
An Algorithm for Anticipating Future Decision

Trees from Concept-Drifting Data

Mirko Böttcher and Martin Spott and Rudolf Kruse

Abstract Concept-Drift is an important topic in practical data mining, since it is

reality in most business applications. Whenever a mining model is used in an appli-

cation it is already outdated since the world has changed since the model induction.

The solution is to predict the drift of a model and derive a future model based on

such a prediction. One way would be to simulate future data and derive a model

from it, but this is typically not feasible. Instead we suggest to predict the values

of the measures that drive model induction. In particular, we propose to predict the

future values of attribute selection measures and class label distribution for the in-

duction of decision trees. We give an example of how concept drift is reflected in the

trend of these measures and that the resulting decision trees perform considerably

better than the ones produced by existing approaches.

1 Introduction

The induction of decision trees is a relatively mature and well-researched topic.

Aiming at an increased classification accuracy many algorithms which emphasise on

different aspects of decision tree learning have been proposed and proven to be suc-

cessful in many industrial and business applications. Many of these algorithms have

been developed assuming that the samples used for learning are randomly drawn

Mirko Böttcher

University of Magdeburg, Faculty of Computer Science, 39106 Magdeburg, Germany, e-mail:

miboettc@iws.cs.uni-magdeburg.de

Martin Spott

Intelligent Systems Research Centre, BT Group plc, Adastral Park, Ipswich IP5 3RE, United King-

dom, e-mail: martin.spott@bt.com

Rudolf Kruse

University of Magdeburg, Faculty of Computer Science, 39106 Magdeburg, Germany, e-mail:

kruse@iws.cs.uni-magdeburg.de

M. Böttcher and M. Spott and R. Kruse

from a stationary distribution. This assumption does not hold when dealing with

real world data, because they are almost always collected over long periods of time

and the data generating processes are almost always very complex. Many real world

data sets are exposed to changes in their data generating process and hence also

show changes in their underlying hidden structure. This phenomenon is referred to

as concept drift in the literature.

In the first place decision trees are used in many applications to learn a classifica-

tion model for a certain target attribute and, secondly, to get a deeper understanding

of a domain by interpreting the tree as a set of rules. However, the presence of con-

cept drift imposes two problems on these tasks. With regard to the first task, historic

data used for learning is usually drawn from a different distribution than the future

samples to be classified. Consequently, the relations of the decriptive attributes to

the target attribute described by the learned decision tree are different from the ones

which are present in current and future data. As a result the classification accuracy

will never be optimal. With regard to the second task, the gained knowledge about a

domain is only valid for the past but it yields no knowledge about the present or fu-

ture when concept drift is present. Although obtaining such prospective knowledge

is crucial for many businesses, the problem has received significant less attention in

publications.

Several methods have been published to learn decision trees in the presence of

concept drift [19, 8, 10]. They all use some form of incremental learning which aims

to efficiently learn or maintain models such that they are always based on the most

recent samples. However, those methods only account for the first of the aforemen-

tioned problems. Moreover, their major drawback is that the learned models will

only yield good results if concept drift happens very slowly. The faster the distri-

bution changes, maybe only in some subspaces, the less accurate the decision trees

get.

Our aim is to solve the two problems outlined above. In this paper we will in-

troduce the PreDeT algorithm which anticipates future decision trees from concept

drifting data. PreDeT does not track or model distribution shift as such. Instead, it

models how distribution shift affects those measures which control the process of

decision tree induction and predicts their future values. For this reason it is able to

cope even with fast changing domains. The decision trees learned by PreDeT can

be seen as a domain’s projection into the future. Therefore they help a user to obtain

insight into the data’s likely hidden structure in the near future.

The paper is organized as follows. In Section 2 we present related work from the

fields of concept drift. Some background on decision tree induction will be given in

Section 3. The PreDeT algorithm will be explained in Section 4 and some prelimi-

nary experimental results shown in Section 5.

An Algorithm for Anticipating Future Decision Trees from Concept-Drifting Data

2 Related Work

As already pointed out in the previous section, several methods have been published

for learning models in the presence of concept drift [19, 8, 10]. In the following we

will give some more details about the methods itself and outline their drawbacks.

The two basic techniques employed are moving temporal windows [19, 8] and

age dependent weighting [10]. The method of moving temporal windows learns the

decision tree from samples that were gathered within a certain, recent time window.

For instance, in [19] a framework is described which heuristically and dynamically

adapts the window size during the learn process. A moving temporal window ap-

proach to learn decision trees – the CVFDT algorithm – which scales up to very-

large databases was proposed in [8]. It maintains class counts in each tree node and

when new data arrives decides whether or not a subtree needs to be re-learned.

For window-based approaches the choice of an appropriate window size is a

crucial and difficult problem. In general, a compromise has to be found between

small windows, which are required for a fast adaptation to concept drift, and large

windows, which are required for a good generalization. In [12, 6] upper bounds on

the speed of concept drift are determined which are acceptable to learn a concept

with a fixed minimum accuracy. Hence a window with a certain minimal fixed size

allows to learn concepts for which the speed of drift does not exceed a certain limit.

Taking all of the aforesaid into account this means that window based approaches –

independent from whether they use a fixed or adaptive window size – perform well

in domains with slow concept drift but may result in models with a low accuracy in

very dynamic domains.

Age dependent weighting simulates a kind of a data-ageing process by crediting

more recent samples higher than old ones in the learning process. In [10] meth-

ods for age dependent weighting are shown and compared with temporal window

approaches. The weights are chosen such that learning emphasises for slowly chang-

ing domains on a suitable large set of samples and fast changing domains on only

the most recent samples. This, however, leads to the same problem as for window-

based approaches. The speed of concept drift may change considerably amongst

subspaces for which a global sample weighting scheme obviously does not account

for.

3 Decision Trees

In the following discussion we will use some notations that will be introduced in

this section. As already stated above, we assume that a dataset S of sample cases is

described by a set of nominal input attributes {A(1), . . . ,A(m)} and a class attribute C.

We assume that the domain of attribute A has nA values, i.e. dom(A) = {a1, . . . ,anA
},

and that the domain of attribute C has nC values, i.e. dom(C) = {c1, . . . ,cnC
}.

A decision tree is a well-known type of classifier. As the name already indicates a

decision tree is an acyclic graph having a tree-structure. Each inner node of the tree

M. Böttcher and M. Spott and R. Kruse

is labeled with an attribute A which is also called split attribute. For each attribute

value a ∈ dom(A) an edge to a child node exists and is labeled with a. Each leaf

node has a class c ∈ dom(C) assigned to it.

Given a new sample case for which the value of the class should be predicted, the

tree is interpreted from the root. In each inner node the sample case is tested for the

attribute stored within the node. According to the result of the test the corresponding

edge is followed to a child node. When a leaf node is reached the class label assigned

to it is taken as the class for the sample case.

A variety of algorithms to learn decision trees automatically from data have been

published, for example the CART system [3] and C4.5 [13]. All algorithms for deci-

sion tree induction grow the three top-down using a greedy-strategy. Starting at the

root node an attribute A is selected that yields the highest score regarding an attribute

evaluation measure. The dataset is then split into nA subsets each corresponding to

one attribute value of A and a child node for each of them is created. If all its cases

have the same class label, a subset is not split further and hence no children are

created. The current node then becomes a leaf and is assigned the class label of its

associated subset. Apart from minor variations all decision tree algorithms that we

are aware of follow the schema above. In fact, one of the major differences between

algorithms is the attribute evaluation measure used.

An attribute evaluation measure I(C,A) rates the value of an attribute A for pre-

dicting the class attribute C. The most well-known measures are probably the Gini

index [3], information gain [14] and information gain ratio [13]. Since we use the

latter two in the experimental evaluation of our algorithm we will introduce them

very briefly in the following. The information gain Igain(C,A) measures the informa-

tion gained, on average, about the class attribute C when the value of the attribute A

becomes known. A disadvantage of the information gain is its bias towards attributes

with many values. To overcome this problem the information gain ratio Igr(C,A) was

proposed which penalises many-valued attributes by dividing the information gain

Igain(C,A) by the entropy of the attribute itself [14, 13].

4 Predicting Decision Trees

4.1 Basic Idea

Formally, concept drift can be described as the shift over time of the samples’ prob-

ability distribution. We assume that such shift is usually not arbitrary but follows a

certain pattern. It should be stressed that we do not make any assumptions about the

speed of those distribution shift.

As already mentioned in the Introduction, the PreDeT algorithm does not track

or model distribution shift as such. Instead it models the development of the attribute

evaluation measure and the class label distribution over time. These models are then

An Algorithm for Anticipating Future Decision Trees from Concept-Drifting Data

a1 a2

b1

b2

Igain(A) = 0.531

Igain(B) = 0.007

(a) Period 1

a1 a2

b1

b2

Igain(A) = 0.278

Igain(B) = 0.030

(b) Period 2

a1 a2

b1

b2

Igain(A) = 0.118

Igain(B) = 0.066

(c) Period 3

a1 a2

b1

b2

Igain(A) = 0.007

Igain(B) = 0.191

(d) Period 4

Fig. 1 Illustration of how concept drift can lead to trends in information gain

used to predict future values of the respective measure. The predictions, in turn, are

used to control the decision tree induction.

Figure 1 illustrates the concept drift and the resulting change in information gain.

It shows the distribution of samples over the attribute space at four consecutive

time periods. Each sample belongs to one of two classes, squares and bullets, each

described by two attributes A and B with domains {a1,a2} and {b1,b2}, respectively.

Lets assume that we learn a decision tree at the end of each period which predicts

the samples in the next period. This is equivalent to a temporal window approach.

In period 1, shown in Figure 1(a), the information gain of A is much higher than

those of B and it therefore would have be chosen as the split attribute. However, the

distribution of samples shifts over time which is indicated by arrows in Figure 1(a)

to Figure 1(c). In period 3 the information gain of A is still higher than those of B and

therefore A would be the split attribute. This would lead to an classification error of

8 using the samples from period 4 for testing. However, in period 4 attribute B would

have been the superior split attribute. The choice solely based on the samples from

period 3 was suboptimal. If we look at how the information gain developed between

periods 1 and 3 we can see that it has a downward trend for A and an upward trend

for B. Using an appropriate model for both time series it would have been possible

to anticipate the change in the split attribute and to choose B. This choice leads to a

much smaller classification error of 5.

Figure 2(a) shows an example obtained from the same real world dataset which

we also use for our experimental evaluation in Section 5. The information gain his-

tory of the attribute A(1) is apart from noise stable whereas the information gain

history of A(2) shows an upward trend. Furthermore, it can be seen that for the vast

majority of time periods T = 1, . . . ,15 attribute A(1) has more predictive power and

would therefore been chosen as the split attribute. However, due to the observed up-

ward trend in the information gain of A(2) both histories will intersect and A(2) will

become the split attribute in the near future.

Figure 2(b) shows the two histories from Figure 2(a) each modeled by a quadratic

regression polynomial. In period 16 are the – at the time of modeling unknown –

information gain values of both attributes marked. As it can be seen, the predictions

M. Böttcher and M. Spott and R. Kruse

5 10 15

0.1

0.15

0.2

0.25

T

I g
ai

n

I
gain

(C,A
(1)

)

I
gain

(C,A
(2)

)

(a) The history of A(1) is apart from noise

stable. The history of A(2) shows an up-

ward trend.

5 10 15

0.1

0.15

0.2

0.25

T

I g
ai

n

I
gain

(C,A
(1)

)

I
gain

(C,A
(2)

)

(b) Both histories modeled by quadratic

polynomials shown as dotted lines. In pe-

riod 16 the values to be predicted are

shown.

Fig. 2 Histories of information gain values for two different attributes

made by the regression models anticipate the change in the ranking of candidate

split attributes which happens between period 15 and 16.

Summarising, the basic idea of PreDeT is to learn models which describe eval-

uation measure histories and class label distribution histories in each step of the

decision tree induction. The models are then used to predict the value of the respec-

tive quantity for the next, future time period. Subsequently, the predictions are used

to decide whether to grow a subtree and which class label to assign to a leaf node.

As we already pointed out in Section 3 these two decisions are the main building

blocks of the vast majority of decision tree learners. Because our algorithm lever-

ages predictions for both it is finally capable to predict how a decision tree may

look like in the future. In the context of concept drift this means that we are able to

provide classifiers with a higher accuracy than those which are solely reflecting the

characteristics of historic data.

4.2 Notation

Let S be a time-stamped data set and [t0, tr] the minimum time span that covers

all its samples. The interval [t0, tr] is divided into r > 1 non-overlapping periods

[ti−1, ti[, such that the corresponding subsets Si ⊂ S each have a size |Si| ≫ 1. Let,

without loss of generality, T̂ := {1, . . . ,r,(r + 1), . . .} be the set of all past (i ≤ r)

and future (i > r) period indexes.

Assume that we have a family of time-dependent data sets (S1, . . . ,Sr) each de-

scribed by the same attributes A(i), i = 1, . . . ,m having the same domains in each

time period. Quantities crucial for decision tree induction like attribute selection

measure and the distribution of class labels are now related to a specific data set

Si and thus to a certain time period Ti. Therefore they form sequences of values

An Algorithm for Anticipating Future Decision Trees from Concept-Drifting Data

which we will denote by I := (I(S1,A), . . . , I(Sr,A)) for attribute evaluation mea-

sures and P := (P1, . . . ,Pr) for the sequence of class label distributions. Thereby

Pk := (pk
1·, . . . , pk

nC ·
) is the distribution of class labels and pk

i· is the relative fre-

quency of class attribute value i in time period k. We will refer to these sequences as

an attributes evaluation measure history and class label distribution history, respec-

tively.

4.3 Predicting Attribute Evaluation Measures

A model ϕ for attribute evaluation measures is a function ϕ : T̂ −→R. In general, it

will be determined based on a history I := (I(S1,A), . . . , I(Sr,A)) of attribute evalu-

ation measures which will be denoted by ϕ[I]. A model ϕ is then used in each inner

node to obtain a prediction ϕ[I](r + 1) for attribute evaluation measure’s value in

the next time period Tr+1.

As the set of potential candidate models we chose the set of polynomials

ϕ(T) = ∑
q
i=0 aiT

i fitted to I using least squared regression. Linear regression in

contrast to other possible model classes, like neural networks [7] or support vector

regression [16], offers the advantage that no large sample sizes (long histories) are

required and that the underlying algorithms are fast. The latter aspect is in particular

important because models for a vast number of histories need to be learned. The

advantage of polynomial linear regression is, specifically, that it offers a simple way

to obtain a set of candidate models by varying the degree q of the polynomial.

Having a set of fitted regression polynomials the best polynomial needs to be

selected. In this case ’best’ means that polynomial which provides the best trade-off

between goodness of fit and complexity and is, for this reason, less prone to overfit

the data. This can be measured using the Akaike information criterion (AIC) [1].

Let r be the number of observations, i.e. the length of the history, q+1 the number

of parameters of the polynomial and RSS the residual sum of squares of the fitted

regression polynomial. Then AIC is defined as:

AIC = 2(q+1)+ r ln
RSS

r
(1)

Commonly, the number of time periods for which data is available can be rather

small. For example, the data we use for our experiments in Section 5 consists of

25 data sets obtained weekly. The original Akaike information criterion, however,

should only be applied to data sets with large sample sizes [4], i.e. if r/(q+1) > 40.

To overcome this limitation a number of corrections of the Akaike criterion for small

sample sizes have been developed. In our PreDeT algorithm we use the following

known as AICC [9]:

AICC = AIC +
2(q+1)(q+2)

r−q−2
(2)

M. Böttcher and M. Spott and R. Kruse

For large sample sizes r AICC converges to AIC, therefore it is suggested that it

is always used regardless of sample size [4].

4.4 Predicting the Majority Class in Leafs

A model ψ for histories of class label distributions is a function ψ : T̂ −→ [0,1]nC It

is learned from the history of class label distributions P := (P1, . . . ,Pr). The depen-

dency of ψ from P will be denoted by ψ[P]. Within our PreDeT algorithm a model

ψ is used in each leaf node to predict the class label distribution at time point Tr+1.

The prediction model ψ is a vector of functions φi : T̂ −→ [0,1] each of which

models a dependency between the time period and the relative frequency (esti-

mated probability) of a class label. Because the relative frequencies must sum to

one ∑
nC
i=1 φi(T) = 1 must hold, i.e.

ψ(T̂) =











φ1(T)
φ2(T)

...

φnC
(T)











=











φ1(T)
φ2(T)

...

1−∑
nC−1
i=1 φi(T)











(3)

To model each φ we also use polyonomials of degree q, i.e. φ = ∑
q
i=0 aiT

i. The

degree of the polynomials is, similar to Section 4.3, determined using the Akaike

information criterion.

Because values φi(T) are relative frequencies additional constraints have to be

imposed on the choice of the function φi. In particular, ∀T ∈ {0, . . . ,r + 1} : 0 ≤
φi(T)≤ 1 should always hold. In our experience, however, this constraint can be too

strict. For example, in the case pk
i = pk+1

i = 1 and p
j
i 6= 1 for j 6= k and j 6= k +1 it

is rather difficult to find a continuous model class for φ . For this reason and because

we only aim to predict values for the period r +1 we use the weaker constraint 0≤
φi(r+1)≤ 1. Applying this constraint the model φi cannot be derived using standard

regression analysis anymore. Instead, we obtain the coefficients a := (a0, . . . ,aq)
T

of the polynomial φi = ∑
q
i=0 aiT

i by solving the constrained linear least-squares

problem

a = argmin
a

1

2
‖Ca−p‖2

2 with C :=







10 · · · 1q

...
. . .

...

r0 · · · rq






and p :=







p1
i
...

pr
i







There exist several methods from the field of optimisation for solving constrained

linear least-squares problems. They will not be discussed here in greater detail. For

further reading see [5].

An Algorithm for Anticipating Future Decision Trees from Concept-Drifting Data

4.5 Putting the Parts Together

Having explained the main building blocks of our method in the previous two sec-

tions we will now go ahead and explain how they can be used in combination with a

decision tree learner to predict future decision trees. This will lead us to the PreDeT

algorithm.

Figure 3 shows the PreDeT algorithm. Similar to the vast majority of decision

tree learners, like C4.5 and CART, it consists of two consecutive stages. In the first

stage (lines 1–8) the split attribute for the current node is searched. In the second

stage (lines 9–18) it is decided whether the current node is a leaf (line 9) or inner

node (line 15). Respectively, either a class label is assigned to the leaf node based on

the majority class in this node, or the data sets are split according to the split attribute

and the PreDeT algorithm continues recursively (line 17). It should be clear that the

basic ideas laid out in Section 4.3 and Section 4.4 can be used in connection with

any decision tree learner that uses attribute evaluation measures to determine splits.

PREDET((S1, . . . ,Sr))
1 Ibest ←WORTHLESS

2 for all untested attributes A

3 do I← (I(S1,A), . . . , I(Sr,A))
4 learn prediction model ϕ[I]
5 Ĩ← ϕ[I](r +1)
6 if Ĩ > Ibest

7 then Ibest ← Ĩ

8 Abest ← A

9 if Ibest = WORTHLESS

10 then create leaf node v

11 Pk← (pk
1·, . . . , pk

nC ·
), k = 1, . . . ,r

12 learn prediction model ψ[(P1, . . . ,Pr)]
13 (p̃r+1

1· , . . . , p̃r+1
nc·)← ψ[(P1, . . . ,Pr)](r +1)

14 assign c = argmaxci
(p̃r+1

1· , . . . , p̃r+1
nc·) to v

15 else assign test on Abest to v

16 for all a ∈ dom(Abest)
17 do v.child[a]←
18 PREDET((S1|Abest=a, . . . ,S

r|Abest=a))
19 return v

Fig. 3 Outline of the PreDeT algorithm for predicting decision trees

In contrast to other decision tree learners PreDeT takes as input a sequence of

data sets (S1, . . . ,Sr) representing time periods 1, . . . ,r. It uses these data sets to

estimate the value of the attribute evaluation measure in the next time period r + 1

using a learned model ϕ (lines 4–5). The class label distribution within each data

set is used to predict the likely class label distribution in time period r + 1 using a

learned model ψ (lines 11–13). Note that every decision about the structure of the

M. Böttcher and M. Spott and R. Kruse

tree – the choice of the split attribute in inner and of the class label in leaf nodes –

is solely based on estimated future values of the used metrics but not directly on the

historic or present data sets (S1, . . . ,Sr). For this reason the tree learned by PreDeT

can be seen as a prediction of the decision tree in period r +1.

5 Experimental Evaluation

The PreDeT algorithm does depend on a number of factors: first of all, the length r

of the sequence of data sets (S1, . . . ,Sr), secondly, the attribute evaluation measure

I, and thirdly, the size of the individual data set Si. In our experiments we evaluated

how these factors influence the accuracy of the anticipated decision trees and how

this accuracy compares to the one of decision trees obtained by a temporal moving

window approach which is typically used for learning decision trees from concept-

drifting data.

For our experiments we chose a representative real-life dataset from the domain

of Customer Relationship Management (CRM). The dataset contains answers of

customers to a survey conducted by a telecommunications company over a period

of 25 weeks. Each sample is described by 13 nominal attributes with a domain size

between 2 and 9. Goal of the classification task is to predict whether a customer will

be satisfied or dissatisfied with a certain service using the remaining 12 attributes,

i.e. the data set has two classes to predict.

First of all we analysed the influence of the length r of the sequence of data sets

and the choice of the attribute evaluation measure I on the classification accuracy.

We split the original data set into 25 subsets Si, each corresponding to a time period

of one week. The subsets contain between 243 and 399 samples. For each exper-

iment we chose a sequence of r consecutive data sets (Si, . . . ,Si+r−1) within the

available 25 ones. For each i, i = 0, . . . ,25− r we then learned a decision tree using

the PreDeT algorithm and obtained classifications for the samples in the data set

Si+r that chronologically follows the sequence. For instance, for r = 5 we have 20

sequences, learn 20 decision trees and thus obtain the classification accuracy for 20

data sets.

To learn a decision tree with which the performance of PreDeT can be compared

it has to be considered that PreDeT implicitely learns a sequence of r decision trees

each corresponding to a data set Si and then anticipates the tree in the future period

r + 1 using a prediction model. As with any prediction model, the obtained result

cannot have a better quality than its inputs used for learning. Since the quality of a

decision tree is (amongst other factors) determined by the size of the data set used

for training, it is clear that the tree anticipated by PreDeT does have a similar quality

to a tree that would have been learned directly on a data set Sr+1 with a size similar

to those of each Si, i = 1, . . . ,r. Since we assume Sr+1 to be unknown at the time of

An Algorithm for Anticipating Future Decision Trees from Concept-Drifting Data

learning we took the most recent data set Sr to learn a decision tree1 for comparism

because the characteristics of Sr are very likely best reflecting those of Sr+1.

Another advantage of comparing the accuracies obtained by PreDeT with those

of a decision tree learned from only the most recent data is that the latter is basi-

cally a temporal moving window approach and thus common practise for learning

decision trees in the presense of concept drift. Moreover, such a temporal moving

window approach performs similar to age dependent weighting approaches – the

alternative method to learn decision trees in the presence of concept drift – in case

of smooth, non-abrupt concept drift [11, 10]. Such a type of concept drift is present

in our data as we know from previous studies on change mining carried out on the

same data set [2].

10 15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(a) Igr , r = 5

15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(b) Igr , r = 10

16 18 20 22 24
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(c) Igr , r = 15

10 15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(d) Igain, r = 5

15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(e) Igain, r = 10

16 18 20 22 24
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(f) Igain, r = 15

Fig. 4 Classification accuracy for two different attribute evaluation measures in several consecu-

tive time periods T . Different sequences of a length of r time periods were used to learn the least

squares models used by PreDeT . For comparison, the performance of a traditional decision tree

approach using only the most recent data of each sequence for inducing the decision tree is shown.

Using the above experimental setup we carried out experiments using the infor-

mation gain ratio Igr and information gain Igain and varied in each case the length of

the sequence by using r = 5,10,15. Figure 4 shows the results of our experiments.

As we can see, the classification accuracy of PreDeT is on average superior to the

one of the traditional decision tree approach and also independent of the choice of

the attribute evaluation measure and the parameter r. By comparing Figure 4(a) with

1 We used the decision tree implementation by Christian Borgelt that can be obtained from

http://www.borgelt.net/dtree

M. Böttcher and M. Spott and R. Kruse

Figure 4(c) (Figure 4(d) with Figure 4(f), respectively) it can be seen that the gain in

classification accuracy increases when longer sequences are used. This again leaves

space for further optimisations of the PreDeT algorithm with respect to the optimal

choice of the parameter r.

15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(a) Using periods of two weeks for train-

ing. The accuracy median for the decision

tree is 0.8138 and for PreDeT 0.8256.

16 18 20 22 24
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(b) Using periods of three weeks for train-

ing. The accuracy median for the decision

tree is 0.83 and for PreDeT 0.8449.

Fig. 5 Classification accuracy for information gain Igain and r = 5 using data sets covering periods

of two and, respectively, three weeks for training and of one week for testing. For comparison, the

performance of an approach using only the most recent data set of each sequence for inducing the

decision tree is shown.

We now evaluate the influence of the size of the individual data sets Si on the

performance of PreDeT . This aspect is in particular interesting because it is known

that the performance of a moving temporal window approach, which we use in our

experiments for comparison, does strongly depend on it [6]. We use a similar exper-

imental setup as in our first experiments but instead of using a size of one week for

each data set Si we increase the size to two and three weeks, respectively. In par-

ticular, we split our initial data set into 12 non-overlapping subsets each covering a

period of two weeks. Likewise, we obtained another split of 8 subsets each covering

a period of three weeks. Similar to our first experiment we used sequences of r = 5

to learn decision trees using PreDeT and classified the samples of the week that im-

mediately follows the respective sequence. Again, we compared the classification

accuracy of PreDeT with the one of decision trees learned by a temporal moving

window approach.

The results of this experiment are shown in Figure 5(a) for a period length of two

weeks and in Figure 5(b) for a period length of three weeks, respectively. As we can

see, in both cases the classification accuracy of PreDeT is on average higher than

the one of the temporal moving window approach, i.e. a decision tree learned only

on the most recent data of each sequence. We can also see by comparing Figure 5(a)

with Figure 5(b) that the performance gain offered by PreDeT seems to increase

with the size of individual data sets.

An Algorithm for Anticipating Future Decision Trees from Concept-Drifting Data

6 Conclusion and Future Work

We presented a novel approach to learn decision trees in the presence of concept

drift. Our PreDeT algorithm aims to anticipate decision trees for future time periods

by modelling how attribute evaluation measure and class label distribution evolve

over time. Our experimental results show that our approach is able to learn decision

trees with a higher classification accuracy than trees learned by a temporal window

approach.

Currently we are working on several enhancements of our algorithm. In the first

place, we investigate the advantages of using more sophisticated and more robust

regression methods, e.g. support vector regression [16], instead of regression poly-

nomials. Secondly, at the moment a new decision tree has to be predicted every time

a new batch of data arrives. For this reason it would be advantageous w.r.t. com-

putational costs to enhance PreDeT in order to support incremental learning. One

starting point could be to leverage existing incremental algorithms for linear regres-

sion [15] and support vector regression [17, 18].

References

1. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic

Control 19(6), 716–723 (1974)

2. Boettcher, M., Nauck, D., Ruta, D., Spott, M.: Towards a framework for change detection in

datasets. In: M. Bramer (ed.) Research and Development in Intelligent Systems, Proceedings

of AI-2006, the 26th SGAI International Conference on Innovative Techniques and Applica-

tions of Artificial Intelligence, vol. 23, pp. 115–128. BCS SGAI, Springer (2006)

3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.

Wadsworth, Belmont (1984)

4. Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding AIC and BIC in model

selection. Sociological Methods & Research 33, 261–304 (2004)

5. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1989)

6. Helmbold, D.P., Long, P.M.: Tracking drifting concepts by minimizing disagreements. Ma-

chine Learning 14(1), 27–45 (1994)

7. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal ap-

proximators. Neural Networks 2(5), 359–366 (1989).

8. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of

the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pp. 97–106. ACM Press, New York, NY, USA (2001).

9. Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small samples.

Biometrika 76, 297–307 (1989)

10. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weighting. Intel-

ligent Data Analysis 8(3), 281–300 (2004)

11. Klinkenberg, R., Rueping, S.: Concept drift and the importance of examples. In: J. Franke,

G. Nakhaeizadeh, I. Renz (eds.) Text Mining – Theoretical Aspects and Applications, pp.

55–77. Physica-Verlag, Berlin, Germany (2003)

12. Kuh, A., Petsche, T., Rivest, R.L.: Learning time-varying concepts. In: Advances in Neural

Information Processing Systems, pp. 183–189. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA (1990)

13. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1992)

M. Böttcher and M. Spott and R. Kruse

14. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1996)

15. Scharf, L.: Statistical Signal Processing. Addison-Wesley (1991)

16. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing

14(3), 199–222 (2004)

17. Syed, N.A., Liu, H., Sung, K.K.: Handling concept drifts in incremental learning with sup-

port vector machines. In: Proceedings of the 5th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 317–321. ACM Press, New York, NY, USA

(1999).

18. Wang, W.: An incremental learning strategy for support vector regression. Neural Processing

Letters 21(3), 175–188 (2005).

19. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Ma-

chine Learning 23(1), 69–101 (1996).

