
Noname manuscript No.
(will be inserted by the editor)

A Novel Approach to Noise Clustering for Outlier Detection

Frank Rehm1, Frank Klawonn2, Rudolf Kruse3

1 German Aerospace Center, Braunschweig, Germany
e-mail: frank.rehm@dlr.de

2 University of Applied Sciences Braunschweig/Wolfenbuettel, Germany
e-mail: f.klawonn@fh-wolfenbuettel.de

3 Otto-von-Guericke-University of Magdeburg, Germany
e-mail: kruse@iws.cs.uni-magdeburg.de

The date of receipt and acceptance will be inserted by the editor

Abstract Noise clustering, as a robust clustering me-
thod, performs partitioning of data sets reducing errors
caused by outliers. Noise clustering defines outliers in
terms of a certain distance, which is called noise distance.
The probability or membership degree of data points be-
longing to the noise cluster increases with their distance
to regular clusters. The main purpose of noise cluster-
ing is to reduce the influence of outliers on the regular
clusters. The emphasis is not put on exactly identifying
outliers. However, in many applications outliers contain
important information and their correct identification is
crucial. In this paper we present a method to estimate
the noise distance in noise clustering based on the preser-
vation of the hypervolume of the feature space. Our ex-
amples will demonstrate the efficiency of this approach.
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1 Introduction

For many applications in knowledge discovery in data-
bases finding outliers, rare events, is of importance. Out-
liers are observations, which deviate significantly from
the rest of the data, so that it seems they are generated
by another process [9]. Such outlier objects often contain
information about an untypical behaviour of the system.
However, outliers tend to bias statistical estimators and
the results of many data mining methods like the mean
value, the standard deviation or the positions of the pro-
totypes of k-means clustering [6]. Therefore, before fur-
ther analysis or processing of data is carried out with
more sophisticated data mining techniques, identifying
outliers is an important step.

Noise clustering (NC) is a method, which can be
adapted to any prototype-based clustering algorithm like
k-means and fuzzy c-means (FCM). The main concept
of the NC algorithm is the introduction of a single noise

cluster that will hopefully contain all noise data points.
Data points whose distances to all clusters exceed a cer-
tain threshold are considered as noise. This distance is
called the noise distance. These noisy points only have a
relatively small effect on the mean calculation, which is,
however, part of prototype-based clustering techniques.
The crucial point is the specification of the noise distance
δ.

In this work we present an approach to determine
the noise distance based on the preservation of the hy-
pervolume of the feature space when approximating the
feature space by means of a specified number of proto-
type vectors.

After reviewing related work in the following section
we describe the fuzzy c-means clustering algorithm in
section 3, which is the basic clustering algorithm for the
noise clustering technique which we will describe in sec-
tion 4. In section 5 we finally present our approach for
the estimation of the noise distance. By means of a sim-
ple example we will demonstrate the efficiency of our
approach in section 6. Section 7 concludes with a brief
outline on future work.

2 Related Work

Noise clustering has been introduced by Dave [2] to over-
come the major deficiency of the FCM algorithm, its
noise sensitivity. The noise clustering version of FCM
will be explained in detail in section 3 and 4.

Possibilistic clustering (PCM) [12] is a method that
controls the extension of each cluster by an individual
parameter ηi. By means of ηi, PCM is widely robust
to noise. However, it suffers from inconsistencies in the
sense that instead of the global minimum of the un-
derlying objective function a suitable non-optimal lo-
cal minimum provides the desired clustering result. Such
cases may occur because PCM-clusters sometimes over-
lap completely, since the algorithm does not imply any
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control entity that prevents identical clusters. Similari-
ties between PCM and noise clustering are analysed in
[3], including a review of other methods regarding robust
clustering.

In contrast to PCM where an individual distance ηi

for each cluster defines some kind of noise distance, NC
so far, classifies noise only on the basis of a global noise
distance using one noise cluster. A generalised version
of NC is introduced in [4]. A certain noise distance δj is
assigned to each feature vector. This combination of NC
and PCM performs partitioning and mode seeking [13]
at the same time.

An approach to clustering in interaction with robust
estimators is proposed in [11]. Clustering is followed here
by alternating outlier detection and prototype adapta-
tion, where the estimators can be applied attributewise
to each single cluster.

3 Fuzzy Clustering

Most fuzzy clustering algorithms aim at minimising an
objective function that describes the sum of weighted
distances dij between c prototype vectors vi and n fea-
ture vectors xj of the feature space <p:

J =

c
∑

i=1

n
∑

j=1

(uij)
mdij . (1)

With the fuzzyfier m ∈ (1,∞] one can determine how
much the clusters overlap. While high values for m lead
to overlapping clustering solutions, small values, m tend-
ing to 1, lead to rather crisp partitions. In order to avoid
the trivial solution assigning no data to any cluster by
setting all uij to zero and avoiding empty clusters, the
following constraints are required:

uij ∈ [0, 1] 1 ≤ i ≤ c, 1 ≤ j ≤ n (2)
c

∑

i=1

uij = 1 1 ≤ j ≤ n (3)

0 <

n
∑

j=1

uij < n 1 ≤ i ≤ c. (4)

When the Euclidian norm

dij = d2(vi,xj) = (xj − vi)
T (xj − vi)

is used as distance measure for distances between pro-
totype vectors vi and feature vectors xj , the fuzzy clus-
tering algorithm is called fuzzy c-means. Modifications
of the fuzzy c-means algorithm by means of the distance
measure, i.e. by using the Mahalanobis distance, allow
the algorithm to adapt different cluster shapes [7]. The
minimisation of the functional (1) represents a nonlin-
ear optimisation problem that is usually solved by means
of Lagrange multipliers, applying an alternating optimi-
sation scheme [1]. This optimisation scheme considers

alternatingly one of the parameter sets, either the mem-
bership degrees

uij =
1

∑c

k=1

(

dij

dkj

)
1

m−1

(5)

or the prototype parameters

vi =

∑n

j=1
(uij)

mxj
∑n

j=1
(uij)m

(6)

as fixed, while the other parameter set is optimised ac-
cording to equations (5) and (6), respectively, until the
algorithm finally converges. Nevertheless, the alternat-
ing optimisation scheme can lead to a local optimum.
Therefore, it is advisable to execute several runs of FCM
to ascertain a reliable partition. With the Euclidian dis-
tance measure the fuzzy c-means algorithm finds approx-
imately equally sized clusters, which will be of interest
for our noise clustering technique.

4 Noise Clustering

Fuzzy clustering with the fuzzy c-means algorithm al-
lows, based on the membership degrees uij , the estima-
tion of the degree of the assignment of a feature vector
xj to a prototype vector vi. Since the sum of all member-
ship degrees of a feature vector equals one according to
equation (3), even outliers can achieve high membership
degrees. Small membership degrees occur always due to
border regions between two or more clusters. The idea
of noise clustering is based on the introduction of an ad-
ditional cluster, that is supposed to contain all outliers
[3]. Feature vectors that are about the noise distance δ
or further away from any other prototype vector get high
membership degrees to this noise cluster. Hence, the pro-
totype for the noise cluster has no parameters. Let vc be
the noise prototype and xj the feature vector. Then the
noise prototype is such that the distance dcj, distance of
feature vector xj from vc is the fixed constant value

dcj = δ2, ∀j.

The remaining c−1 clusters are assumed to be the good
clusters in the data set. The prototype vectors of these
clusters are optimised in the same way as mentioned in
equation (6). The membership degrees are also adapted
as described in equation (5). As mentioned above, the
distance to the virtual prototype is always δ. The only
problem is the specification of δ. If δ is chosen too small,
too many points will get classified as noise, while a large
δ leads to small membership degrees to the noise cluster,
which means that noise data are not identified and have
also a strong influence on the prototypes of the regular
clusters.
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5 Estimation of the Noise Distance

The specification of the noise distance depends on sev-
eral factors, i.e. maximum percentage of the data set to
be classified as noise [10], distance measure, number of
assumed clusters and the expansion of the feature space.
The noise distance proposed in [2] is a simplified statisti-
cal average over the non-weighted distances of all feature
vectors to all prototype vectors

δ2 = λ

∑c−1

i=1

∑n

j=1
dij

n(c − 1)

where λ is the value of the multiplier used to obtain
δ from the average of distances. As mentioned above
one can show that in this way δ suffers from the fact
that with an increasing number of prototypes δ assumes
relatively high values. As a consequence, the placing of
the prototypes will be effected by the outliers, which we
intended to avoid.

We propose in this work a noise distance which de-
pends primarily on the number of prototypes used for the
clustering process and the expansion of the feature space.
Under the constraint of the preservation of the hypervol-
ume of the feature space, we chose for δ a value which
corresponds to the cluster radius of the hyperspherical
cluster. The cluster radius, so δ, will be chosen such that
the sum of the hypervolumes of the c − 1 good clusters
with approximately same size, equals the hypervolume of
the feature space. A uniformly distributed feature space
would not have any outliers in this case. Consequently,
if there are regions of high density, some prototypes will
be attracted to these regions. Feature vectors which are
located a larger distance away from any other prototype
vector get high membership degrees to the noise cluster.

So the first step is to estimate the hypervolume of
the feature space. A simple solution for this is shown in
Figure 1(a). By means of the data set’s extreme feature
vectors the area of the resulting rectangle, or more gen-
erally, in an n-dimensional feature space, the hypervol-
ume V of the cuboid, can be easily computed. A closer
approximation of the hypervolume V can be achieved
by subdividing the feature space into smaller pieces and
summing up the single volumes of the respective hyper-
boxes. Figure 1(b) and 1(c) show two naive partitions of
the feature space. Note, that such a grid should subdi-
vide the feature space into hyperboxes of approximately
the same size, since the fuzzy c-means algorithm searches
for approximately equally sized clusters.

Assuming that clusters in the data set have approx-
imately the same size, the cluster radius and the noise
distance respectively is approximately the radius r of the
hypersphere with a hypervolume about V/(c− 1), when
using c−1 regular prototypes for the clustering. Since our
estimation of the hypervolume is based on a rectangular
shape, the radius of a corresponding hypersphere would
not cover all feature vectors in the hyperbox. Further-
more, huge clusters may be approximated by several pro-

(a)

(b)

(c)

Fig. 1

totypes. The feature vectors in border regions of those
prototypes should not get high membership degrees to
the noise cluster. By all means, different applications re-
quire variable definitions regarding outliers. Thus, the
noise distance δ can be tuned by a parameter α. Finally
we obtain

δ = αr. (7)

Although, any positive value can be chosen for α, our
tests have shown that we achieve good results with α =
1.5. In fact, smaller values of α lead to more compact
clusters with a higher number of outliers. With α → ∞

NC tends to behave like FCM.
After defining the noise distance, we have to spec-

ify the minimum membership degree of a feature vector
to the noise cluster in order to classify it as an outlier.
It is obvious that no constant value will be appropri-
ate to cover all NC partitions. Analogously to the noise
distance, also the membership degree depends mainly
on the number of prototypes used for the clustering. In
[15] it is already discussed that the probability achieving
high membership degrees with FCM, decreases with an
increasing number of prototypes. The lower bound for
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highest membership degrees is of course 1/c. Of course,
the noise distance affects the membership degrees to the
regular clusters too, since a small noise distance forces
high membership degrees to the noise cluster and small
membership degrees to the regular clusters. So it makes
sense to define outliers not only depending on the num-
ber of prototypes, but also by the fact what typical high
membership degrees occur for a certain partition, which
is naturally affected by the noise distance.

As we have discussed above, an outlier may be de-
fined over the expected fraction of noise. With a simple
method we can define outliers on the basis of the feature
vector’s probability not belonging to a regular cluster.
Therefore, we estimate the mean value µ and the stan-
dard deviation σ of the membership degrees to the noise
cluster and consider a feature vector as an outlier, if its
membership degree to the noise cluster deviates more
than a certain factor β from the mean value. Thus, the
function is outlier() returns 1 when, according to this
definition, a feature vector is an outlier, otherwise the
function returns zero:

is outlier(xj) =

{

1 if ucj − βσ > µ,

0 otherwise
(8)

with

µ =
1

n

n
∑

j=1

ucj (9)

σ =

√

√

√

√

1

n − 1

n
∑

j=1

(ucj − µ)2. (10)

Adjusting parameter β one can finally influence the frac-
tion of outliers.

6 Experimental Results

Figure 2(a) shows the results of the two NC approaches.
This data set obviously contains two clusters that are
surrounded by some noise points (see also table 1). Using
the conventional noise distance for partitioning the data
set results in positioning the prototypes as plotted by
squares in the figure. Applying the is outlier() function
with β = 1.4 the data points marked by the small circle
are declared as outliers. The prototypes of the regular
clusters are plotted in the figure with the 2 symbol.
Since the conventional approach tends to overestimate
the noise distance, the optimal cluster centres can not
be found.

When we estimate the noise distance with our volume
preserving approach, we obtain a much smaller value.
Now the prototypes, that are plotted for this run with
the × symbol, are placed closer to the respective cluster
centre. In this way, two additional data points were iden-
tified as outliers, when we use the is outlier() function

(a) Partitioning with 2 regular Prototpyes

(b) Partitioning with 4 regular Prototpyes

Fig. 2

again with β = 1.4. The outliers found with the new δ
are marked by the bigger circle in the figure.

Figure 2(b) shows the results on the same data set us-
ing four regular prototypes for the clustering. Real-life
data sets usually contain cluster structures that differ
from our assumption of hyperspheric clusters. The clus-
ter structures must be approximated by several proto-
types. A noise clustering technique should be able to deal
with such challenges. As the figure shows, the conven-
tional NC can not find any outlier in this example. This
is the case, because the noise distance, when estimated
by the conventional approach, will be approximately the
same as for the two prototypes. But, as it can be easily
verified by visual assessment, the distance from the pro-
totypes to the representing data points is significantly
smaller compared to partitioning with only two proto-
types. Thus, when the average distance decreases with
an increasing number of prototypes and the noise dis-
tance is almost constant, or even worse, increasing, then
results similar to the one above will be obtained.

With our volume preserving approach, we obtain again
the same result as with partitioning with two prototypes.
The noise distance is, according to equation 7, much
smaller. Therefore, the cluster centres can be placed bet-
ter and distant points will be declared as outliers. The
outliers found with the new δ are marked again by bigger
circles in the figure.
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x y x y x y

-10.44 -1.33 36.04 -1.82 30.00 -18.00
14.75 -2.09 31.40 6.71 -20.00 -1.00
6.78 -1.03 38.79 5.04 15.00 -20.00
5.25 -0.87 26.78 1.07 25.00 -22.00

-3.84 1.09 29.72 -1.50 -5.00 -25.00
-1.29 8.42 33.74 1.28
-6.86 0.60 28.51 -0.95
-6.34 3.25 41.17 -0.40
-4.47 10.40 42.47 3.50
2.95 -1.70 36.18 -3.98
9.21 3.65 27.98 -4.01
6.74 1.47 38.29 -0.04

-2.46 -4.25 22.22 -3.63
-10.89 -12.67 32.33 -7.45

1.19 -11.89 51.01 4.35
-3.68 -1.73 37.20 -1.33
-8.90 -3.05 29.25 -7.83
2.24 -2.04 39.43 -1.97
2.91 -7.08 33.58 -0.72
4.28 1.14 40.18 -11.67

Table 1 Synthetic data set (two clusters with some noise)

7 Conclusion

In this paper, we have proposed a new approach to de-
termine the noise distance based on the preservation of
the hypervolume of the feature space. Our approach is
mostly independent of the number of clusters in the data
set. Even though, we applied NC on FCM, other clus-
tering algorithms, such as GK, GG and other prototype-
based clustering algorithms [7,8] can be adapted. Our
main concerns is not only to reduce the influence of out-
liers, but also to clearly identify them. Our results on the
artificial example are promising. Subject of future work
will be further methods to estimate the hypervolume of
the feature space.
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