contrast to the F131 dataset, F330 contains three different fertilization strategies. The
“farm” strategy (labeledF), the “neural network” strategy (labeledN) and a third one.
The third strategy (labeledS) is based on a special nitrogen sensor – the sensor’s mea-
surements are used to determine the amount of nitrogen fertilizer that is to be applied.
In Figure 2a it can be seen that theN strategy is separable from the other two variants.
However, theF andS strategies are not clearly separable. The U-matrix in Figure 2b
also represents this behaviour. When looking at the projected values ofN1, N2 andN3
in the component planes in Figures 3a to 3c, the differences between theN andF or S
strategies are again clearly visible. There is, however, nosuch clear connection between
theREIP49 (Figure 4a) andYIELD 06 (Figure 4c) parameters. This might be due to the
fact that the overall yield was significantly reduced by bad weather conditions in 2006.
Nevertheless, there is a certain similarity between the relative yields that can be easily
obtained by comparingYIELD 05 toYIELD 06 in Figures 4b and 4c.

4.2 Sammon’s mapping results for F330-all

Figure 5a shows Sammon’s mapping for the F330-all dataset. Visual inspection yields
(at least) three clusters. However, these clusters do not represent the farming strategies
(F, S, N), as had been expected. In this case, the results fromthe three farming strategies
after the mapping of the data points have limited explanatory power. It is, however, very
likely that further inspection of the mapping will yield deeper insight. In principle, the
same technique as in Section 4.5 could be applied, namely splitting the data into three
sub-data sets which each contain exactly one farming strategy. To demonstrate the use
of this idea, we use the second presented data set in Section 4.4 which covers a field
where only two farming strategies were applied. For the sakeof clarity of presentation,
we postpone the visual analysis of this mapping to a later stage.

4.3 SOM results for F131-all

The complete F131-all dataset consists of two separate fertilization strategies which are
known beforehand. One strategy is to fertilize the field uniformly, this is labeled asF
(for “farm”). The other strategy is guided by neural networks which learned from past
data and from current vegetation and yield indicators to predict the current year’s yield
– this strategy is labeledN. After training the SOM using the preset heuristics from the



(a) Labels (b) U-Matrix

Fig. 2: F330-all, U-Matrix and Labels

(a) N1 (b) N2 (c) N3

Fig. 3: F330-all,N1, N2, N3

(a) REIP49 (b) YIELD 05 (c) YIELD 06

Fig. 4: F330-all,REIP49 vs.YIELD 05 vs.YIELD 06



(a) Sammon’s mapping for F330-all

(b) Sammon’s mapping for F131-all

Fig. 5: Sammon’s mappings for F330-all and F131-all



toolbox [20], the labeled map that results is shown in Figure6a. The corresponding U-
Matrix that confirms the clear separability of those two fertilization strategies is shown
in Figure 6b. In Figures 7a to 7c the amount of fertilizer for the three different fertiliza-
tion times is projected onto the same SOM. On those three mapsit can also be seen that
the different strategies are clearly separated on the maps.Another result can be seen in
Figures 8a and 8c. As should be expected, theREIP49 value (which is an indicator of
current vegetation on the field) correlates with theYIELD 06 attribute.

4.4 Sammon’s mapping results for F131-all

Figure 5b presents Sammon’s mapping of the F131-all data setwith both farming strate-
gies. Three clusters can easily be identified. Different from the F330-all data set in Sec-
tion 4.2, the two farming strategies are separated in the mapping. This continues the
results from the preceding section, where this particular data set was projected onto a
SOM. Out of the three visible clusters, the middle one on the bottom of Figure 5b con-
tains the data points that represent the “F” strategy. The SOM results and the mapping
results lead us to the hypothesis that the “N” strategy, which employs a neural network
for yield prediction and optimization, merits further research. For this purpose, the data
set is split and the data that represent the “N” strategy willbe analyzed in the following
section.

4.5 Sammon’s mapping results results for F131-net

Figure 9 presents Sammon’s mapping for the F131-net data set. The neural network that
was trained and used for yield prediction and optimization does not divulge much in-
formation in terms of which relationships are most important. Therefore, our technique
of using Sammon’s mapping is applied here to reveal some of the correlations that were
found by the neural network. Since theYIELD 06 attribute is the variable that we are
most interested in for prediction and optimization, it is considered first to separate the
data points into those that are below and above a certain yield threshold. We decided
to split the data points roughly in the middle of theYIELD 06 range, at 5.6t

ha. This
presents us with two figures: Figures 9a and 9b convey the notion that there are three
data clusters. The “high-yield” cluster is on the top right of Figure 9a. Two “low-yield”
clusters are located on the bottom and in the top left of Figure 9b.

Since the three clusters are separable, the neural network seems to have learned a
connection between some of the variables that separates theyield potential. The task
therefore is to find possible variable splits that explain the clusters. This is presented in
Figures 9c thru 9f. Four simple rules can be derived from this:

if N1>=60 thenYIELD 06 = low: since the range ofN1 is not as wide as forN2 or N3,
this rule is rather coarse.

if N2>=55 thenYIELD 06 = high: The neural network seems to have learned that there
are parts of the field where theYIELD 06 potential is high so that more N will posi-
tively influenceYIELD 06.

if REIP49<=725.5 thenYIELD 06=low: Since theREIP49 value characterizes the amount
of vegetation on the field at a late growing stage, it is to be expected that a low
REIP49 value leads to lowYIELD 06.



(a) Labels (b) U-Matrix

Fig. 6: F131-all, U-Matrix and Labels

(a) N1 (b) N2 (c) N3

Fig. 7: F131-all,N1, N2, N3

(a) REIP49 (b) YIELD 05 (c) YIELD 06

Fig. 8: F131-all,REIP49 vs.YIELD 05 vs.YIELD 06



if EM 38<=55 thenYIELD 06 = low: this rule would explain the bottom cluster in Fig-
ure 9b and is, like the others, plausible from an agricultureexpert’s point of view.

(a) YIELD 06≥ 5.60 (b) YIELD 06< 5.60

(c) N1 ≥ 60 (d) N2 ≥ 55

(e) REIP49≤ 725.5 (f) EM38≤ 55

Fig. 9: Sammon’s mapping, plot for F131-net, different variable split values. The graphs
show only those points of the mapping where the given variable is above or below a
certain threshold.

5 Conclusion

In this paper we have presented a novel application of self-organizing maps and a multi-
dimensional scaling technique by using them on agricultural yield data. After a thor-



ough description and statistical analysis of the availabledata sets, we briefly outlined
the advantages of self-organizing maps and Sammon’s mapping in data visualization.
A hypothesis on the differences between two fields could clearly be confirmed by using
SOMs and the mapping. A useful correlation between different data attributes could be
found using Sammon’s mapping. We presented further results, which are very promis-
ing and show that correlations and interdependencies in thedata sets can easily be
assessed by visual inspection of the resulting component planes of the self-organizing
map as well as Sammon’s mapping graphs. Those results are of immediate practical
usefulness and demonstrate the advantage of using data mining techniques in agricul-
ture.

5.1 Future Work

The presented work is part of a larger data mining process. Inearlier work, we have
presented models and results to represent the agriculture data and use them for predic-
tion and optimization [14, 16]. The visualization will be used on additional data sets to
further substantiate its usefulness in the context of precision agriculture data. Once the
data can be appropriately visualized, advanced techniqueswill be developed to estab-
lish the benefit of introducing additional sensors which addfurther data to the process.
In the end, only the most effective sensors should be used foryield prediction and opti-
mization.
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