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Abstract. Nowadays precision agriculturerefers to the application of state-of-
the-art GPS technology in connection with small-scalessebased treatment
of the crop. This introduces large amounts of data which alleated and stored
for later usage. Making appropriate use of these data oft@afslto considerable
gains in efficiency and therefore economic advantages. Menthe amount of
data poses a data mining problem — which should be solved asita mining
techniques. One of the tasks that remains to be solvgilid predictionbased
on available data. From a data mining perspective, this eafolmulated and
treated as a multi-dimensional regression task. This paeels with appropriate
regression techniques and evaluates four different tgalsion selected agricul-
ture data. A recommendation for a certain technique is peali
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1 Introduction

In the past decades, information technology (IT) has becaome and more part of
our everyday lives. With IT, improvements in efficiency camfnade in almost any
part of industry and services. Nowadays, this is especially for agriculture. Due to
the modernization and better affordability of state-aé-tirt GPS technology, a farmer
nowadays harvests not only crops but also growing amountiataf. These data are
precise and small-scale — which is essentially why the coathin of GPS, agriculture
and data has been termgicision agriculture

However, collecting large amounts of data often is both aditey and a curse. There
is a lot of data available containing information about aaiarasset — here: soil and
yield properties — which should be used to the farmer’s athgan This is a common
problem for which the terndata mininghas been coined. Data mining techniques aim
at finding those patterns or information in the data that ath taluable and interesting
to the farmer.

A common specific problem that occurs is yield prediction easly into the grow-
ing season as possible, a farmer is interested in knowingrhowh yield he is about
to expect. In the past, this yield prediction has usualljecebn farmers’ long-term
experience for specific fields, crops and climate conditibltavever, this knowledge
might also be available, but hidden, in the small-scalegipeedata which can nowa-
days be collected in-season using a multitude of sensoesel$ensors essentially aim
to measure a field’s heterogeneity.



Therefore, the problem of yield prediction encountereathgone of data mining
and, specifically, multi-dimensional regression. Thigtgtshould serve as an overview
on the capabilities of different regression techniqueslwse agricultural yield data.
Furthermore, this article can be seen as a continuationgjf {2 the previous article
artificial neural networks have been evaluated and estedalias a well-suited refer-
ence model, which further models would have to compete agaiie current work
compares this particular neural network model with suééhrther techniques (such
as regression trees or support vector machines) to find tstepbediction model. To
accomplish this, the model output on site-year data frorfedifit years and sites is
compared. Results on the parameterization of the differentels are presented.

1.1 Research Target

The overall research target is to find those indicators ofld'diéeterogeneity which
are suited best to be used for a yield prediction task. Theaslohere is one of multi-
dimensional regression — predicting yield from past andeason attributes. Further-
more, from the agricultural perspective, it is interestingsee how much the factor
“fertilization” influences the yield in the current site-gte For this purpose, modeling
techniques can be used, but have to be evaluated first. Dner#fis work aims at find-
ing suitable data models that achieve a high accuracy anghegeinerality in terms of
yield prediction capabilities. For this purpose, differgrpes of regression techniques
will be evaluated on different data sets.

Since models usually are strongly parameterized, an additjuestion is whether
the model parameters can be carried over from one field to fitthets which are compa-
rable in (data set) size. This issue will also be addresstddnwork. This is especially
useful when new data have to evaluated using one of the pgesserodels.

1.2 Article structure

Section 2 lays out the data sets that this work builds upoe aftiibutes and their prop-
erties will be presented shortly. Section 3 presents foleicted regression techniques
from the data mining area which will be used for yield preidict The free model pa-
rameters will be described. Section 4 shows the results frmmmodeling steps and
provides answers to the aforementioned research quesfiotise end of this article,
future work is pointed out and implementation details a/juted.

2 Data Description

The data available in this work have been obtained in thesy2@93—2006 on three
fields near Kothen, north of Halle, Germanyll information available for these 65-,
72- and 32-hectare fielésvas interpolated using kriging [30] to a grid with 10 by 10
meters grid cell sizes. Each grid cell represents a recotid ali available informa-
tion. During the growing season of 2006, the latter field wasdévided into different

1 GPS: Latitude N 51 40.430, Longitude E 11 58.110
2 calledF04, F330andF131, respectively



strips, where various fertilization strategies were eatout. For an example of vari-
ous managing strategies, see e.g. [27], which also shovwectireomic potential of PA
technologies quite clearly. The field grew winter wheat, vehatrogen fertilizer was
distributed over three application times during the grayseason.

Overall, for each field there are seven input attributes -empanied by the respec-
tive current year’s yield (2004 or 2006) as the target aitebThose attributes will be
described in the following. In total, for the FO04 field there 241 records, for F131
there are 2278 records, for F330 there are 4578 recordegaheone with missing val-
ues and none with outliers. In addition, a subset for F131avagable: in this subset, a
special fertilization strategy was carried out which use@aral network for prediction
and optimization — this data set is called F131net and ha4 felebrds of the following
attributes.

2.1 Nitrogen Fertilizer —N1,N2,N3

The amount of fertilizer applied to each subfield can be gasdasured. It is applied at
three points in time into the vegetation period, which isstendard strategy for most
of Northwest Europe [20].

2.2 \Vegetation REIP32,REIP49

Thered edge inflection pointREIP) is a second derivative value calculated along the
red edge region of the spectrum, which is situated from 68®@nm. Dedicated REIP
sensors are used in-season to measure the plants’ reflactiia spectral band. Since
the plants’ chlorophyll content is assumed to highly cateelwith the nitrogen avail-
ability (see, e.qg. [18]), the REIP value allows for deduding plants’ state of nutrition
and thus, the previous crop growth. For further informatarcertain types of sensors
and a more detailed introduction, see [13] or [32]. Plangs ittave less chlorophyll will
show a lower REIP value as the red edge moves toward the bitiefgthe spectrum.
On the other hand, plants with more chlorophyll will haveltégREIP values as the red
edge moves toward the higher wavelengths. For the range &f Ritues encountered
in the available data, see Tables 1(b) and 1(c). The numbéheREIP32 andrREIP49
names refer to the growing stage of winter wheat, as defingbin

2.3 Electric Conductivity —EmM 38

A non-invasive method to discover and map a field’s heteretjeiis to measure the

soil's conductivity. Commercial sensors such as the EN@ designed for agricul-

tural use and can measure small-scale conductivity to dadpbout 1.5 metres. There
is no possibility of interpreting these sensor data diygatterms of its meaningfulness
as yield-influencing factor. But in connection with othdesspecific data, as explained
in the rest of this section, there could be coherences. Fara detailed analysis of this

particular sensor, see, e.g. [4]. For the range of EM valnesuntered in the available
data, see Tables 1(a) to 1(c).

3 trademark of Geonics Ltd, Ontario, Canada



2.4 YIELD

Here, yield is measured in metric tons per hectaﬁ@ Eor the yield ranges for the
respective years and sites, see Tables 1(b) and 1(c). ltdsheunoted that for the F131
and F330 data sets the yield was reduced significantly duadoaeather conditions
(lack of rain) during the growing season 2006.

2.5 Data Overview

In this work, data sets from three different fields are bewvejwated. A brief summary
of the available data attributes for both data sets is ginéfables 1(a) to 1(c). On each
field, different fertilization strategies have been useae Of those strategies is based on
a technique that uses a multi-layer perceptron (MLP) fodjoteon and optimization.
This technique has been presented and evaluated in, esg26Ror [32]. For each
field, one data set will contain all records, thus contairdtighe different fertilization
strategies. In addition, a subset of F131 has been chosemnv® as a fourth data set to
be evaluated.

Table 1: Overview of the FO4, F131 and F330 data sets. Theiaaali data seF131net which
is a subset 0F131, is not shown as its statistical properties are very sintdahose ofF131

FO4 min | max|mean std
YIELD03| 1.19|12.38 6.27|1.48
EM38 |17.9786.45933.845.27
N1 0 | 100|57.7|13.5
N2 0 | 100 |39.9|16.4
N3 0 | 100|38.5|15.3
REIP32 |721.1727.2725.70.64
REIP49 |722.4729.6728.10.65
YIELD 04| 6.42|11.37 9.14|0.73

(a) Data overview, F04

F131 | min | max|mearn std F330 | min | max|mear] std
YIELDO5| 1.69(10.68 5.69| 0.93 YIELD 05| 4.64(14.1210.63 0.97
EM38 |51.5884.0862.21 8.60 EM38 |25.0849.4833.69 2.94
N1 |47.7Q 70 |64.32 6.02 N1 24.0| 70 |59.4814.42
N2 |14.8Q 100 |51.7115.67 N2 3.0 | 100 |56.3813.35
N3 0 70 [39.6513.73 N3 0.3 191.6|50.0512.12
REIP32 |719.6724.4722.6 0.69 REIP32 (719.2724.4721.5 1.03
REIP49 |722.3727.9725.9 0.95 REIP49 (723.0728.5726.9 0.82
YIELDO6| 1.54| 8.83| 5.21| 0.88 YIELDO06| 1.84| 8.27| 5.90| 0.54

(b) Data overview, F131 (c) Data overview, F330



2.6 Fertilization Strategies

There were three different strategies that have been usgpdde the nitrogen fertiliza-
tion of the fields. The three strategies are described indhewiing. A subset of the
F131 data set was chosen where the strategy was “N”. Thiet assthe smallest data
set in this work that models will be built upon.

F — uniform distribution of fertilizer according to long-tarexperience of the farmer

N — fertilizer distribution was guided by an economic optiatian with a multi-layer
perceptron model; the model was trained using the abovewititathe current
year’s yield as target variable that is to be predicted (&g, [26]).

S — based on a special nitrogen sensor — the sensor’s measuseane used to deter-
mine the amount of nitrogen fertilizer that is to be applied.

3 Advanced Regression Techniques

As mentioned in the preceding section, the task of yield iptuh is essentially a task
of multi-dimensional regression. Therefore, this sectidhserve as an overview about
different regression techniques that are applicable tyittld data sets. It is aimed to
evaluate these techniques on the data sets presented iretieeling section.

The regression task can be formalized as follows: the tiginét

T:{{le"'axn}ayi}iNzl (1)

is considered for the training process, wheté= 1, ... ,n are continuous input values
andy;,i = 1...,N are continuous output values. Given this training set, éis& of the
regression techniques is to approximate the underlyingtfoim sufficiently well. The
quality of the approximated function can be measured by eaties, some of which
are specified in section 3.6.

3.1 Introduction to regression techniques

Since one particular technique, namely MLPs, has been wsmgssfully in previous
work [24,26], it is used as a reference model here. Threetiaddl modeling tech-
niques will be presented that are suitable for the task dfl yieediction.

In the past, numerous regression techniques have been wseessfully on data
from agriculture. Neural networks have shown to be quitecie in modeling yield
of different crops ([7,28]). In [31] and [32], artificial neal networks, namely multi-
layer perceptrons (MLPs) have been trained to predict wyiett from fertilizer and
additional sensor input. The basic framework for MLPs wdldiven in section 3.2.

Radial basis function (RBF) networks are similar to mutjér perceptrons in that
they can also be used to model non-linear relationshipsdsatvinput data. Never-
theless, there has been almost no research into RBF netwbiks applying them to
agriculture data. Some of the theoretical properties afierdinces between MLPs and
RBFs will be pointed out in section 3.2.



Regression trees have seen some usage in agriculture {8l]J1Essentially, they
are a special case of decision trees where the outcome (irethkeaves) is a continuous
function instead of a discrete classification. Furtherittetan be found in section 3.3.

A fourth technique that has, to the best of the author’s kedgé, not been used
on similar yield data, but for similar regression tasks, @eavative of support vector
machines (SVMs). Similar to decision trees, if the targéilatte is discrete, SVMs
would solve a classification task, whereas in the case of tinemus attribute, a regres-
sion task would be solved. Hence, support vector regre¢SigR) will be explained in
section 3.4.

The aforementioned techniques have not been compared icofaer when used
with different data sets in the agriculture context. Thisties presents the necessary
background for each of the techniques before they will béuewad in section 4.

3.2 Neural Networks

In previous work multi-layer perceptrons (MLPs), a type etiral networks, have been
used for a modeling task [24, 26] similar to the one laid outh@ preceding section.
The MLP model has been established as a reference modektgédiich further re-
gression techniques would have to compete. Hence, the MILBewexplained shortly
in the following section. Furthermore, a different type elnal network, a radial basis
function (RBF) network, will be presented since it is walited to the regression task.

MLP According to [19], “neural networks provide a general, picad method for
learning [...] vector-valued functions from examples.the previous work multi-layer
perceptrons (MLPs) with backpropagation learning havenhesed to learn from agri-
cultural data and predict yield. Generally, MLPs can be seea practical vehicle for
performing a non-linear input-output mapping [10]. Theutesfrom [24, 26] lead us
to assume that the extension to more than one hidden laygmnuarginally increases
the generalization performance of MLPs, but rather drakjiégncreases the computa-
tion time for the backpropagation algorithm. Hence, heirg @ssumed that one hidden
layer is sufficient to approximate the underlying functiarffisiently well. For a more
detailed and formal description of MLP neural networkss iteéferred to [9] or [10].

Once the number of hidden layers of the network is fixed, thereain a few param-
eters to be determined. Similar to the remaining modelingrigues, those are usually
determined experimentally. This also means that oftengelparameter space has to
be searched. For standard MLP networks, the size of the hidgeer, the learning rate,
the activation function and the minimum gradient are the tnmaportant parameters
that have to be set. In this case, the matlab implementadiothé MLP network was
usednewf f .4

RBF While the MLP networks in the preceding section had a vagiabimber of layers,
the number of layers in an RBF network is fixed. There are ttayers of neurons that

4 For details on matlab implementations and scripts see kecbntained in thecknowledge-
mentssection.



constitute an RBF network and perform differentroles. \&Htile input layer is the same
as in an MLP network, the only hidden layer applies a nonlitieamsformation from
the input space to the hidden space. The output layer is #igasr. The idea behind
this approach is that a regression (or classification) ks much more likely to be
solvable in a high-dimensional space than in a low-dimeraispace [5]. The main
difference to MLPs is in the hidden layer. The activationdiion of each hidden unit
in the RBF network computes the Euclidean norm, i.e. thexd#t, between the input
vector and the center of that unit. In MLP networks, the attbn function computes
the inner product of the input vector and the synaptic weigletor of that unit.

One of the simpler learning algorithms that can be emplopedRBF networks is
described in the following.

1. The network is simulated: for all training examples, thpat of the network is
compared to the actual target value of the respective exampl

2. The input vector with the greatest error is determined.

3. An RBF neuron is added to the hidden layer with weights Etgpuhat vector.

4. The connection weights from the hidden layer to the oulgyer are adapted to
minimize the error.

According to the above algorithm, the RBF network trainitgpaithm has at least the
following parameters: a) an error goal that must be met, ladaus (or spread) of the
radial basis function and c) a maximum number of neuronsghatild be added be-
fore stopping. These parameters are usually determinegtiexgntally, although some
strategies for computing them are presented in [10]. Simeetrrent approach aims to
compare four basic techniques for non-linear regressiomas chosen to employ the
above training algorithm without further tweaking. It haseh implemented in matlab’s
newr b function and the parameters have been determined expedéiltyen

3.3 Regression Tree

Learning decision trees is a paradigmmductive learninga model is built from data
or observations according to some criteria. The model aintessirn a general rule from
the observed instances. Decision trees can therefore gtisbntwo different tasks,
depending on whether the target attribute is discrete otirmaous. In the first case, a
classification tree would result, whereas in the second @asgression tree would be
constructed. Since the focus is on solving a regression thekegression tree will be
explained shortly in the following.

Regression trees approximate learning instances by gdii@m down the tree from
the root to some leaf node, which provides the value of thgetattribute. Each node in
the tree represents a split of some attribute of the instandesach branch descending
from that node corresponds to one part left or right of thé&.sphe value of the target
attribute for an instance is determined by starting at tieé mode of the tree and testing
the attribute specified by this node. This determines whdth@roceed left or right
of the split. Then the algorithm moves down the tree and rispib@ procedure with
the respective subtree. In principle, there could be maaa tine split in a tree node,
which would result in more than two subtrees per node. Howewehis application



scenario, regression trees with more than two subtreegppiensde are not taken into
consideration.

Regression as well as decision trees are usually congtrirceetop-down, greedy
search approach through the space of possible trees [1®h&dsic algorithms for con-
structing such trees are CART [2], ID3 [22] and its succe§3bb [23]. The idea here
is to ask the question “which attribute should be testedeatdp of the tree?” To answer
this question, each attribute is evaluated to determinewellit is suited to split the
data. The best attribute is selected and used as the testud@rocedure is repeated
for the subtrees. An attribute selection criterion thatrigpyed by ID3 and C4.5 is
the entropy and, resulting from it, the information gaintrigpy is a measure from in-
formation theory that describes the variety in a collectibdata points: the higher the
entropy, the higher the variety. An attribute split aimsdwér the entropy of the two
resulting split data sets. This reduction in entropy isezhthe information gain. For
further information it is referred to [19].

However, if the addition of nodes is continued without a giestopping criterion,
the depth of the tree continues to grow until each tree leaérsoone instance of the
training data set. This is certainly a perfect tree for tlaning data but is likely to
be too specific — the problem of overlearning occurs. For newgeen data, such a
specific tree will probably have a high prediction error. fidfere, regression trees are
usually pruned to a specific depth which is a trade-off betwegh accuracy and high
generality. This can easily be achieved by setting a lowemddor the number of
instances covered by a single node below which no split shmedur. For this work the
standard matlab implementation@fassr egt r ee was used.

3.4 Support Vector Regression

Support Vector Machines (SVMs) are a supervised learnintpoaediscovered by [1].
However, the task here is regression, so the focus is on siygdor regression (SVR)
in the following. A more in-depth discussion can be founddh Given the training set,
the goal of SVR is to approximate a linear functibfx) = (w,x) + b with w € RN and
b € R. This function minimizes an empirical risk function defiresl

N
Remp=; 3. Lel§ 1) @

whereL¢(y — f(x)) = max((|&| — €),0). || is the so-called slack variable, which has
mainly been introduced to deal with otherwise infeasiblest@ints of the optimization
problem, as has been mentioned in [29]. By using this vagiadirors are basically
ignored as long as they are smaller than a properly select@&the function here is
callede-insensitive loss function. Other kinds of functions carubed, some of which
are presented in chapter 5 of [8].

To estimatef(x), a quadratic problem must be solved, of which the dual form,
according to [17] is as follows:
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with the constraintthazﬂ-\‘zl(ai —a)=0,0;,a; € [0,C]. The regularization parameter
C > 0 determines the tradeoff between the flatnest(rf and the allowed number of
points with deviations larger than As mentioned in [8], the value @fis inversely pro-
portional to the number of support vectors. An adequatengedf C ande is necessary
for a suitable solution to the regression problem.

FurthermoreK(x;,X;) is known as a kernel function which allows to project the
original data into a higher-dimensional feature space whés much more likely to be
linearly separable. Some of the most popular kernels aiialradsis functions (equa-
tion 4) and a polynomial kernel (equation 5):

K(x,x)=¢e HXZiZHZ (4)
K%, %) = (<X5Xi>+1)p (5)

The parameterg andp have to be determined appropriately for the SVM to genegaliz
well. This is usually done experimentally. Once the solufior the above optimization
problem in equation 3 is obtained, the support vectors cansee to construct the
regression function:

N

f(x) = _;(ai — 0" )K(x,%)+b (6)

In the current experiments, the SVMtorch implementatianfr[3] has been used,
which also points out further details of the SVR process.

3.5 Performance Measurement

The performance of the models will be determined using tlo¢ meean squared er-
ror (RMSE) and the mean absolute error (MAE). For the RMSEt fhe difference

between an actual target valygand the model output valueis computed. This dif-

ference is squared and averaged over all training exampfeseithe root of the mean
value is taken, see equation 7. The MAE is computed simjlaelg equation 8.

RMSE=

Sl

M=

(Vi — Yai) (7)

1 n
MAE =25 1% —Yai ®)

3.6 Model Parameter Estimation

Each of the aforementioned four different models will beleated on the same data
sets. One of the research goals is to establish whether al thaddas been used on
one data set can be used on a different data set without aiwaitgiparameters. This
would mean that comparable fields could use the same pradictodel. Hence, the



F04 data set is used to determine the model parameters expéailgenfterwards, the
models are re-trained on the remaining data sets using ttiregsedetermined foF04.
The parameter settings are given in section 4.

For training the models, a cross-validation approach ignalds mentioned in
e.g. [11], the data will be split randomly into a training setd a test set. The model
is trained using the training data and after each trainiegiton, the error on the test
data is computed. During training, this error usually dezditowards a minimum. Be-
yond this minimum, the error rises — overlearning (or ovinfif) occurs: the model fits
the training data perfectly but does not generalize welhdée the model training is
stopped when the error on the test set starts rising. A steeaf9:1 for training and
test set is used. The data sets are partitioned randomlyn2@ tthe models are trained
and the error values are collected.

4 Results

The models are run with the following parameter settingsctvivere determined ex-
perimentally or-04 and carried over to the remaining data sets.

MLP For the multi-layer perceptron model, a relatively smalimoer of 10 hidden
neurons is used and the network is trained until a minimundigra of Q001 is
reached, using a learning rate 028 and théangens hyperbolicusigmoid activa-
tion function.

RBF For the radial basis function network, a radius of 1 is usedHe radial basis
neurons in the hidden layer. The algorithm, which increralinaidds neurons until
the error goal of MO1 is met, uses a maximum number of 70 neurons, which results
in a relatively long training time.

RegTree For the regression tree, the default settingslafissr egt r ee perform op-
timal; the full tree is pruned automatically and the minimaomber of training
examples below which no split of a tree node should be done.is 1

SVR For the support vector regression model, the radial basistifon kernel yields
the best results, using the parameter 60 (tradeoff between training error and
margin), and the standard deviation= 4.0. The slack variablé = 0.2 is also
determined as yielding the best resultsHi.

4.1 Detailed Results

Considering the results in Table 2, support vector regoessbviously performs best
on all but one of the data sets, regarding both error meadsavethermore, SVR also
is the model taking the least amount of computation time g¢hotvn in table). Hence,
the slight difference between the RMSE of SVR and RBF orHB@0data set may be
considered insignificant in practice when computationat &®also taken into account
when deciding for a model.
Regarding the understandability of the generated modeisyuld certainly be de-

sirable to have the regression tree as the best model simg#esdecision rules can



Error Measure / Model FO4| F131F131net F33(Q
MAE MLP:|0.3706/0.2468 0.23000.3576

RMSE MLP:0.4784|0.3278 0.30730.5020

MAE RBF:|0.3838|0.2466 0.24040.3356

RMSE RBF|0.5031|0.3318 0.32050.4657

MAE REGTREE|0.438(|0.2823 0.253(00.4151
RMSE REGTREHD0.5724/0.3886 0.35300.6014
MAE SVR:|0.3446|0.2237 0.20820.326(

RMSE SVR]|0.4508|0.3009 0.27430.4744

Table 2: Results of running different models on differertedsets. The best predictive model for
each data set is markedtold font.

easily be generated from the tree. However, the regresserperforms worst in all of
the cases. On the other hand, when comparing the hithedrerefe model MLP with
the current best model SVR, the understandability of botllet®is equally limited.
Further research into understanding these models has hdeshmauld be undertaken.

Figure 1 shows eight graphs which depict the MAE and RMSE tier different
data sets vs. different models, when run on a total of 20 nancloss-validation splits.
Except for the regression tree, which often produced mugherierrors than the other
models, the three remaining models usually agree in their galues — with slight, but
constant differences in favor of the SVR.

4.2 Conclusion

The results clearly show that support vector regressiorseare as a better reference
model for yield prediction. It is computationally less derding, at least as understand-
able as the hitherto multi-layer perceptron and, most itgmtly, produces better yield
predictions.

The results also show that model parameters which have s&blished on one
data set can be carried over to different (but similar wipezt to the attributes) data
sets.

4.3 Future Work

One aspect that should be considered in future work is thenstehdability of the
model. While regression trees would be the easiest to utathelsthey bear the burden
of providing worse results compared to SVR. There has ayrbadn quite a lot of work
towards understanding the inner workings of an MLP, butrta@s one of the more
intransparent models. The same holds for SVR, but theredmsdpme work using the
support vectors for visualization, such as [33, 15].

Rather than selecting one of the four presented models théeght be a certain
combination of models that performs better than a single ame prerequisites would
have to be fulfilled — such as the error for a certain data cee@uld have to be alter-
natively low in one model and high in another. A similar idegiesented in [21].
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Fig. 1: Errors of different data sets vs. different models



The most time-consuming part of this article is the manutdmeination of param-
eters for one or more models since a large parameter spate bagonsidered. Even
though it has been established that the model parametect Wwaie been determined
on one data set can be carried over to different data setsstiesifor model parameters
might reduce the size of the parameter space which has tabehsel.
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