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Abstract. Nowadays,precision agriculturerefers to the application of state-of-
the-art GPS technology in connection with small-scale, sensor-based treatment
of the crop. This introduces large amounts of data which are collected and stored
for later usage. Making appropriate use of these data often leads to considerable
gains in efficiency and therefore economic advantages. However, the amount of
data poses a data mining problem – which should be solved using data mining
techniques. One of the tasks that remains to be solved isyield predictionbased
on available data. From a data mining perspective, this can be formulated and
treated as a multi-dimensional regression task. This paperdeals with appropriate
regression techniques and evaluates four different techniques on selected agricul-
ture data. A recommendation for a certain technique is provided.

Keywords: Precision Agriculture, Data Mining, Regression, Modeling

1 Introduction

In the past decades, information technology (IT) has becomemore and more part of
our everyday lives. With IT, improvements in efficiency can be made in almost any
part of industry and services. Nowadays, this is especiallytrue for agriculture. Due to
the modernization and better affordability of state-of-the-art GPS technology, a farmer
nowadays harvests not only crops but also growing amounts ofdata. These data are
precise and small-scale – which is essentially why the combination of GPS, agriculture
and data has been termedprecision agriculture.

However, collecting large amounts of data often is both a blessing and a curse. There
is a lot of data available containing information about a certain asset – here: soil and
yield properties – which should be used to the farmer’s advantage. This is a common
problem for which the termdata mininghas been coined. Data mining techniques aim
at finding those patterns or information in the data that are both valuable and interesting
to the farmer.

A common specific problem that occurs is yield prediction. Asearly into the grow-
ing season as possible, a farmer is interested in knowing howmuch yield he is about
to expect. In the past, this yield prediction has usually relied on farmers’ long-term
experience for specific fields, crops and climate conditions. However, this knowledge
might also be available, but hidden, in the small-scale, precise data which can nowa-
days be collected in-season using a multitude of sensors. These sensors essentially aim
to measure a field’s heterogeneity.



Therefore, the problem of yield prediction encountered here is one of data mining
and, specifically, multi-dimensional regression. This article should serve as an overview
on the capabilities of different regression techniques used on agricultural yield data.
Furthermore, this article can be seen as a continuation of [26]: in the previous article
artificial neural networks have been evaluated and established as a well-suited refer-
ence model, which further models would have to compete against. The current work
compares this particular neural network model with suitable further techniques (such
as regression trees or support vector machines) to find the best prediction model. To
accomplish this, the model output on site-year data from different years and sites is
compared. Results on the parameterization of the differentmodels are presented.

1.1 Research Target

The overall research target is to find those indicators of a field’s heterogeneity which
are suited best to be used for a yield prediction task. The sub-task here is one of multi-
dimensional regression – predicting yield from past and in-season attributes. Further-
more, from the agricultural perspective, it is interestingto see how much the factor
“fertilization” influences the yield in the current site-year. For this purpose, modeling
techniques can be used, but have to be evaluated first. Therefore, this work aims at find-
ing suitable data models that achieve a high accuracy and a high generality in terms of
yield prediction capabilities. For this purpose, different types of regression techniques
will be evaluated on different data sets.

Since models usually are strongly parameterized, an additional question is whether
the model parameters can be carried over from one field to other fields which are compa-
rable in (data set) size. This issue will also be addressed inthis work. This is especially
useful when new data have to evaluated using one of the presented models.

1.2 Article structure

Section 2 lays out the data sets that this work builds upon. The attributes and their prop-
erties will be presented shortly. Section 3 presents four selected regression techniques
from the data mining area which will be used for yield prediction. The free model pa-
rameters will be described. Section 4 shows the results fromthe modeling steps and
provides answers to the aforementioned research questions. At the end of this article,
future work is pointed out and implementation details are provided.

2 Data Description

The data available in this work have been obtained in the years 2003–2006 on three
fields near Köthen, north of Halle, Germany1. All information available for these 65-,
72- and 32-hectare fields2 was interpolated using kriging [30] to a grid with 10 by 10
meters grid cell sizes. Each grid cell represents a record with all available informa-
tion. During the growing season of 2006, the latter field was subdivided into different

1 GPS: Latitude N 51 40.430, Longitude E 11 58.110
2 calledF04, F330andF131, respectively



strips, where various fertilization strategies were carried out. For an example of vari-
ous managing strategies, see e.g. [27], which also shows theeconomic potential of PA
technologies quite clearly. The field grew winter wheat, where nitrogen fertilizer was
distributed over three application times during the growing season.

Overall, for each field there are seven input attributes – accompanied by the respec-
tive current year’s yield (2004 or 2006) as the target attribute. Those attributes will be
described in the following. In total, for the F04 field there are 5241 records, for F131
there are 2278 records, for F330 there are 4578 records, thereof none with missing val-
ues and none with outliers. In addition, a subset for F131 wasavailable: in this subset, a
special fertilization strategy was carried out which used aneural network for prediction
and optimization – this data set is called F131net and has 1144 records of the following
attributes.

2.1 Nitrogen Fertilizer – N1, N2, N3

The amount of fertilizer applied to each subfield can be easily measured. It is applied at
three points in time into the vegetation period, which is thestandard strategy for most
of Northwest Europe [20].

2.2 Vegetation –REIP32, REIP49

The red edge inflection point(REIP) is a second derivative value calculated along the
red edge region of the spectrum, which is situated from 680 to750nm. Dedicated REIP
sensors are used in-season to measure the plants’ reflectionin this spectral band. Since
the plants’ chlorophyll content is assumed to highly correlate with the nitrogen avail-
ability (see, e.g. [18]), the REIP value allows for deducingthe plants’ state of nutrition
and thus, the previous crop growth. For further informationon certain types of sensors
and a more detailed introduction, see [13] or [32]. Plants that have less chlorophyll will
show a lower REIP value as the red edge moves toward the blue part of the spectrum.
On the other hand, plants with more chlorophyll will have higher REIP values as the red
edge moves toward the higher wavelengths. For the range of REIP values encountered
in the available data, see Tables 1(b) and 1(c). The numbers in theREIP32 andREIP49
names refer to the growing stage of winter wheat, as defined in[16].

2.3 Electric Conductivity – EM 38

A non-invasive method to discover and map a field’s heterogeneity is to measure the
soil’s conductivity. Commercial sensors such as the EM-383 are designed for agricul-
tural use and can measure small-scale conductivity to a depth of about 1.5 metres. There
is no possibility of interpreting these sensor data directly in terms of its meaningfulness
as yield-influencing factor. But in connection with other site-specific data, as explained
in the rest of this section, there could be coherences. For a more detailed analysis of this
particular sensor, see, e.g. [4]. For the range of EM values encountered in the available
data, see Tables 1(a) to 1(c).

3 trademark of Geonics Ltd, Ontario, Canada



2.4 YIELD

Here, yield is measured in metric tons per hectare (t
ha) For the yield ranges for the

respective years and sites, see Tables 1(b) and 1(c). It should be noted that for the F131
and F330 data sets the yield was reduced significantly due to bad weather conditions
(lack of rain) during the growing season 2006.

2.5 Data Overview

In this work, data sets from three different fields are being evaluated. A brief summary
of the available data attributes for both data sets is given in Tables 1(a) to 1(c). On each
field, different fertilization strategies have been used. One of those strategies is based on
a technique that uses a multi-layer perceptron (MLP) for prediction and optimization.
This technique has been presented and evaluated in, e.g., [25, 26] or [32]. For each
field, one data set will contain all records, thus containingall the different fertilization
strategies. In addition, a subset of F131 has been chosen to serve as a fourth data set to
be evaluated.

Table 1: Overview of the F04, F131 and F330 data sets. The additional data setF131net, which
is a subset ofF131, is not shown as its statistical properties are very similarto those ofF131.

F04 min max mean std
YIELD 03 1.19 12.38 6.27 1.48

EM38 17.9786.4533.825.27
N1 0 100 57.7 13.5
N2 0 100 39.9 16.4
N3 0 100 38.5 15.3

REIP32 721.1727.2725.70.64
REIP49 722.4729.6728.10.65

YIELD 04 6.42 11.37 9.14 0.73

(a) Data overview, F04

F131 min max mean std
YIELD 05 1.69 10.68 5.69 0.93

EM38 51.5884.0862.21 8.60
N1 47.70 70 64.32 6.02
N2 14.80 100 51.7115.67
N3 0 70 39.6513.73

REIP32 719.6724.4722.6 0.69
REIP49 722.3727.9725.8 0.95

YIELD 06 1.54 8.83 5.21 0.88

(b) Data overview, F131

F330 min max mean std
YIELD 05 4.64 14.1210.62 0.97

EM38 25.0849.4833.69 2.94
N1 24.0 70 59.4814.42
N2 3.0 100 56.3813.35
N3 0.3 91.6 50.0512.12

REIP32 719.2724.4721.5 1.03
REIP49 723.0728.5726.9 0.82

YIELD 06 1.84 8.27 5.90 0.54

(c) Data overview, F330



2.6 Fertilization Strategies

There were three different strategies that have been used toguide the nitrogen fertiliza-
tion of the fields. The three strategies are described in the following. A subset of the
F131 data set was chosen where the strategy was “N”. This is used as the smallest data
set in this work that models will be built upon.

F – uniform distribution of fertilizer according to long-term experience of the farmer
N – fertilizer distribution was guided by an economic optimization with a multi-layer

perceptron model; the model was trained using the above datawith the current
year’s yield as target variable that is to be predicted (see,e.g., [26]).

S – based on a special nitrogen sensor – the sensor’s measurements are used to deter-
mine the amount of nitrogen fertilizer that is to be applied.

3 Advanced Regression Techniques

As mentioned in the preceding section, the task of yield prediction is essentially a task
of multi-dimensional regression. Therefore, this sectionwill serve as an overview about
different regression techniques that are applicable to theyield data sets. It is aimed to
evaluate these techniques on the data sets presented in the preceding section.

The regression task can be formalized as follows: the training set

T = {{x1, . . . ,xn},yi}
N
i=1 (1)

is considered for the training process, wherexi , i = 1, . . . ,n are continuous input values
andyi , i = 1. . . ,N are continuous output values. Given this training set, the task of the
regression techniques is to approximate the underlying function sufficiently well. The
quality of the approximated function can be measured by error values, some of which
are specified in section 3.6.

3.1 Introduction to regression techniques

Since one particular technique, namely MLPs, has been used successfully in previous
work [24, 26], it is used as a reference model here. Three additional modeling tech-
niques will be presented that are suitable for the task of yield prediction.

In the past, numerous regression techniques have been used successfully on data
from agriculture. Neural networks have shown to be quite effective in modeling yield
of different crops ([7, 28]). In [31] and [32], artificial neural networks, namely multi-
layer perceptrons (MLPs) have been trained to predict wheatyield from fertilizer and
additional sensor input. The basic framework for MLPs will be given in section 3.2.

Radial basis function (RBF) networks are similar to multi-layer perceptrons in that
they can also be used to model non-linear relationships between input data. Never-
theless, there has been almost no research into RBF networkswhen applying them to
agriculture data. Some of the theoretical properties and differences between MLPs and
RBFs will be pointed out in section 3.2.



Regression trees have seen some usage in agriculture [6, 12,14]. Essentially, they
are a special case of decision trees where the outcome (in thetree leaves) is a continuous
function instead of a discrete classification. Further details can be found in section 3.3.

A fourth technique that has, to the best of the author’s knowledge, not been used
on similar yield data, but for similar regression tasks, is aderivative of support vector
machines (SVMs). Similar to decision trees, if the target attribute is discrete, SVMs
would solve a classification task, whereas in the case of a continuous attribute, a regres-
sion task would be solved. Hence, support vector regression(SVR) will be explained in
section 3.4.

The aforementioned techniques have not been compared to each other when used
with different data sets in the agriculture context. This section presents the necessary
background for each of the techniques before they will be evaluated in section 4.

3.2 Neural Networks

In previous work multi-layer perceptrons (MLPs), a type of neural networks, have been
used for a modeling task [24, 26] similar to the one laid out inthe preceding section.
The MLP model has been established as a reference model against which further re-
gression techniques would have to compete. Hence, the MLP will be explained shortly
in the following section. Furthermore, a different type of neural network, a radial basis
function (RBF) network, will be presented since it is well-suited to the regression task.

MLP According to [19], “neural networks provide a general, practical method for
learning [. . . ] vector-valued functions from examples.” Inthe previous work multi-layer
perceptrons (MLPs) with backpropagation learning have been used to learn from agri-
cultural data and predict yield. Generally, MLPs can be seenas a practical vehicle for
performing a non-linear input-output mapping [10]. The results from [24, 26] lead us
to assume that the extension to more than one hidden layer only marginally increases
the generalization performance of MLPs, but rather drastically increases the computa-
tion time for the backpropagation algorithm. Hence, here itis assumed that one hidden
layer is sufficient to approximate the underlying function sufficiently well. For a more
detailed and formal description of MLP neural networks, it is referred to [9] or [10].

Once the number of hidden layers of the network is fixed, thereremain a few param-
eters to be determined. Similar to the remaining modeling techniques, those are usually
determined experimentally. This also means that often a large parameter space has to
be searched. For standard MLP networks, the size of the hidden layer, the learning rate,
the activation function and the minimum gradient are the most important parameters
that have to be set. In this case, the matlab implementation for the MLP network was
used:newff.4

RBF While the MLP networks in the preceding section had a variable number of layers,
the number of layers in an RBF network is fixed. There are threelayers of neurons that

4 For details on matlab implementations and scripts see the link contained in theacknowledge-
mentssection.



constitute an RBF network and perform different roles. While the input layer is the same
as in an MLP network, the only hidden layer applies a nonlinear transformation from
the input space to the hidden space. The output layer is againlinear. The idea behind
this approach is that a regression (or classification) problem is much more likely to be
solvable in a high-dimensional space than in a low-dimensional space [5]. The main
difference to MLPs is in the hidden layer. The activation function of each hidden unit
in the RBF network computes the Euclidean norm, i.e. the distance, between the input
vector and the center of that unit. In MLP networks, the activation function computes
the inner product of the input vector and the synaptic weightvector of that unit.

One of the simpler learning algorithms that can be employed for RBF networks is
described in the following.

1. The network is simulated: for all training examples, the output of the network is
compared to the actual target value of the respective example.

2. The input vector with the greatest error is determined.
3. An RBF neuron is added to the hidden layer with weights equal to that vector.
4. The connection weights from the hidden layer to the outputlayer are adapted to

minimize the error.

According to the above algorithm, the RBF network training algorithm has at least the
following parameters: a) an error goal that must be met, b) a radius (or spread) of the
radial basis function and c) a maximum number of neurons thatshould be added be-
fore stopping. These parameters are usually determined experimentally, although some
strategies for computing them are presented in [10]. Since the current approach aims to
compare four basic techniques for non-linear regression, it was chosen to employ the
above training algorithm without further tweaking. It has been implemented in matlab’s
newrb function and the parameters have been determined experimentally.

3.3 Regression Tree

Learning decision trees is a paradigm ofinductive learning: a model is built from data
or observations according to some criteria. The model aims to learn a general rule from
the observed instances. Decision trees can therefore accomplish two different tasks,
depending on whether the target attribute is discrete or continuous. In the first case, a
classification tree would result, whereas in the second casea regression tree would be
constructed. Since the focus is on solving a regression task, the regression tree will be
explained shortly in the following.

Regression trees approximate learning instances by sorting them down the tree from
the root to some leaf node, which provides the value of the target attribute. Each node in
the tree represents a split of some attribute of the instanceand each branch descending
from that node corresponds to one part left or right of the split. The value of the target
attribute for an instance is determined by starting at the root node of the tree and testing
the attribute specified by this node. This determines whether to proceed left or right
of the split. Then the algorithm moves down the tree and repeats the procedure with
the respective subtree. In principle, there could be more than one split in a tree node,
which would result in more than two subtrees per node. However, in this application



scenario, regression trees with more than two subtrees per split node are not taken into
consideration.

Regression as well as decision trees are usually constructed in a top-down, greedy
search approach through the space of possible trees [19]. The basic algorithms for con-
structing such trees are CART [2], ID3 [22] and its successorC4.5 [23]. The idea here
is to ask the question “which attribute should be tested at the top of the tree?” To answer
this question, each attribute is evaluated to determine howwell it is suited to split the
data. The best attribute is selected and used as the test node. This procedure is repeated
for the subtrees. An attribute selection criterion that is employed by ID3 and C4.5 is
the entropy and, resulting from it, the information gain. Entropy is a measure from in-
formation theory that describes the variety in a collectionof data points: the higher the
entropy, the higher the variety. An attribute split aims to lower the entropy of the two
resulting split data sets. This reduction in entropy is called the information gain. For
further information it is referred to [19].

However, if the addition of nodes is continued without a specific stopping criterion,
the depth of the tree continues to grow until each tree leaf covers one instance of the
training data set. This is certainly a perfect tree for the training data but is likely to
be too specific – the problem of overlearning occurs. For new,unseen data, such a
specific tree will probably have a high prediction error. Therefore, regression trees are
usually pruned to a specific depth which is a trade-off between high accuracy and high
generality. This can easily be achieved by setting a lower bound for the number of
instances covered by a single node below which no split should occur. For this work the
standard matlab implementation ofclassregtree was used.

3.4 Support Vector Regression

Support Vector Machines (SVMs) are a supervised learning method discovered by [1].
However, the task here is regression, so the focus is on support vector regression (SVR)
in the following. A more in-depth discussion can be found in [8]. Given the training set,
the goal of SVR is to approximate a linear functionf (x) = 〈w,x〉+b with w∈ R

N and
b∈ R. This function minimizes an empirical risk function definedas

Remp=
1
N

N

∑
i=1

Lε(ŷ− f (x)), (2)

whereLε(ŷ− f (x)) = max((|ξ |− ε),0). |ξ | is the so-called slack variable, which has
mainly been introduced to deal with otherwise infeasible constraints of the optimization
problem, as has been mentioned in [29]. By using this variable, errors are basically
ignored as long as they are smaller than a properly selectedε. The function here is
calledε-insensitive loss function. Other kinds of functions can beused, some of which
are presented in chapter 5 of [8].

To estimatef (x), a quadratic problem must be solved, of which the dual form,
according to [17] is as follows:

maxα ,α∗ −
1
2

N

∑
i=1

N

∑
j=1

(αi −α∗
i )(α j −α∗

j )K(xi ,x j)− ε
N

∑
i= j

(αi + α∗
i )+

N

∑
i=1

yi(αi −α∗
i ) (3)



with the constraint that∑N
j=1(αi −α∗

i ) = 0,αi ,α∗
i ∈ [0,C]. The regularization parameter

C > 0 determines the tradeoff between the flatness off (x) and the allowed number of
points with deviations larger thanε. As mentioned in [8], the value ofε is inversely pro-
portional to the number of support vectors. An adequate setting of C andε is necessary
for a suitable solution to the regression problem.

Furthermore,K(xi ,x j) is known as a kernel function which allows to project the
original data into a higher-dimensional feature space where it is much more likely to be
linearly separable. Some of the most popular kernels are radial basis functions (equa-
tion 4) and a polynomial kernel (equation 5):

K(x,xi) = e
−

||x−xi ||
2

2σ2 (4)

K(x,xi) = (〈x,xi〉+1)ρ (5)

The parametersσ andρ have to be determined appropriately for the SVM to generalize
well. This is usually done experimentally. Once the solution for the above optimization
problem in equation 3 is obtained, the support vectors can beused to construct the
regression function:

f (x) =
N

∑
i=1

(αi −α∗
i )K(x,xi)+b (6)

In the current experiments, the SVMtorch implementation from [3] has been used,
which also points out further details of the SVR process.

3.5 Performance Measurement

The performance of the models will be determined using the root mean squared er-
ror (RMSE) and the mean absolute error (MAE). For the RMSE, first the difference
between an actual target valueya and the model output valuey is computed. This dif-
ference is squared and averaged over all training examples before the root of the mean
value is taken, see equation 7. The MAE is computed similarly, see equation 8.

RMSE=

√

1
n

n

∑
i= j

(yi −ya,i) (7)

MAE =
1
n

n

∑
i=1

|yi −ya,i| (8)

3.6 Model Parameter Estimation

Each of the aforementioned four different models will be evaluated on the same data
sets. One of the research goals is to establish whether a model that has been used on
one data set can be used on a different data set without changing its parameters. This
would mean that comparable fields could use the same prediction model. Hence, the



F04data set is used to determine the model parameters experimentally. Afterwards, the
models are re-trained on the remaining data sets using the settings determined forF04.
The parameter settings are given in section 4.

For training the models, a cross-validation approach is taken. As mentioned in
e.g. [11], the data will be split randomly into a training setand a test set. The model
is trained using the training data and after each training iteration, the error on the test
data is computed. During training, this error usually declines towards a minimum. Be-
yond this minimum, the error rises – overlearning (or overfitting) occurs: the model fits
the training data perfectly but does not generalize well. Hence, the model training is
stopped when the error on the test set starts rising. A size ratio of 9:1 for training and
test set is used. The data sets are partitioned randomly 20 times, the models are trained
and the error values are collected.

4 Results

The models are run with the following parameter settings, which were determined ex-
perimentally onF04and carried over to the remaining data sets.

MLP For the multi-layer perceptron model, a relatively small number of 10 hidden
neurons is used and the network is trained until a minimum gradient of 0.001 is
reached, using a learning rate of 0.25 and thetangens hyperbolicussigmoid activa-
tion function.

RBF For the radial basis function network, a radius of 1 is used for the radial basis
neurons in the hidden layer. The algorithm, which incrementally adds neurons until
the error goal of 0.001 is met, uses a maximum number of 70 neurons, which results
in a relatively long training time.

RegTree For the regression tree, the default settings ofclassregtree perform op-
timal; the full tree is pruned automatically and the minimumnumber of training
examples below which no split of a tree node should be done is 10.

SVR For the support vector regression model, the radial basis function kernel yields
the best results, using the parameterC = 60 (tradeoff between training error and
margin), and the standard deviationσ = 4.0. The slack variableξ = 0.2 is also
determined as yielding the best results onF04.

4.1 Detailed Results

Considering the results in Table 2, support vector regression obviously performs best
on all but one of the data sets, regarding both error measures. Furthermore, SVR also
is the model taking the least amount of computation time (notshown in table). Hence,
the slight difference between the RMSE of SVR and RBF on theF330data set may be
considered insignificant in practice when computational cost is also taken into account
when deciding for a model.

Regarding the understandability of the generated models, it would certainly be de-
sirable to have the regression tree as the best model since simple decision rules can



Error Measure / Model F04 F131F131net F330
MAE MLP: 0.3706 0.2468 0.23000.3576

RMSE MLP: 0.4784 0.3278 0.30730.5020
MAE RBF: 0.3838 0.2466 0.24040.3356

RMSE RBF:0.5031 0.3318 0.32050.4657
MAE REGTREE:0.4380 0.2823 0.25300.4151

RMSE REGTREE:0.5724 0.3886 0.35300.6014
MAE SVR: 0.3446 0.2237 0.20820.3260

RMSE SVR:0.4508 0.3009 0.27430.4746

Table 2: Results of running different models on different data sets. The best predictive model for
each data set is marked inbold font.

easily be generated from the tree. However, the regression tree performs worst in all of
the cases. On the other hand, when comparing the hitherto reference model MLP with
the current best model SVR, the understandability of both models is equally limited.
Further research into understanding these models has been and should be undertaken.

Figure 1 shows eight graphs which depict the MAE and RMSE for the different
data sets vs. different models, when run on a total of 20 random cross-validation splits.
Except for the regression tree, which often produced much higher errors than the other
models, the three remaining models usually agree in their error values – with slight, but
constant differences in favor of the SVR.

4.2 Conclusion

The results clearly show that support vector regression canserve as a better reference
model for yield prediction. It is computationally less demanding, at least as understand-
able as the hitherto multi-layer perceptron and, most importantly, produces better yield
predictions.

The results also show that model parameters which have been established on one
data set can be carried over to different (but similar with respect to the attributes) data
sets.

4.3 Future Work

One aspect that should be considered in future work is the understandability of the
model. While regression trees would be the easiest to understand, they bear the burden
of providing worse results compared to SVR. There has already been quite a lot of work
towards understanding the inner workings of an MLP, but it remains one of the more
intransparent models. The same holds for SVR, but there has been some work using the
support vectors for visualization, such as [33, 15].

Rather than selecting one of the four presented models, there might be a certain
combination of models that performs better than a single one. Some prerequisites would
have to be fulfilled – such as the error for a certain data record would have to be alter-
natively low in one model and high in another. A similar idea is presented in [21].



(a) MAE F04 (b) RMSE F04

(c) MAE F131 (d) RMSE F131

(e) MAE F131net (f) RMSE F131net

(g) MAE F330 (h) RMSE F330

Fig. 1: Errors of different data sets vs. different models



The most time-consuming part of this article is the manual determination of param-
eters for one or more models since a large parameter space hasto be considered. Even
though it has been established that the model parameters which have been determined
on one data set can be carried over to different data sets, heuristics for model parameters
might reduce the size of the parameter space which has to be searched.
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