
Information Miner – a Data Analysis Platform

Frank Rügheimer
Inst. for Knowledge and
Language Engineering

University of Magdeburg
ruegheim@iws.cs.uni-magdeburg.de

Rudolf Kruse
Inst. for Knowledge and
Language Engineering

University of Magdeburg
kruse@iws.cs.uni-magdeburg.de

Abstract

Knowledge discovery and information mining
have long been recognized as important tools for
prediction and decision making. But the process
– from data preparation and selection of appropri-
ate methods to a properly configured, well-tested
analysis setup – can be time-consuming. In re-
cent years easy to use software that supports ex-
perts in model construction has become available.
Advocating a vertical system, this paper will in-
troduce a toolkit for the construction of complex
application-specific information mining solutions
from components. Moreover, it outlines how ex-
tensions and suggested concepts may contribute
to further improving support for the information
mining process.

Keywords: data mining, information mining,
application software

1 Introduction

The field of data mining and knowledge discov-
ery in databases has become a highly successful
area with respect to applications in both research
and business. By now its importance has been
broadly recognized for its potential to discover
hidden relationships, e.g. in customer or process
data, helping companies to improve their pro-
duction or marketing strategies. Conversely, by
pointing out relevant problems and directions for
further development, numerous applications have
influenced the field itself, so tools for supporting
the information mining process have evolved. A
focus of current development, information min-
ing deals with extracting knowledge from various

types of sources including multimedia data. The
work described in this paper aims at providing
adequate tools for efficient information mining in
specialized applications.

2 Previous Approaches

In an initial phase data mining software was fo-
cused on single methods that were usually made
available without a graphical user interface or
support for the other phases of the data-mining
process. The C++ library MLC++ [8] for exam-
ple provides a collection of algorithms. But adap-
tations for specific applications and integration
into a comprehensive solution are left to the user.
As the importance of supporting the users became
more thoroughly recognized, systems that com-
bined single data analysis methods with a graph-
ical user interface and integrated preprocessing
tools appeared. Answertree (SPSS) and Business-
Miner (Business Objects) are representatives of
this class. Nowadays software packages usually
combine several methods in one environment e.g.
Clementine (Integral Solutions Ltd.), DeltaMiner
(Bissantz & Co. GmbH).

Finally the need for specialized solutions has lead
to systems which permit later extensions (Enter-
prise Miner (SAS)). Unfortunately the implemen-
tation of these extensions is often restricted by
system architecture and development is bound
to a fixed programming language. An alterna-
tive strategy defines transfer interfaces only, al-
lowing for more flexibility and the integration of
existing implementations using wrapper classes.
This plug-in approach is used for instance in
DataEngine (Management Intelligenter Technolo-



gien GmbH). The higher flexibility comes at
the cost of additional data transfer operations
though.

Since real world information mining problems are
manyfold, the advantages of access to an extensive
library of reusable methods and data exploration
tools are easy to see. For some methods efficiency
requirements may suggest an integrated imple-
mentation. Nevertheless, reuse of algorithms that
have already been adapted to a distinct problem
is often rewarding. Thus direct support for this
method of expansion seems desirable.

3 Information Miner Platform

Information Miner provides a software construc-
tion toolkit that allows experts to easily develop,
modify, and configure domain specific streams for
data processing and analysis. We intended to
combine the user-friendly features of general In-
formation Mining Systems with the flexibility of
module based approaches. The streams can be
saved for later application by users who need not
have a background in information mining. End-
users can then easily apply previously generated
models to up to date input data or even create
models on their own.

In its basic version the software comes with mod-
ules for calculating statistics and a selection of
standard methods e.g. decision trees [9], regres-
sion trees [4], Bayesian classifiers. Further learn-
ing methods include neural networks (currently
multilayer perceptrons and radial basis function
networks), association rules [1], and a selection
of clustering approaches. Apart from learning al-
gorithms the repository contains operations for
data preprocessing, visualization, and model eval-
uation. While the user interface is written in Java,
the implementation of algorithms is not restricted
to this programming language. Command line
parameters for calling external pieces of software
are passed from the graphical user interface so
existing programs can be integrated into the sys-
tem. The platform itself can be configured by
providing repositories that contain different com-
binations of analysis methods and support tools.
The current version of Information Miner and its
basic method repository have successfully been

tested under Linux and MS-Windows operating
systems.

3.1 Pipes and Filter Concept

The process of obtaining information from data
comprises a sequence of tasks. Data have to be
collected, combined, and preprocessed before be-
ing used for generating models. Algorithms and
models must in turn be configured with appro-
priate parameters, tested, and evaluated before
finally being applied to new data. In Informa-
tion Miner processing streams are represented as
directed acyclic graphs. Operations like e.g. read-
ing or visualizing data, generating or applying
models, or computing evaluation measures are
symbolized by nodes. Users select appropriate
operations from a component library and place
the corresponding nodes onto a workspace. Fol-
lowing that, the nodes are connected with edges,
which represent data or even whole models being
passed between them (Fig. 1). Planned exten-
sions include mechanisms to pass parameters as
well.

Before processing a stream the graphs is analyzed
to ensure that the tasks associated with each node
are executed in correct order. Intermediate re-
sults are stored for later reuse. Thus, when carry-
ing out modifications, only those processing steps
that depend on reconfigured nodes or are affected
by structural modifications to the stream have to
be updated.

Figure 1: An example processing stream

The graphical representation has a number of ad-
vantages:

• efficient composition of complex application-
specific data mining solutions,



• increased comprehensibility,

• automatic transfer of data and models via
connecting arcs,

• reusability of partial solutions by adapting
existing streams,

• direct access to method parameters via con-
figuration dialogs.

Moreover, when combined with a suitable method
repository, the graphical representation con-
tributes to further enhancements e.g.

• immediate model evaluation using special-
ized nodes,

• fast access to implementations of standard
methods for comparison,

• interchangeability of data sources.

3.2 Component Configuration

Once placed on the workspace, nodes have to be
connected to form processing streams. Model
configuration and data transfer within Informa-
tion Miner are based on a flexible interface. Each
processing node possesses a connector for ex-
pected inputs (models, parameters or data) of a
specified basic types or Java Classes. Optional
outgoing connectors provide data or models for
subsequent nodes. When users add a new con-
nection the system checks the modified graph
and reject the edge if it would generate a cycle.
Otherwise it attempts to match the outputs of
the preceding node to the unassigned inputs of
the subsequent one. Parameters are initialized
with standard values, so working configurations
are usually provided even without further user
interaction. For adjustments and to provide in-
puts that cannot be determined automatically a
generic configuration dialog is available for each
node (Fig. 2). Table 1 gives explanations for the
particular fields.

3.3 Integration of External Software

When implementations for specialized informa-
tion mining algorithms are already available, it

Figure 2: Dialog for Configuring Tasks and Ex-
ternal Applications

Table 1: Parameters Configuration
I/O Direction of information flow (in-

put or output)
Type Either ‘Data’, ‘Model’ or ‘Parame-

ter’
Name Unique name for use in expressions

Expression
(Inputs
only)

Inputs are specified either di-
rectly or computed from expres-
sions (generation of entries can be
supported with lists of possible
alternatives or additional dialogs,
e.g. for browsing file systems).
The result type is determined by
the ‘Class’ field

Value Result of evaluation

Class Expected basic type or Java class

OK Indicates if the selected value is
consistent with restrictions for the
particular type of node

is frequently profitable to integrate them into the
information mining system such that existing par-
tial solutions can be reused and combined with
features from the toolkit. A simple, but effective
approach consists in providing wrapper classes for
external programs. Wrapper classes connect to
the system’s interface to obtain data and parame-
ters via standard node configuration dialogs. The
inputs are then passed on to the external appli-
cations. This strategy fosters reuse of software
and provides an efficient way for extending the
method library.

When the cost of data transfer is not consider-
able compared to other computations this method
sometimes constitutes the preferred option. As
the implementation of the algorithms is not bound
to Information Miners internal data structures,



the data can be reorganized with respect to effi-
cient access and processing by the method’s spe-
cific algorithms.

4 Example Scenario

To demonstrate these concepts, one can consider
a simple clustering task. For this example the iris
data set, which contains data on flower geometry
for specimen of three species of the iris family is
used. The data was split in two separate files with
120 and 30 examples respectively, the smaller file
being reserved for evaluation purposes.

To read the data file specific import nodes can
be selected from the repository bar on the right
and dragged onto the desktop. Using a filesys-
tem browser each of the nodes can be connected
to the desired input file. The designation of the
imported tables is generated from the file names.
In order to take a first look on the data a ‘Scat-
terPlot’ node is selected from the available visu-
alization methods and connected to the output of
the file import node (Fig. 3 left). Starting stream
execution a visualization window opens (Fig. 3
right).

Figure 3: File Import and Visualization

In the next step we add the ‘BuildClusters’ node
to generate cluster descriptions from the data. By
default the last column of a table is expected to
contain class lables and it will be ignored by the
clustering module. Using an additional ‘Field-
Ops’ node one can overide these setting and as-
sign different roles to each variable or even delete
columns. In this example we just accept the de-
faults. For a first run we also use the default clus-
tering settings, namely standard Fuzzy c-means
algorithm (FCM) with three clusters. In order
to assign the cluster membership to the training

data an additional processing node is used and for
assessment of the results we generate plots of the
membership degrees (Fig. 4). The histogram node
is added to show the distribution of the tree iris
species over the classification achieved by group-
ing the examples according to the highest cluster
membership.

Figure 4: A Configuration for Clustering

It is soon revealed that two of the clusters are not
clearly separated. Since elliptical clusters might
be a better choice here, we reconfigure the clus-
tering module for the Gustafson-Kessel algorithm
[6] (see Fig. 2). Once model generation is config-
ured, the result should be evaluated on the test
data. The required nodes can be connected di-
rectly to the ‘BuildClusters’ node and it is only
required to execute tasks for the new branch of
the network graph. To allow later reuse the clus-
ter description is also written to a file by sending
it to a specialized output node. The resulting final
graph is shown in Fig. 5.

Figure 5: Final Example Stream

5 Consideration of Information
Mining Challenges

Compared to traditional data mining, the input
being processed in information mining can origi-



nate from a larger variety of sources and is usually
not uniformly structured to begin with. A related
problem is caused by large numbers of variables
leading to large domains. While the problem has
been known in traditional data mining, require-
ments of recent applications, fusion of inhomoge-
neous data and the frequent necessity to proposi-
tionalize multirelational databases, can aggravate
it.

Finally, with respect to applications, it should
be considered that users often demand intelligible
models. Intelligible models allow them to check
for consistancy with previous experience and thus
gain confidence in the results. It also helps to
recognize situations, in which an initially selected
method is insufficient for the desired application.
This sections discusses how the development of
Information Miner’s method library and transfer
mechanism can accommodate these requirements.

5.1 Supporting Heterogeneous Data

While implementations of data mining algorithms
are often designed to work with a homogeneous
input, data encountered in many real world ap-
plications do not usually meet this requirement.
Expanding the focus to information mining, het-
erogeneity may even extend to media. In verti-
cal systems like Information Miner the problem of
different data representations and sources is ad-
dressed by providing a collection of predefined im-
port modules. Depending on representation im-
port modules for text, XML, or databases can
be used. When importing from multirelational
databases propositionalization may be necessary
before learning methods can be applied. Finally
working with images, audio or video data neces-
sitates feature extraction.

Preprocessing is complemented with learning
methods that directly deal with inhomogeneous
data e.g. semi-supervised learning of classifica-
tors [7]. These methods use both examples and
the structure of yet unclassified input to arrive
at better models. Such methods are preferred,
when obtaining pre-classified training examples is
costly. Finally modern data fusion techniques are
instrumental in using the available information to
full capacity. For measurements collected from a

mixed ensemble of sensors it may be appropriate
to use separate methods for processing the input
from the individual sources and combine the re-
sults. Methods like Boosting [10] or Stacking are
examples of multi-model approaches that can be
used to combine different algorithms.

5.2 Fuzzy Rules for Large Feature Spaces

Many relevant applications of information min-
ing e.g. analysis of gene expression patterns in-
herently deal with high dimensional data. Simi-
larly multimedia data analysis and multirelational
database mining usually involve dealing with high
dimensional feature spaces.

In addition to that, data fusion and the proposi-
tionalization of multirelational databases, which
are essential to accessing data previously unavail-
able for many analysis methods, usually produce
high dimensional data sets. Although the number
of input variables can sometimes be reduced with
preprocessing, it is necessary to include meth-
ods that are robust to high dimensional input
data. But while large feature spaces have to be
searched, interesting relationships in such data of-
ten involve smaller subsets of variables and can
comprehensibly be represented by fuzzy rules.

Fuzzy rules are easily understood by the users
thus fulfilling their immediate information needs.
The fuzzy rule induction algorithm given in [2]
is specifically suited to dealing with large feature
spaces and heterogeneous data. An advanced ver-
sion [5] constructs a hierarchy of rule sets with dif-
ferent levels of complexity. For instance this ap-
proach allows users to assess basic relations with
relatively coarse fuzzy rules while using a higher
level of detail for prediction tasks. The algorithm
has already been integrated into an experimental
method repository for a previous version and will
be adapted for the final interface.

5.3 Planned Extensions

Allthough many methods are already available
for Information Miner, the software construction
toolkit is continuously supplemented with imple-
mentations of new methods. A module for semi-
supervised clustering is already being developed.
We also plan to extend the transfer mechanism



for models and data to parameters. Besides sim-
plifying method configuration, this also consti-
tutes an intermediate step towards the grouping
of complex or combined operations into supern-
odes, which could export the same interface as
conventional processing nodes. The mechanism
for passing parameters would allow to better com-
bine modules and exchange relevant parameters
with the external interface of the supernode. This
concept would contribute to even better usability
of the system. Capsulating preprocessing steps
for instance, can hide complexity from the end-
user. Furthermore supernodes are suited for el-
egant implementations of Bagging [3]. Finally
the integration of external software could be sup-
ported by a wizard for creating wrapper classes.

6 Summary

Information Miner is a system designed to sup-
port a vertical approach to application specific in-
formation mining problems. By providing a soft-
ware construction toolkit and a method reposi-
tory, the information mining process can be sup-
ported. In combination with interfaces for the
integration of existing software modules it con-
tributes to considerably reducing the effort re-
quired for developing application specific solu-
tions. The pipes & filter concept for interconnec-
tion is applied not only to data but also to mod-
els so solutions become more flexible. Address-
ing the problem of inhomogeneous data, access
to preprocessing operators is supplemented with
specialized algorithms that directly deal with in-
homogeneous data. At the time this paper is writ-
ten implementations of such algorithms are being
prepared for integration into the method reposi-
tory. Similarly the occurrence of high dimensional
input data in many practical applications is man-
aged by providing robust (fuzzy) rule based anal-
ysis methods.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami.
Mining association rules between sets of
items in large databases. In P. Buneman and
S. Jajodia, editors, Proceedings of the 1993
ACM SIGMOD International Conference on

Management of Data, pages 207–216, Wash-
ington, D.C., 26–28 1993.

[2] M. R. Berthold. Induction of mixed fuzzy
rules. International Journal of Fuzzy Sys-
tems, 3(2):382–389, 2001. (invited paper).

[3] L. Breiman. Bagging predictors. Machine
Learning, 24(2):123–140, 1996.

[4] L. Breiman, J. H. Friedman, R. A. Olshen,
and C. J. Stone. Classification and regres-
sion tree. Wadsworth International Group,
Belmont, CA, 1984.

[5] T. R. Gabriel and M. R. Berthold. Con-
structing hierarchical rule systems. In M. R.
Berthold, H.-J. Lenz, E. Bradley, R. Kruse,
and C. Borgelt, editors, Proc. 5th Interna-
tional Symposium on Intelligent Data Anal-
ysis (IDA 2003), Lecture Notes in Computer
Science (LNCS), pages 76–87. Springer Ver-
lag, 2003.

[6] D. E. Gustafson and W. C. Kessel. Fuzzy
clustering with a fuzzy covariance matrix. In
Proc. of the IEEE Conference on Decision
and Control, pages 761–766, 1979.

[7] A. Klose and R. Kruse. Information min-
ing with semi-supervised learning. In Ad-
vances in Soft Computing: Soft Methodology
and Random Information Systems. Springer-
Verlag, Berlin, Heidelberg, 2004.

[8] R. Kohavi. Wrappers for performance en-
hancement and oblivious decicion graphs.
PhD thesis, Stanford University, 1995.

[9] J. R. Quinlan. Induction of decision trees.
In J. W. Shavlik and T. G. Dietterich, ed-
itors, Readings in Machine Learning. Mor-
gan Kaufmann, 1990. Originally published
in Machine Learning 1:81–106, 1986.

[10] J. R. Quinlan. Bagging, boosting, and C4.5.
In Proc. 13th National Conf. on Artificial
Intelligence and the 8th Innovative Applica-
tions of Artificial Intelligence Conf., pages
725–730. AAAI Press / MIT Press, Menlo
Park, August 4–8, 1996.


