
Predicting Future Decision Trees from Evolving Data

Mirko Böttcher

University of Magdeburg

Faculty of Computer Science

39106 Magdeburg, Germany

miboettc@iws.cs.uni-magdeburg.de

Martin Spott

BT Group

Intelligent Systems Research Centre

Ipswich, IP5 3RE, United Kingdom

martin.spott@bt.com

Rudolf Kruse

University of Magdeburg

Faculty of Computer Science

39106 Magdeburg, Germany

kruse@iws.cs.uni-magdeburg.de

Abstract

Recognizing and analyzing change is an important hu-

man virtue because it enables us to anticipate future sce-

narios and thus allows us to act pro-actively. One approach

to understand change within a domain is to analyze how

models and patterns evolve. Knowing how a model changes

over time is suggesting to ask: Can we use this knowledge

to learn a model in anticipation, such that it better reflects

the near-future characteristics of an evolving domain? In

this paper we provide an answer to this question by pre-

senting an algorithm which predicts future decision trees

based on a model of change. In particular, this algorithm

encompasses a novel approach to change mining which is

based on analyzing the changes of the decisions made dur-

ing model learning. The proposed approach can also be ap-

plied to other types of classifiers and thus provides a basis

for future research. We present our first experimental results

which show that anticipated decision trees have the poten-

tial to outperform trees learned on the most recent data.

1. Introduction

In many application fields almost every data collected is

time stamped, or, as Kimball [14] noted: “The time dimen-

sion is the one dimension virtually guaranteed to be present

in every data warehouse, because virtually every data ware-

house is a time series”. Due to its temporal nature such

data not only captures influences, like management deci-

sions or the start of marketing campaigns, but also reflects

the changes of the underlying domain. Often, change can

mean a risk (like a shrinking subgroup of target customers)

or an opportunity (like an evolving market niche). In either

case, it is in many domains not only imperative to detect

change in order to survive or to win but inevitable for suc-

cessful decision making. In fact, recognizing, analyzing,

and acting upon change is a virtue which is somewhat nat-

ural to us humans and a necessity in order to cope with ev-

eryday life, from driving a car to stock investments. For this

reason it may seem surprising that in the area of data min-

ing change has been regarded more a burden than a fortune.

While research in overcoming typical problems imposed by

evolving domains, like decreasing classifier performance,

has been prospering, studies in methods how to effectively

utilize change are still rather rare.

Recently, there has been an increasing research interest

in methods which aim at analyzing the changes within a do-

main by describing and modelling how the results of data

mining—models and patterns—change over time. Change

Mining has been coined as an umbrella term for this rela-

tively novel research area. So far, research on change min-

ing has solely focused on patterns such as association rules

and clusters where it has been successfully used to solve a

variety of problems, for instance interestingness assessment

[16] and the detection of tiny clusters in noisy domains [10].

Nevertheless, the application of change mining to classifi-

cation models still is a rather unexplored field.

Similar to how it is used for patterns, change mining can

be applied to models with the goal of describing change, for

example by analyzing how the relevancy or sensitivity of at-

tributes changes. However, for models it is more insightful

to ask: If we do know how a model, for instance a decision

tree, changes over time, can we use this knowledge to learn

it in anticipation, such that it better reflects the near-future

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.90

33

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.90

33

characteristics of an evolving domain? Predicting a future

model provides at least two advantages: Firstly, the pre-

dicted model provides insight into a domain’s future char-

acteristics. Secondly, it can be expected that a predicted,

future model will perform better than one learned on past

or even the most recent data, particularly in cases where the

underlying domain evolves at a fast pace.

Our goal in this paper is twofold: first of all, we want to

show the potential of change mining for classifiers by pre-

senting an algorithm that uses a model of change to learn

decision trees in anticipation. More precisely, it models how

the change within a domain affects those measures that con-

trol the process of decision tree induction. It then predicts

the future values of the measures and induces a decision tree

from the prediction. We start the discussion with related

work in Section 2, a brief Section 3 on notation and a short

introduction of decision trees in Section 4. Our approach

for predicting decision trees is presented in Section 5, fol-

lowed by experimental results in Section 6 and a discussion

of the computational complexity in Section 7.

Secondly, we want to provide a more theoretic frame-

work for this kind of predictive change mining by general-

izing the approach taken for decision trees. In Section 8 we

are discussing typical difficulties connected to change min-

ing of classifiers in general and their prediction in particular.

Thus motivated we propose a framework for what we call

process-centric change mining in Section 9. It circumvents

the discussed difficulties and also provides a basis for future

research due to its genericness.

2. Related Work

To our knowledge, the area of change mining for clas-

sifiers in general and the prediction of future decision trees

based on change information in particular has not been dealt

with in the literature.

In the broader context of pro-actively retrieving a future

model the RePro system [22] is the only approach known

to us. However, the RePro system does not predict a com-

pletely novel future model but searches for the best match

out of a repository of past models. It strongly assumes that

models repeat in time following a predictable repetition pat-

tern. This in turn is only likely to occur if the change trigger-

ing events repeat in time too—in the same order and each

time with the same impact on the domain. This assump-

tion, furthermore, has to hold for a rather long duration be-

cause unless data is collected very frequently and the do-

main changes often it will take a considerable amount of

time to derive the huge number of models necessary to reli-

ably learn transition patterns.

As already noted in the Introduction analyzing the

change of patterns and models has been studied in the field

of change mining. While conventional data mining takes

one dataset and produces models or patterns upon it, change

mining goes one step further in that it analyzes how mod-

els and patterns evolve over time. So far, research on change

mining has primarily focused on describing how association

rules and clusters are changing (cf. [1, 16, 4, 20]). Change

mining approaches for patterns typically first derive a se-

quence of patterns which are then related and compared for

changes. In Section 8 we will show that the application of

such an approach to classifiers has some serious practical

problems.

3. Notation

Throughout the paper we will make use of the follow-

ing notation. We assume that a dataset S of sample cases

is described by a set of nominal input attributes A :=
{A(1), . . . , A(m)} and a class attribute C. We assume that

the domain of an attribute A has nA values, i.e. dom(A) =
{a1, . . . , anA

}, and that the domain of attribute C has nC

values, i.e. dom(C) = {c1, . . . , cnC
}.

Since we are interested in how data changes over time,

let S be a time-stamped data set and [t0, tr] the min-

imum time span that covers all its samples. The inter-

val [t0, tr] is divided into r > 1 non-overlapping peri-

ods [ti−1, ti[, such that the corresponding subsets Si ⊂ S
each have a size |Si| ≫ 1. Without loss of generality, let

T̂ := {1, . . . , r, (r + 1), . . .} be the set of all past (i ≤ r)

and future (i > r) period indices.

4. Decision Trees

Almost all algorithms for decision tree induction (cf.

[18] and [6]) grow the tree top-down using a greedy strat-

egy. The induction process is controlled by two different

types of decisions: Firstly, starting at the root node an at-

tribute A is selected that yields the highest score regarding

an attribute evaluation measure I . The dataset is then split

into nA subsets each corresponding to one attribute value

a ∈ dom(A) and a child node for each of them is created.

Secondly, if all its cases have the same class label or a stop-

criterion is reached, a subset is not split further and hence

no children are created. The current node then becomes a

leaf and is assigned the majority class c ∈ dom(C) of its

associated subset.

An attribute evaluation measure I(C,A) rates the value

of an attribute A for predicting the class attribute C.

The most well-known measures are probably information

gain [19] and information gain ratio [18]. The information

gain Igain(C,A) measures the information gained, on av-

erage, about the class attribute C when the value of the at-

tribute A becomes known. A disadvantage of the informa-

tion gain is its bias towards attributes with many values. To

3434

overcome this problem the information gain ratio Igr(C,A)
was proposed which penalises many-valued attributes by di-

viding the information gain Igain(C,A) by the entropy of

the attribute itself [19, 18].

5. Predicting Decision Trees

As an example for our approach to change mining we

present the PreDeT algorithm that anticipates future de-

cision trees. It models how the measures which control

the decisions during the tree induction process change over

time, predicts their future values and derives a decision tree

from the prediction.

5.1. Basic Idea

Figure 1 illustrates the change in a data set and the result-

ing change in information gain. It shows the distribution of

samples over the attribute space at four consecutive time pe-

riods. Each sample belongs to one of two classes, squares

and bullets, each described by two attributes A and B with

domains {a1, a2} and {b1, b2}, respectively. Lets assume

that we learn a decision tree at the end of each period which

predicts the samples in the next period. In period 1, shown

in Figure 1(a), the information gain of A is much higher

than that of B and it therefore would have been chosen

as the split attribute. However, the distribution of samples

shifts over time which is indicated by arrows in Figure 1(a)

to Figure 1(c). In period 3 the information gain of A is still

higher than the one of B and therefore A would be the split

attribute. This would lead to a classification error of 8 using

the samples from period 4 for testing. However, in period 4
attributeB would have been the superior split attribute. The

choice solely based on the samples from period 3 was sub-

optimal. If we look at how the information gain developed

between periods 1 and 3 we can see that it has a downward

trend for A and an upward trend for B. Using an appropri-

ate model for both time series it would have been possible

to anticipate the change in the split attribute and to choose

B. This choice leads to a much smaller classification error

of 5.

Figure 2(a) shows an example obtained from the same

real world dataset which we also use for our experimental

evaluation in Section 6. The information gain history of the

attribute A(1) is stable apart from noise whereas the infor-

mation gain history of A(2) shows an upward trend. Fur-

thermore, it can be seen that for the vast majority of time

periods T = 1, . . . , 15 attribute A(1) has more predictive

power and would therefore be chosen as the split attribute.

However, due to the observed upward trend in the informa-

tion gain of A(2) both histories will intersect and A(2) will

become the split attribute in the near future.

Figure 2(b) shows the two histories from Figure 2(a)

each modeled by a quadratic regression polynomial. In pe-

riod 16 the – at the time of modeling unknown – informa-

tion gain values of both attributes are marked. As it can be

seen, the predictions made by the regression models antic-

ipate the change in the ranking of candidate split attributes

which happens between period 15 and 16.

In summary, the basic idea of PreDeT is to learn mod-

els which describe evaluation measure histories and class

label distribution histories in each step of the decision tree

induction. The models are then used to predict the value

of the respective quantity for the next, future time period.

Subsequently, the predictions are used to decide whether to

grow a subtree and which class label to assign to a leaf node.

As we already pointed out in Section 4 these two decisions

are the main building blocks of the vast majority of decision

tree learners. Because our algorithm leverages predictions

for both it is finally capable to predict how a decision tree

may look like in the future. In the presence of a changing

domain this means that we should be able to provide clas-

sifiers with a higher accuracy than those which are solely

reflecting the characteristics of historic data.

5.2. Predicting Attribute Evaluation Mea-
sures

Assume that we have a sequence of time-dependent data

sets (S1, . . . ,Sr) each described by the same attributes

A(i), i = 1, . . . ,m having the same domains in each time

period. Quantities crucial for decision tree induction like at-

tribute selection measure and the distribution of class labels

are now related to a specific data set Si and thus to a certain

time period Ti. Therefore they form sequences of values

which we will denote by I := (I(S1, A), . . . , I(Sr, A))
for attribute evaluation measures and P := (P 1, . . . , P r)
for the sequence of class label distributions. Thereby P k :=
(pk

1·, . . . , p
k
nC ·) is the distribution of class labels and pk

i· is

the relative frequency of class attribute value i in time pe-

riod k. We will refer to these sequences as attribute eval-

uation measure history and class label distribution history,

respectively.

A model ϕ for attribute evaluation measures is a function

ϕ : T̂ −→ R. In general, it will be determined based on a

history I := (I(S1, A), . . . , I(Sr, A)) of attribute evalu-

ation measures which will be denoted by ϕ[I]. A model

ϕ is then used in each inner node to obtain a prediction

ϕ[I](r + 1) for attribute evaluation measure’s value in the

next time period Tr+1.

As the set of potential candidate models we chose the set

of polynomials ϕ(T) =
∑q

i=0 aiT
i fitted to I using least

squares regression. Linear regression in contrast to other

possible model classes, like neural networks [11], offers the

advantage that no large sample sizes (long histories) are re-

3535

a1 a2

b1

b2

Igain(A) = 0.531

Igain(B) = 0.007

(a) Period 1

a1 a2

b1

b2

Igain(A) = 0.278

Igain(B) = 0.030

(b) Period 2

a1 a2

b1

b2

Igain(A) = 0.118

Igain(B) = 0.066

(c) Period 3

a1 a2

b1

b2

Igain(A) = 0.007

Igain(B) = 0.191

(d) Period 4

Figure 1. Illustration of how change within a domain can lead to trends in information gain.

5 10 15

0.1

0.15

0.2

0.25

T

I g
ai

n

I
gain

(C,A
(1)

)

I
gain

(C,A
(2)

)

(a) The history of A(1) is apart from noise stable. The

history of A(2) shows an upward trend.

5 10 15

0.1

0.15

0.2

0.25

T

I g
ai

n

I
gain

(C,A
(1)

)

I
gain

(C,A
(2)

)

(b) Both histories modeled by quadratic polynomials

shown as dotted lines. In period 16 the values to be pre-

dicted are shown.

Figure 2. Histories of information gain values for two different attributes

quired and that the underlying algorithms are fast. The first

aspect is helpful when the domain changes rather fast. The

latter aspect is important because models for a large number

of histories need to be learned. The advantage of polyno-

mial linear regression is, specifically, that it offers a simple

way to obtain a set of candidate models by varying the de-

gree q of the polynomial.

Having a set of fitted regression polynomials the best

polynomial needs to be selected. In this case ‘best’ means

that polynomial which provides the best trade-off between

goodness of fit and complexity and is, for this reason, less

prone to overfit the data. This can be measured using the

Akaike information criterion (AIC) [2]. Let r be the num-

ber of observations, i.e. the length of the history, q + 1 the

number of parameters of the polynomial andRSS the resid-

ual sum of squares of the fitted regression polynomial. Then

AIC is defined as:

AIC = 2(q + 1) + r ln
RSS

r
(1)

Commonly, the number of time periods for which data

is available can be rather small. For example, the data we

use for our experiments in Section 6 consists of 25 data sets

obtained weekly. The original Akaike information criterion,

however, should only be applied to data sets with large sam-

ple sizes [7], i.e. if r/(q + 1) > 40. To overcome this lim-

itation a number of corrections of the Akaike criterion for

small sample sizes have been developed. In our PreDeT
algorithm we use the following known as AICC [13]:

AICC = AIC +
2(q + 1)(q + 2)

r − q − 2
(2)

For large sample sizes r AICC converges toAIC, there-

fore it can be always used regardless of sample size [7].

3636

5.3. Predicting the Majority Class in Leafs

A model ψ for histories of class label distributions is a

function ψ : T̂ −→ [0, 1]nC . It is learned from the his-

tory of class label distributions P := (P 1, . . . , P r). The

dependency of ψ on P will be denoted by ψ[P]. Within our

PreDeT algorithm a model ψ is used in each leaf node to

predict the class label distribution at time point Tr+1.

The prediction model ψ is a vector of functions

ψi : T̂ −→ [0, 1] each of which models a dependency be-

tween the time period and the relative frequency (estimated

probability) of a class label. Because the relative frequen-

cies must sum up to one
∑nC

i=1 ψi(T) = 1 must hold, i.e.

ψ(T̂) =

ψ1(T)
ψ2(T)

...

ψnC
(T)

=

ψ1(T)
ψ2(T)

...

1 −
∑nC−1

i=1 ψi(T)

(3)

To model each ψi we also use polynomials of degree q,

i.e. ψi =
∑q

j=0 ajT
j . The degree of the polynomials is,

similar to Section 5.2, determined using the Akaike infor-

mation criterion.

Because values ψi(T) are relative frequencies additional

constraints have to be imposed on the choice of the function

ψi. In particular, the following should always hold.

∀T ∈ {0, . . . , r + 1}∀i ∈ {1, . . . , nC} : 0 ≤ ψi(T) ≤ 1
(4)

In our experience this constraint can be too strict. For ex-

ample, in the case pk
i = pk+1

i = 1 and pj
i 6= 1 for j 6= k

and j 6= k+ 1 it is rather difficult to find a continuous, low-

complexity model class for ψi. For this reason and because

we only aim to predict values for the period r + 1 we use

the weaker constraint

0 ≤ ψi(r + 1) ≤ 1 (5)

Applying this constraint the model ψi cannot be derived us-

ing standard regression analysis anymore. Instead, we ob-

tain the coefficients a := (a0, . . . , aq)
T of the polynomial

ψi =
∑q

j=0 ajT
j by solving the constrained linear least-

squares problem

a = argmin
a

1

2
‖Ca − p‖

2
2 (6)

with C :=

10 · · · 1q

...
. . .

...

r0 · · · rq

and p :=

p1
i
...

pr
i

There exist several methods from the field of optimisation

for solving constrained linear least-squares problems. They

will not be discussed here in greater detail. For further read-

ing see [9].

5.4. Putting the Parts Together

Having explained the main building blocks of how to

predict future decision trees in the previous two sections

we will now go ahead and explain how they can be used

in combination with a decision tree learner to anticipate fu-

ture decision trees. This will finally lead us to the PreDeT
algorithm.

Figure 3 shows the PreDeT algorithm. Similar to the

vast majority of decision tree learners it consists of two con-

secutive stages. In the first stage (lines 1–8) the split at-

tribute for the current node is searched. In the second stage

(lines 9–18) it is decided whether the current node is a leaf

(line 9) or inner node (line 15). Respectively, either a class

label is assigned to the leaf node based on the majority class

in this node, or the data sets are split according to the split

attribute and the PreDeT algorithm continues recursively

(line 17). It should be clear that the basic ideas laid out in

Section 5.2 and Section 5.3 can be used in connection with

any decision tree learner that uses attribute evaluation mea-

sures to determine splits.

PREDET((S1, . . . ,Sr))
1 Ibest ←WORTHLESS

2 for all untested attributes A

3 do I ← (I(S1, A), . . . , I(Sr, A))
4 learn prediction model ϕ[I]
5 Ĩ ← ϕ[I](r + 1)
6 if Ĩ > Ibest

7 then Ibest ← Ĩ

8 Abest ← A

9 if Ibest = WORTHLESS

10 then create leaf node v

11 P k ← (pk
1·, . . . , p

k
nC ·

), k = 1, . . . , r
12 learn prediction model ψ[(P 1, . . . , P r)]
13 (p̃r+1

1· , . . . , p̃r+1
nc·

)← ψ[(P 1, . . . , P r)](r + 1)
14 assign c = argmaxci

(p̃r+1
1· , . . . , p̃r+1

nc·
) to v

15 else assign test on Abest to v

16 for all a ∈ dom(Abest)
17 do v.child[a]←
18 PREDET((S1|Abest=a, . . . ,S

r|Abest=a))
19 return v

Figure 3. Outline of the PreDeT algorithm

In contrast to other decision tree learners PreDeT takes

as input a sequence of data sets (S1, . . . ,Sr) representing

time periods 1, . . . , r. It uses these data sets to estimate the

value of the attribute evaluation measure in the next time

period r+ 1 using a learned model ϕ (lines 4–5). The class

label distribution within each data set is used to predict the

likely class label distribution in time period r + 1 using a

learned model ψ (lines 11–13). Note that every decision

3737

about the structure of the tree – the choice of the split at-

tribute in inner and of the class label in leaf nodes – is solely

based on estimated future values of the used metrics. For

this reason the tree learned by PreDeT can be seen as a

prediction of the decision tree in period r + 1.

6. Experimental Evaluation

The PreDeT algorithm does primarily depend on two

parameters: first of all, the length r of the sequence of

data sets (S1, . . . ,Sr), and secondly, the attribute evalua-

tion measure I . In our experiments we evaluated how these

factors influence the accuracy of the anticipated decision

trees and how this accuracy compares to the one of con-

ventionally induced decision trees.

For our experiments we chose a representative real-life

dataset from the domain of Customer Relationship Manage-

ment (CRM). The dataset contains answers of customers to

a survey conducted by a telecommunications company over

a period of 25 weeks. Each sample is described by 13 nom-

inal attributes with a domain size between 2 and 9. Goal of

the classification task is to predict whether a customer will

be satisfied or dissatisfied with a certain service using the

remaining 12 attributes, i.e. the data set has two classes to

predict. In order to have an equal class distribution we did

balance the original data set by removing samples of satis-

fied customers.

We split the original data set into 25 subsets Si, each

corresponding to a time period of one week. The sub-

sets contain between 243 and 399 samples. For each ex-

periment we chose a sequence of r consecutive data sets

(Si, . . . ,Si+r−1) within the available 25 ones. For each

i, i = 0, . . . , 25 − r we then learned a decision tree using

the PreDeT algorithm and obtained classifications for the

samples in the data set Si+r that chronologically follows the

sequence. For instance, for r = 5 we have 20 sequences,

learn 20 decision trees and thus obtain the classification ac-

curacy for 20 data sets.

We did compare the accuracy of anticipated decision

trees with those of conventionally induced ones1. In order

to make a fair and realistic comparison two arguments need

to be considered in the choice of the training data set for

the induced decision trees. Firstly, when learning decision

trees in the presence of concept drift it is common prac-

tise to use only the most recent data available because their

characteristics are very likely to be best reflecting those of

(unknown) near future data. It has been demonstrated by

several authors that such a temporal moving window ap-

proach almost always outperforms trees which have been

learned from all of the available data [21, 12, 15]. Secondly,

from an abstract perspective PreDeT (implicitly) learns a

1We used the decision tree implementation by Christian Borgelt that

can be obtained from http://www.borgelt.net/dtree

sequence of r decision trees each corresponding to a data

set Sj , j = i, . . . , i+ r − 1 and then anticipates the tree in

the future period i+ r using a prediction model (cf. Section

9). As with any prediction model, the obtained prediction

cannot have a better quality than its inputs. The quality of

a decision tree, in particular its generalisation ability, does

strongly depend on the size of the data set used for training.

From this it follows that the trees anticipated by PreDeT do

have a similar quality to trees that would have been learned

directly on a data set with a size similar to those of each

Sj , j = i, . . . , i + r − 1. For these two reasons, we chose

to compare anticipated decision trees with decision trees in-

duced from the most recent data set of each sequence.

Using the experimental setup above we carried out ex-

periments using the information gain ratio Igr and infor-

mation gain Igain and varied in each case the length of the

sequence by using r = 5, 10, 15. Figure 4 shows the results

of our experiments. For each combination of I and r the

figure contains a chart whose abscissa axis shows the time

period. The ordinate axis shows the classification accuracy

of the anticipated decision tree (solid line) and the induced

decision tree (dotted line) on each test data set.

For the information gain ratio Igr we can see in Fig-

ures 4(a)–4(c) that for r = 5 the anticipated decision tree

has a higher accuracy in 12 periods, equal accuracy in 2
periods, and a lower accuracy in 6 periods. For r = 10
the anticipated tree performs better in 9, equally in 1, and

worse in 5 periods. For r = 15 it performs better in 7, and

worse in 3 periods. This shows that anticipated decision

trees outperform the induced ones on a considerably larger

number of data sets. To show that the observed gain in accu-

racy is statistically significant we carried out a (one-tailed)

Wilcoxon’s signed ranks test which is the recommended test

for comparing two models [8]. The test yields p-values of

0.033 for r = 5, of 0.0502 for r = 10, and of 0.0704 for

r = 15. This means, for each r the null-hypothesis that the

difference (accuracy(anticipated tree) – accuracy(induced

tree)) has a median value lower than or equal to zero is re-

jected using a significance level of α = 0.05 for r = 5, and

of α = 0.1 for r = 10 and r = 15, respectively.

For the information gain Igain we obtain a similar result

shown in Figures 4(d)–4(f). For r = 5 the anticipated tree

outperforms the induced tree in 14 periods, has an equal ac-

curacy in 1 period and performs worse in 5 periods. For

r = 10 the anticipated tree has a greater accuracy in 10 pe-

riods and and a lower one in 5 periods. For r = 15 the antic-

ipated tree has a greater, equal, and lower accuracy than the

induced tree in 6, 1 and 3 periods, respectively. To assess

the statistical signicance of the observed gain in accuracy

we once more used a (one-tailed) Wilcoxon signed ranks

test. The test yields for r = 5, r = 10 and r = 15 p-values

of 0.0856, 0.03515 and 0.082, respectively, implying that

anticipated trees performs statistically better than conven-

3838

10 15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(a) Igr , r = 5

15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(b) Igr , r = 10

16 18 20 22 24
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(c) Igr , r = 15

10 15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(d) Igain, r = 5

15 20 25
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(e) Igain, r = 10

16 18 20 22 24
0.7

0.75

0.8

0.85

0.9

T

A
cc

u
ra

cy

Decision Tree

PreDeT

(f) Igain, r = 15

Figure 4. Classification accuracy for two different attribute evaluation measures in several consecu-
tive time periods T using different sequences of r time periods length. For comparison, the perfor-
mance of a conventionally induced decision tree is shown.

tionally induced decision trees in these three settings.

In terms of statistical significance the attribute evalua-

tion measures Igr and Igain yield the best classification out-

comes for different settings of the sequence length r, i.e.

r = 5 for Igr and r = 10 for Igain. This gives rise to

the assumption that the attribute evaluation measure is one

factor the optimal choice of r depends on. Generally, the

exploitation of this and other dependencies between param-

eters leaves space for further optimisations of the PreDeT
algorithm and is part of our future research agenda.

7. Computational Complexity

As already pointed out in Section 5 PreDeT follows the

same greedy algorithm structure which is also employed by

the vast majority of decision tree learners. Here, we will

discuss the additional computational effort needed by Pre-

DeT and compare it with the one of a conventional deci-

sion tree learner. In the following discussion we will as-

sume that PreDeT receives a sequence of (sub-)datasets

(S1, . . . ,Sr) as its input while the conventional decision

tree learner receives the data set Sr. Further we assume that

each dataset is of size n and that the number of attributes in

each dataset is m.

In each step of the tree-growing process of a conven-

tional decision tree learner each candidate attribute is ex-

amined and the one with the highest attribute evaluation

measure is selected as the splitting attribute. The most time-

consuming part is the calculation of the attribute evaluation

measure. The algorithm must pass through each instance in

a subset Sr, for each of which it iterates through each can-

didate attribute. Because the union of the subsets of each

level of the tree is Sr the time complexity for each level

thus is O(m · n). Because a tree can have no more than m
levels the overall complexity of a conventional decision tree

learning algorithm thus is O(m2 · n).

Obviously, while the conventional decision tree learner

has to calculate the attribute evaluation measure values and

the class label distributions in leaf nodes for only one data

set, PreDeT needs to calculate it for r data sets. The

same holds for splitting datasets: a conventional learner has

to split one while PreDeT has to split r. Additionally,

3939

PreDeT learns a regression polynomial for each sequence

of attribute evaluation measure values (line 4 in Figure 3)).

This step involves solving a system of linear equations of

size (q + 1) × (q + 1) whereby q denotes the degree of

the regression polynomial. A solution can be obtained in

O((q + 1)3). Further, a constraint linear least square prob-

lem needs to be solved by PreDeT to decide upon the class

label of a leaf node (line 12 in Figure 3). The problem can

be formulated by a r × (q + 1) matrix and a solution ob-

tained by a quadratic programming approach in O(q4). The

degree q of the employed polynomial functions is almost al-

ways significantly small, typically values of q = 1, q = 2 or

q = 3 are employed. For this reason, the effort for these two

computations is very small compared to the effort needed to

calculate the attribute evaluation measure and to split the

data set such that it does not significantly contribute to the

overall runtime of the algorithm.

Therefore, the computational effort of PreDeT is ap-

proximately r-times higher than those of a conventional de-

cision tree algorithm that uses Sr as its input leading to a

time complexity of O(r · m2 · n). Mostly, however, the

length of the sequence r will be rather low, for example in

our experiments we did obtain good results for r = 5 and

r = 10, so that the additional effort is still manageable.

The memory space complexity of PreDeT is the same

as for a conventional decision tree learner apart from the

fact that it operates on more data. In particular, PreDeT
does not store the time series of statistics needed to antici-

pate decision trees, they are calculated on-the-fly during the

run of the algorithm (cf. lines 3 and 13 in Figure 3).

8. Predicting Future Models

Having introduced an approach to predicting decision

trees in previous sections, we will now discuss possible al-

ternatives in more detail and finally generalize the chosen

approach in Section 9 with a framework for process-centric

change mining. Formally, the problem of predicting a clas-

sification model can be described as follows. Using a data

mining approach a model Mi is derived for each time pe-

riod [ti−1, ti[, i > 0 based on the data Si. Hence, we have

two sequences: a sequence of data sets (S1, . . . ,Sr) and a

sequence of data mining models (M1, . . . ,Mr).
Given a a sequence of data sets (S1, . . . ,Sr) we are in-

terested in a data mining model Mr+1 that represents the

data Sr+1 of the future time period [tr, tr+1[. Since Sr+1

is unknown the model Mr+1 cannot be derived in the usual

way. To solve the problem two basic approaches are appar-

ent:

1. to predict the data set Sr+1 from the sequence

(S1, . . . ,Sr) of previous data sets and then induce the

model Mr+1

2. to predict the model Mr+1 directly from the sequence

(M1, . . . ,Mr) of previous models

For the first approach, directly using the history of data

sets for prediction is not promising, because the relationship

between data points in different time periods is almost al-

ways unknown. Instead, one could try to derive models for

data generation, predict a data generator for [tr, tr+1[, gen-

erate Sr+1 and learn Mr+1. This, in turn, is an instance of

the second approach because it involves the prediction of a

model based on a sequence of past models. One may object

that there is a conceptual difference between data generat-

ing models and prediction models. Nevertheless, the diffi-

culties linked to the prediction of a model based on a history

of models are the same in both cases.

In fact the degree of difficulty depends on the type of

model. Simple models based on parameterized probability

distributions, for instance, can easily be predicted. How-

ever, models with a manageable number of parameters are

only available for numeric data and even then usually too

simple. Predicting complex models based on a history of

past models, on the other hand, proves to be extremely prob-

lematic. Since a general discussion would be outside the

scope of this paper, we will discuss the difficulties using

decision trees as an example. Although they have a rather

simple structure it turns out that the task of directly compar-

ing them for changes is more than challenging. Three major

difficulties can be identified:

• Complexity: To identify changes between two or more

graph-based models structural matches between them

must be identified and dissimilarities recorded. These,

in turn, are instances of well-known problems from

graph theory: the inexact graph matching, common

subtree and tree editing distance problem. All of them

are known to be NP-hard and also known to be difficult

to approximate [3, 17].

• Instability: In particular decision trees are known to be

instable [5]. This means, even small changes in the in-

put training samples, e.g. due to noise, may cause dra-

matically large changes in the produced models. When

comparing two models this means that even if the un-

derlying domain remains stable some noise may cause

a model to change fundamentally. For this reason, it

is extremely difficult to distinguish true changes from

noise-based changes.

• Utility: Imagine that a satisfying solution for the first

two problems may exist. Then, a pair-wise comparison

of a sequence of trees would likely yield a sequence of

additions, deletions and changes that convert one tree

into the other. The value of this sequence in terms of

providing meaningful and actionable knowledge about

a changing domain remains arguable, in particular in

4040

combination with instability. The same holds for its

utility as an input to a further (predictive) analysis step.

9. Process-centric Change Mining

In Section 8 we discussed that analyzing changes for de-

cision trees and models in general is rather difficult, if the

common change mining approach of direct model compar-

ison is employed. As a solution we propose a generic ap-

proach that is based on a decomposition of the model induc-

tion process. Consider the induction process of a decision

tree as an example. It can be described as a sequence of de-

cisions comprising which attribute to take for the next split,

when to stop growing the tree and which class label to as-

sign to a leaf node. Decisions are driven by an attribute

selection measure I like the information gain and the class

label distribution P . Following the algorithm of tree induc-

tion, the sequence of decisions then uniquely determines the

model. In other words, if we know all possible values – the

image – of the information gain and the class label distribu-

tion, we can directly compute the model without going back

to the data. In this respect, the image of I and P together

form an intermediate representation of a decision tree that

is sufficient for tree induction. An example for such an in-

termediate representation is the well known concept of suf-

ficient statistics in probability theory. For instance, statistics

can be sufficient to uniquely determine a probability distri-

bution being the equivalent of our model.

More formally, when deciding on the attribute for the

next split, we evaluate I on the data subset S ′ ⊆ S of the

current branch of the tree for all attributes A in the set of

attributes A. We then pick the attribute that maximizes

(or minimizes) I . In other words, if we know the image

I := I(A, 2S) of all possible combinations of attributes and

subsets of S, we have all the information required to pick

the best attribute for a split at any stage of growing the tree.

Adding the image P := P (2S) of the class label distribu-

tion P forms the intermediate representation IR = (I,P).
In order to predict a future model we propose to look

at how the intermediate representation changes over time,

predict their future values and then follow the usual model

induction process to derive the future model. Having a se-

quence of data sets (S1, . . . ,Sr) a sequence of intermediate

representations (IR1, . . . , IRr) can be generated. Almost al-

ways, the values in IRi will change over time, so do the

decisions based on them and, finally, so does the resulting

model. This means, by analyzing how the values of IRi and

thus the corresponding decisions change over time in each

step of the induction process information about how the

model will change can be retrieved. Figure 5 illustrates the

proposed decomposition with predicted intermediate repre-

sentation IRr+1 and induced future model Mr+1.

In fact, as we have seen in Section 5 in case of decision

Time t1 . . . tr tr+1

Data S1 . . . −−−−→ Sr −−−−→ Sr+1

y

I,P

y

I,P

y

I,P

Intermediate

Representation
IR1 . . . −−−−→ IRr predict

−−−−→ IRr+1

y

y

y
induce

Model M1 . . . −−−−→ Mr −−−−→ Mr+1

Figure 5. Process-centric change mining an-

alyzes the sequences of intermediate repre-
sentations IRi

trees we do not necessarily need to compute and store the

complete intermediate representation which can be compu-

tationally expensive. Instead we generate the required parts

of the IRi on the fly, when they are needed.

It is obvious that such an approach needs to be embedded

into the learning process itself rather than being a subse-

quent analysis step as with the model-based approach. Be-

cause our approach to change mining is tightly coupled with

the learning process we will call it process-centric.

The approach is useful only, if the intermediate represen-

tation is sufficient to derive the model, i.e. if the decompo-

sition is well defined, and if the intermediate representation

is of such a form that it can easily be predicted. As we have

shown in Section 5 both requirements are met for decision

trees. The second requirement shows that decision trees are

indeed well suited as an example. Since the measures I
and P form real-valued time series for every attribute-data

subset combination, we can apply standard time series pre-

diction to determine IRr+1.

The described approach does not only apply to decision

tree learners. It is suitable for other algorithms, for instance

in the area of Bayesian networks. An example is the K2

algorithm. In general, every algorithm that builds upon a

greedy strategy can be described as such a sequence of mea-

sure dependent decisions. More generally, the approach

works wherever the mapping of data onto models can be

decomposed into more or less complex sequences of map-

pings with intermediate representations. The basic mecha-

nism remains the same, as long as we can find intermediate

representations that can easily be predicted and that fully

determine the model. A general proof that the diagram in

Figure 5 commutes for a particular mining model like deci-

sion trees is difficult. Section 5.1 showed with an example

at hand how a predicted intermediate representation reflects

data of the following time period.

4141

10. Conclusion

In this paper we provided a first research step into the

field of change mining for classifiers. We presented the

PreDeT algorithm which predicts decision trees for future

time periods by modelling how attribute evaluation measure

and class label distribution evolve over time. First experi-

mental results we obtained are very promising because they

show that our approach is able to learn decision trees with a

higher classification accuracy than approaches which only

use the most recent data available. In particular, we only

used a rather simple polynomial regression function for the

prediction of the attribute evaluation measure in each step

of PreDeT . It is likely that the results can be improved to

a significant extent if more sophisticated prediction models

are used.

We also showed that the approach of learning a sequence

of models is unsuitable for both providing a basis for change

mining and for future model prediction due to the com-

plexity of direct model comparison. As an alternative we

proposed process-centric change mining which is a novel

approach to change mining that focuses on the analysis of

changes in the decisions made during model induction.

We are currently working on the application of process-

centric change mining to other types of models, in particu-

lar Bayesian networks. As part of this work we also look

into proving that Figure 5 commutes under certain condi-

tions. We are also working on several enhancements of the

PreDeT algorithm. In the first place, we investigate the

advantages of using more sophisticated and more robust re-

gression methods. A rather challenging research question

to answer here is which type of model can best reflect the

changes in the attribute selection measure. Secondly, as the

algorithm stands a new decision tree has to be predicted ev-

ery time a new batch of data arrives. For this reason it would

be advantageous w.r.t. computational costs if PreDeT sup-

ported incremental learning.

References

[1] R. Agrawal and G. Psaila. Active data mining. In M. Fayyad,

Usama and U. Ramasamy, editors, Proceedings of the 1st

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’95), pages 3–8, Mon-

treal, Quebec, Canada, 1995. AAAI Press, Menlo Park, CA,

USA.

[2] H. Akaike. A new look at the statistical model identification.

IEEE Transactions on Automatic Control, 19(6):716–723,

1974.

[3] P. Bille. A survey on tree edit distance and related problems.

Theoretical Computer Science, 337(1-3):217–239, 2005.

[4] M. Boettcher, D. Nauck, D. Ruta, and M. Spott. Towards

a framework for change detection in datasets. In Proceed-

ings of the 26th SGAI International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence,

pages 115–128. Springer, 2006.
[5] L. Breiman. The heuristics of instability in model selection.

Annals of Statistics, 24:2350–2383, 1996.
[6] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-

cation and Regression Trees. Wadsworth, Belmont, 1984.
[7] K. P. Burnham and D. R. Anderson. Multimodel inference:

understanding AIC and BIC in model selection. Sociological

Methods & Research, 33:261–304, 2004.
[8] J. Demšar. Statistical comparisons of classifiers over multi-

ple data sets. The Journal of Machine Learning Research,

7:1–30, 2006.
[9] P. E. Gill, W. Murray, and M. H. Wright. Practical Opti-

mization. Academic Press, London, 1989.
[10] F. Hoeppner and M. Boettcher. Matching partitions over

time to reliably capture local clusters in noisy domains. In

Proceedings of the 11th European Conference on Princi-

ples and Practice of Knowledege Discovery in Databases

(PKDD’07), pages 479–486. Springer, 2007.
[11] K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-

forward networks are universal approximators. Neural Net-

works, 2(5):359–366, 1989.
[12] G. Hulten, L. Spencer, and P. Domingos. Mining time-

changing data streams. In Proceedings of the 7th ACM

SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, pages 97–106, New York, NY, USA,

2001. ACM Press.
[13] C. M. Hurvich and C. L. Tsai. Regression and time series

model selection in small samples. Biometrika, 76:297–307,

1989.
[14] R. Kimball. Data Warehouse Toolkit: Practical Techniques

for Building High Dimensional Data Warehouses. John Wi-

ley & Sons, 1996.
[15] R. Klinkenberg. Learning drifting concepts: Example se-

lection vs. example weighting. Intelligent Data Analysis,

8(3):281–300, 2004.
[16] B. Liu, Y. Ma, and R. Lee. Analyzing the interestingness of

association rules from the temporal dimension. In Proceed-

ings of the IEEE International Conference on Data Mining,

pages 377–384, San Jose, CA, 2001.
[17] L. Lovasz and M. Plummer. Matching Theory. Mathematics

Studies. Elsevier Science, 1986.
[18] J. Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1992.
[19] J. R. Quinlan. Induction of decision trees. Machine Learn-

ing, 1(1):81–106, 1996.
[20] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult.

Monic – modeling and monitoring cluster transitions.

In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(KDD’06), pages 706–711, Philadelphia, USA, Aug. 2006.

ACM.
[21] G. Widmer and M. Kubat. Learning in the presence of con-

cept drift and hidden contexts. Machine Learning, 23(1):69–

101, 1996.
[22] Y. Yang, X. Wu, and X. Zhu. Combining proactive and re-

active predictions for data streams. In Proceeding of the

11th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD’05), pages 710–

715, New York, NY, USA, 2005. ACM Press.

4242

