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Abstract. Precision agriculture (PA) and information technology)@fe closely
interwoven. The former usually refers to the applicatiomofvadays’ technol-
ogy to agriculture. Due to the use of sensors and GPS tedyafotoday’s agri-
culture many data are collected. Making use of those dat#éilvidten leads to
dramatic improvements in efficiency. For this purpose, tielenge is to change
these raw data into useful information. Techniques or nuttaoe required which
use those data to their full extent — clearly being a datangitésk. This paper
presents experimental results on real and recent agnieuttata that aid in the
first part of the data mining process: understanding andalidng the data. Self-
organizing maps and multidimensional scaling techniqué$e used to reduce
the high-dimensional input data to two dimensions. The ggsed data can then
be visualized appropriately on 2D maps. An analysis of d¢atiens and interde-
pendencies in the data set will be given, based on the visiiln.

Keywords: Precision Agriculture, Data Mining, Multidimensional $icg, Self-
Organizing Maps

1 Introduction

The past decade has seen rapidly advancing informatiomaémdpy which has trick-
led down into everyday life. Not only have technologicaldkéhroughs been made in
industry and services, but also in agriculture.

Due to the adoption of modern GPS technology and the use ohewee different
sensor technology on the field, major advances can be madgigulure. Since the
data resulting from the field are small-scale, precise dhts,led to creation of the
termprecision farmingAccording to [22], precision farming is the sampling, meqap
analysis and management of production areas that recagthizespatial variability of
the cropland. It can be seen as a major step from uniformedacgle cultivation of
soil towards small-field, precise planning of, e.g., fezéit or pesticide usage. With the
ever-increasing amount of sensors and information abeirtsbil, farmers are not only
harvesting, e.g., potatoes or grain, but also harvestigg lamounts of data.

In data mining terms, the area of precision farming (PF) itecan interesting one
as it involves methods and algorithms from numerous aresdshle data mining com-
munity is familiar with. When analyzing the data flow thatuks from using PF tech-
niques, it is clear that data mining, on top of a farmer’s eiguee, is one of the main
keys to understanding agriculture: a farmer collects data tis cropland (e.g., when
fertilizing or harvesting) and would like to extract usefiformation from those data



and make use of this information to his (economic) advantAgaemplified data flow
model can be seen in Figure 1. Therefore, it is clearly necgss consider using data
mining techniques in the light of precision farming to usest data to their full extent.

1.1 Research Target

With this contribution we aim at evaluating suitable methadal visualize agricultural
data with a high degree of precision and generality. We prtedéferent data sets
which shall be visualized. We present experimental resnitseal and recent (years
2005/2006) agricultural data. Our work helps in visualiggmd understanding the avail-
able data, which are two important steps in data mining. Exadly, our work aims to
proceed towards a framework for evaluating the usefulnésagicultural sensors for
the purpose of yield prediction.

1.2 Article Structure

This article concentrates on the step parallel to modehegiata, as seen in Figure 1,
namely visualizing the data appropriately. First, we gin@aerview about the data that
we are dealing with in Section 2, including interesting sertata. Thereafter, we will
present selected techniques for advanced data visualzatiSection 3. Section 4 is at
the core of this article: the different data sets will be gi&zed and conclusions towards
correlations and interdependencies will be drawn. The leaians will be compared
with farmers’ experience. Section 5 presents a short supnarat lays out our future
work.

acquire data
preprocess
build model

- visualize data
evaluate model

Fig. 1: Data mining for agriculture data

2 Data Description

The data available in this work have been obtained in the 2686 on a field near
Koéthen, north of Halle, Germady All information available for these 72- and 32-

3 GPS: Latitude N 51 40.430, Longitude E 11 58.110



hectare fieldswas interpolated using kriging [19] to a grid with 10 by 10 evstgrid
cell sizes. Each grid cell represents a record with all atsél information. During the
growing season of 2006, the field was subdivided into diffestrips, where various
fertilization strategies were carried out. For an exampledous managing strategies,
see e.g. [18], which also shows the economic potential oEleAriologies quite clearly.
The field grew winter wheat, where nitrogen fertilizer wastdbuted over three appli-
cation times during the growing season.

Overall, there are seven input attributes — accompaniechéwield in 2006 as
the target attribute. Those attributes will be describethi following. In total, for
the smaller field (F131) there are 2278 records, for the fdigkl (F330) there are
4578 records, thereof none with missing values and noneaowitliers.

2.1 Nitrogen Fertilizer — N1,N2,N3

The amount of fertilizer applied to each subfield can be gasdasured. It is applied at
three points in time into the vegetation period, which isgtendard strategy for most
of Northwest Europe [11].

2.2 \Vegetation REIP32,REIP49

Thered edge inflection pointREIP) is a second derivative value calculated along the
red edge region of the spectrum, which is situated from 68&@nm. Dedicated REIP
sensors are used in-season to measure the plants’ reflactiia spectral band. Since
the plants’ chlorophyll content is assumed to highly catelwith the nitrogen avail-
ability (see, e.g. [10]), the REIP value allows for deduding plants’ state of nutrition
and thus, the previous crop growth. For further informatarcertain types of sensors
and a more detailed introduction, see [8] or [21]. Plants lia&e less chlorophyll will
show a lower REIP value as the red edge moves toward the bitiefgthe spectrum.
On the other hand, plants with more chlorophyll will haveltégREIP values as the red
edge moves toward the higher wavelengths. For the range Iéf ®Ritues encountered
in the available data, see Tables 1a and 1b. The numbers Re®82 andrEIP49
names refer to the growing stage of winter wheat, as definfdj.in

2.3 Electric Conductivity —EmM 38

A non-invasive method to discover and map a field’s heteretjetis to measure the

soil's conductivity. Commercial sensors such as the ENM@@ designed for agricul-

tural use and can measure small-scale conductivity to dadpbout 1.5 metres. There
is no possibility of interpreting these sensor data diygatterms of its meaningfulness
as yield-influencing factor. But in connection with othdes$pecific data, as explained
in the rest of this section, there could be coherences. Forahge of EM values en-

countered in the available data, see Tables 1a and 1b.

4 We will call themF330andF131, respectively
5 trademark of Geonics Ltd, Ontario, Canada



2.4 YIELD 2005/2006

Here, yield is measured in metric tons per hectc—p@,(where one metric ton equals
roughly 2204 pounds and one hectare roughly equals 2.4%.deoe the yield ranges
for the respective years and sites, see Tables 1a and lloulddbe noted that for both
data sets the yield was reduced significantly due to bad weeatmditions (lack of rain)
during the growing season 2006.

2.5 Data Overview

In this work, we evaluate data sets from two different fielsrief summary of the
available data attributes for both data sets is given inéalhh and 1b. On each field,
different fertilization strategies have been used. Oného$e¢ strategies is based on a
technique that uses a multi-layer perceptron (MLP) for jmtémh and optimization.
This technique has been presented and evaluated in, edglg]Jlor [21]. For each
field, one data set will contain all records, thus contairdtghe different fertilization
strategies. Another data set for each field will be a substseofirst that only contains
those data records where the MLP has been used, respeciafely 1c serves as a short
overview about the resulting four different data sets.

Table 1: Overview of the F131 and F330 data sets

(a) Data overview, F131 (b) Data overview, F330
F131 | min | max|mearn std F330 | min | max|mearn std
YIELDO5[ 1.69|10.69 5.69| 0.93 YIELD 05| 4.64|14.1210.62 0.97
EM38 |51.5884.0862.21 8.60 EM38 |25.0849.4833.69 2.94
N1 |47.7Q 70 |64.32 6.02 N1 24.0| 70 |59.4814.42
N2 |14.8Q 100 |51.7115.67 N2 3.0 | 100 |56.3813.35
N3 0 70 [39.6513.73 N3 0.3 191.6|50.05912.12
REIP32|719.6724.4722.4 0.69 REIP32 |719.2724.4721.5 1.03
REIPA9 |722.3727.9725.4 0.95 REIP49 |723.0728.5726.9 0.82
YIELDOG6| 1.54| 8.83| 5.21| 0.88 YIELD06| 1.84| 8.27|5.90| 0.54

(c) Overview on available data sets for specific fertiliaatstrategies for different fields

F131-all YIELD05,EM38,N1, REIP32,N2, REIP49,N3, YIELD 06, fert. strategy
F131-net subset of F131-all where fertilization strategysural network
F330-all YIELDO5,EM38,N1, REIP32,N2, REIP49,N3, YIELD 06, fert. strategy
F330-net subset of F330-all where fertilization strategynsural network

2.6 Fertilization Strategies

There were three different strategies that have been usgdide the nitrogen fertil-
ization of the fields. F131 contains data resulting from tivategies (F, N) and F330
contains data from three strategies (F, N, S). The thretegies are as follows:



F — uniform distribution of fertilizer according to long-tarexperience of the farmer

N — fertilizer distribution was guided by an economic optiatian with a multi-layer
perceptron model; the model was trained using the abovewittiathe current
year’s yield as target variable that is to be predicted (s&g, [16]).

S — based on a special nitrogen sensor — the sensor’s measusesne used to deter-
mine the amount of nitrogen fertilizer that is to be applied.

2.7 Research Target

The overall research target is to find those indicators ofld'Sidéeterogeneity which
are optimal for yield prediction. Furthermore, from theiagitural perspective, it is
interesting to see how much the influencable factor “fedtiion” influences the yield in
the current site-year. There may be additional factorsabatlate directly or indirectly
with yield. These could be discovered from the acquired dsitag standard regression
or correlation analysis techniques like regression tre@sincipal component analysis.

Self-organizing maps (SOMs) provide another relatively-sgplanatory way to
analyze those high-dimensional yield data visually. Theyadle to reduce the high di-
mension of the input data onto a two-dimensional map. Theypcavide insight into the
underlying correlations in the data, as shown in [15]. Anitdlidal approach towards
visualizing the data is to use multidimensional scalinditégues for dimensionality
reduction, such as Sammon’s mapping.

In this paper we will present experimental results in vimilag the available data
with SOMs and multidimensional scaling techniques whiclp&én understanding
them and will ultimately lead to new heterogeneity indicatd he following section
will briefly summarize the two proposed techniques to viegathe data that we have
presented before. SOMs and Sammon’s mapping will be odthmniefly, with the main
focus on data visualization.

3 Data Visualization

This section deals with the basic techniques that we usettmhze the agricultural
yield data. The most essential feature of the visualizagchniques has to be an appro-
priate dimensionality reduction to two or three dimensidagthermore, correlations
between data attributes should easily be recognizable pGtational complexity is a
smaller issue, but can not be neglected once the visualizgthes into a production
environment.

Inthe past, a multitude of techniques have been proposesitalize high-dimensional
data. A good overview can be found in [3]. Among others, seffanizing maps have
shown to be a successful approach to this problem, as deratatsin, e.g., [6], [12] or
[15]. Multi-dimensional scaling techniques have been usedduce high-dimensional
data to two or three dimensions in, e.g., [2], [4] or [13]. S©&hd MDS will be ex-
plained shortly in the following sections and their diffeces will be pointed out. Since
both techniques have been shown to be useful in data vistializ they will be applied
to the agriculture data from the preceding section and tesuill be presented.



3.1 Self-Organizing Maps

Our approach of using SOMs is motivated by the need to betenstand the available
yield data and extract knowledge from those data. SOMs haea shown to be a
practical tool for data visualization [5]. Moreover, SOM@nde used for prediction and
correlation analysis, again, mostly visually [6]. As suttie main focus in explaining

Self-Organizing Maps in the following will be on the visualaysis of the resulting

maps.

SOM Theory Self-Organizing Maps have been invented in the 1990s by d&aho-
nen [7]. They are based on unsupervised competitive legyminich causes the training
to be entirely data-driven and the neurons on the map to ctanwth each other. Su-
pervised algorithms like MLPs or Support Vector Machinegiiee the target attribute’s
values for each data vector to be known in advance whereas3oMot have this lim-
itation.

Grid and Neigborhood: An important feature of SOMs that distinguishes them
from Vector Quantization techniques is that the neuronsegenized on a regular grid.
During training, not only the Best-Matching Neuron, butaaits topological neighbors
are updated. With those prerequisites, SOMs can be seencadirrgamethod which
projects data from a high-dimensional input space onto &&jly two-dimensional
map, preserving similarities between input vectors in tleggetion.

Structure: A SOM is formed of neurons located on a usually two-dimenrsignid
having a rectangular or hexagonal topology. Each neurdmeofitap is represented by a
weight vectom, = [myq, - - -,mn]T, wheren is equal to the respective dimension of the
input vectors. The map’s neurons are connected to adjaeenvns by a neighborhood
relationship, superimposing the structure of the map. Tumaber of neurons on the
map determines the granularity of the resulting mappind¢lyhn turn, influences the
accuracy and generalization capabilities of the SOM.

Training: After an initialization phase, the training phase beginse @ample vec-
tor x from the input data set is chosen and the similarity betwhersample and each
of the neurons on the map is calculated. The Best-Matching(BNU) is determined:
its weight vector is most similar . The weight vector of the BMU and its topologi-
cal neighbors are updated, i.e. moved closer to the inpubrethe training is usually
carried out in two phases: the first phase has relativelgltarning rate and neighbor-
hood radius values to help the map adapt towards new datasedoad phase features
smaller values for the learning rate and the radius to fine-tbe map.

Visualization: The reference vectors of the SOM can be presented via a campon
plane visualization. The trained SOM can be seen as mattdiwith the components
of the vectors describing horizontal layers themselvesthadeference vectors being
orthogonal to these layers. From the component planes #tigbdition of the compo-
nent values and possible correlations between componamisasily be obtained.

Practicable Features The visualization of the component planes is the main featfir
the SOMs that will be utilized in the following section. Celations between features
can easily be detected. Furthermore, in our case, the datadseare labeled with differ-
ent fertilization strategies which enables us to constudabeled map. In the process of



training the self-organizing map similarities betweerghéioring map units can easily
be computed. Those are used to construct a U-Matrix whiclvshioose similarities
and enables the distinction of homogeneous clusters asteclboundaries.

In this work, we have used the Matlab SOM toolbox authored 28] with the
default presets and heuristics for determining map sizédemmning parameters.

3.2 Multidimensional Scaling: Sammon’s Mapping

Multidimensional scalingMDS) describes a family of methods that aim to present the
underlying structure of the data in a lower number of dimensj typically on a two-
dimensional map. MDS estimates the coordinates of a setjeE®Y = {y1,...,¥n}

in a feature space of low dimensionality, resulting from tdaaX = {x1,...,X,}. It
tries to preserve the distances between pairs of objedter&it MDS methods usually
result from using different ways of computing these diseand he distances are stored
in a distance matrix

DX = (d¥), df =[x —Xjl[, i,j =1,....n.

The estimation of the coordinates is carried out under tmstcaint that the error
(calledstres$ between the distance matiiX’ of the data set and the distance matrix
D>_’ = (_d?}),di)g =|lvi—vy;jll, i,j = 1,...,n of the corresponding transformed data set is
minimized.

A commonly used error measure is the so-caamhmon’s mappind 7]:

N C R

= Yiiadiind &% @&

The above equation describes the absolute and the relatadratic error. Error
minimization can be achieved by using a gradient descertigdeAs the desired side
effect, the transformed data &€is computed. For further details on the iterative process
of parameter optimization, we refer to [13], which also gi\&egood overview over
advanced MDS techniques. For the purpose of this paper, videtbto generate the
results using the basic Sammon’s mapping. More informatibout different MDS
methods can be found in, e.g., [1].

It should be noted that the complexity of MDSG%c- n?), wherec is the (unknown)
number of iterations needed for convergence of the usedegadescent. The main
difference between MDS and the aforementioned SOM is thaBMDes not construct
an explicit mapping from the high-dimensional space to tveer-dimensional space.
Instead, it tries to position the lower-dimensional featsuitably. Therefore, in contrast
to SOMs, when new data points have to be visualized, theyatdsemapped directly,
but the MDS procedure has to be carried out again as a whole.

For computing the mapping, the matlab script for Sammon’gpiray from the
University of East Anglia was uséd

6 http://theoval.sys.uea.ac.uk/"gcc/matlab/#sammon



4 \Visualized Results

This section will present some of the experimental reshbi$ e have obtained using
SOMs and Sammon’s mapping on agricultural data. For eachssdf the SOMs and
the mapping results will be presented and analyzed (Secfidnthru 4.4). One of the
data subsets, F131-net, will be analyzed further with thppimg technique to show
interesting results in Section 4.5. The data sets have bestrided in Section 2, an
overview has been given in Table 1c.

4.1 SOM results for F330-all

In contrast to the F131 dataset, F330 contains three difféeetilization strategies. The
“farm” strategy (labeledr), the “neural network” strategy (label@t) and a third one.
The third strategy (labeleg) is based on a special nitrogen sensor — the sensor’'s mea-
surements are used to determine the amount of nitrogeliZiertihat is to be applied.

In Figure 2a it can be seen that tNestrategy is separable from the other two variants.
However, theF and S strategies are not clearly separable. The U-matrix in eidir
also represents this behaviour. When looking at the prejeealues ofvl, N2 andN3

in the component planes in Figures 3a to 3c, the differenetgden theN andF or S
strategies are again clearly visible. There is, howevesuoh clear connection between
theREIP49 (Figure 4a) andIELD 06 (Figure 4c) parameters. This might be due to the
fact that the overall yield was significantly reduced by baghther conditions in 2006.
Nevertheless, there is a certain similarity between thetivel yields that can be easily
obtained by comparinglELD05 toYIELD 06 in Figures 4b and 4c.

4.2  Sammon’s mapping results for F330-all

Figure 5a shows Sammon’s mapping for the F330-all datassiaVinspection yields
(at least) three clusters. However, these clusters do potsent the farming strategies
(F, S, N), as had been expected. In this case, the resultdlfithree farming strategies
after the mapping of the data points have limited explarygiower. It is, however, very
likely that further inspection of the mapping will yield deer insight. In principle, the
same technique as in Section 4.5 could be applied, namétiirgpthe data into three
sub-data sets which each contain exactly one farming girate demonstrate the use
of this idea, we use the second presented data set in Secfiamhith covers a field
where only two farming strategies were applied. For the sékédarity of presentation,
we postpone the visual analysis of this mapping to a latgiesta

4.3 SOM results for F131-all

The complete F131-all dataset consists of two separatkatibn strategies which are
known beforehand. One strategy is to fertilize the field amifly, this is labeled a&
(for “farm”). The other strategy is guided by neural networkhich learned from past
data and from current vegetation and yield indicators taligtehe current year’s yield
—this strategy is labeled. After training the SOM using the preset heuristics from the
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Sammon Mapping of the F330 data set
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toolbox [20], the labeled map that results is shown in FigiaeThe corresponding U-
Matrix that confirms the clear separability of those twoifizdtion strategies is shown
in Figure 6b. In Figures 7a to 7c the amount of fertilizer fog three different fertiliza-
tion times is projected onto the same SOM. On those three inegs also be seen that
the different strategies are clearly separated on the maqmher result can be seen in
Figures 8a and 8c. As should be expected,RB8*49 value (which is an indicator of
current vegetation on the field) correlates with ¥heLp 06 attribute.

4.4 Sammon’s mapping results for F131-all

Figure 5b presents Sammon’s mapping of the F131-all datgitelboth farming strate-
gies. Three clusters can easily be identified. Differentftbe F330-all data set in Sec-
tion 4.2, the two farming strategies are separated in thepmgpThis continues the
results from the preceding section, where this particuéaa det was projected onto a
SOM. Out of the three visible clusters, the middle one on thtéom of Figure 5b con-
tains the data points that represent the “F” strategy. Thiel 83ults and the mapping
results lead us to the hypothesis that the “N” strategy, Wwkitploys a neural network
for yield prediction and optimization, merits further raseh. For this purpose, the data
set is split and the data that represent the “N” strategyhveildnalyzed in the following
section.

4.5 Sammon’s mapping results results for F131-net

Figure 9 presents Sammon’s mapping for the F131-net dat@lsenheural network that
was trained and used for yield prediction and optimizatioasinot divulge much in-
formation in terms of which relationships are most impottaherefore, our technique
of using Sammon’s mapping is applied here to reveal somesafdirelations that were
found by the neural network. Since tivé&eLD 06 attribute is the variable that we are
most interested in for prediction and optimization, it issimlered first to separate the
data points into those that are below and above a certaid the¢shold. We decided
to split the data points roughly in the middle of tkieeLD06 range, at S.Qf—a. This
presents us with two figures: Figures 9a and 9b convey themttit there are three
data clusters. The “high-yield” cluster is on the top righE@ure 9a. Two “low-yield”
clusters are located on the bottom and in the top left of lE@r.

Since the three clusters are separable, the neural netwerkssto have learned a
connection between some of the variables that separateseiidepotential. The task
therefore is to find possible variable splits that explamdhusters. This is presented in
Figures 9c thru 9f. Four simple rules can be derived from this

if N1>=60 thenYIELD 06 = low: since the range 0f1l is not as wide as fax2 orn3,
this rule is rather coarse.

if N2>=55 thenvYIELD 06 = high: The neural network seems to have learned that there
are parts of the field where thtveeLD 06 potential is high so that more N will posi-
tively influenceyIELD 06.

if REIP49<=725.5thenyIELD 06=low: Since therEIP49 value characterizes the amount

of vegetation on the field at a late growing stage, it is to beeeied that a low
REIP49 value leads to lowI1ELD 06.
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if EM38<=55 thenYIELD 06 = low: this rule would explain the bottom cluster in Fig-
ure 9b and is, like the others, plausible from an agriculexgert’s point of view.

Sammon Mapping of F131-net, YIELDO6 >=5.60 Sammon Mapping of F131-net, YIELDO6 < 5.60
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Fig. 9: Sammon’s mapping, plot for F131-net, differentahte split values. The graphs
show only those points of the mapping where the given vegigbhbove or below a
certain threshold.

5 Conclusion

In this paper we have presented a novel application of sghitizing maps and a multi-
dimensional scaling technique by using them on agriculyiedd data. After a thor-



ough description and statistical analysis of the availalalia sets, we briefly outlined
the advantages of self-organizing maps and Sammon’s mgjopithata visualization.

A hypothesis on the differences between two fields couldlgiée confirmed by using

SOMs and the mapping. A useful correlation between diffetlate attributes could be
found using Sammon’s mapping. We presented further resuiiich are very promis-

ing and show that correlations and interdependencies ird#ét@ sets can easily be
assessed by visual inspection of the resulting componangeplof the self-organizing
map as well as Sammon’s mapping graphs. Those results anenodédiate practical

usefulness and demonstrate the advantage of using datagn@uhniques in agricul-

ture.

5.1 Future Work

The presented work is part of a larger data mining proceseathier work, we have
presented models and results to represent the agriculttmeadd use them for predic-
tion and optimization [14, 16]. The visualization will beagson additional data sets to
further substantiate its usefulness in the context of pi@ciagriculture data. Once the
data can be appropriately visualized, advanced technigilielse developed to estab-
lish the benefit of introducing additional sensors which adther data to the process.
In the end, only the most effective sensors should be useddlat prediction and opti-
mization.
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