
Mining Fuzzy Frequent Item Sets

Xiaomeng Wang, Christian Borgelt, and Rudolf Kruse

Department of Knowledge Processing and Language Engineering
School of Computer Science, Otto-von-Guericke-University of Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany
Email: {xwang,borgelt,kruse}@iws.cs.uni-magdeburg.de

Abstract: Due to various reasons transaction data often
lack information about some items. This leads to the problem
that some potentially interesting frequent item sets cannot be
discovered, since by exact matching the number of supporting
transactions may be smaller than the user-specified minimum.
In this study we try to find such frequent item sets nevertheless
by inserting missing items into transactions during the mining
process in order to allow approximate matching. We present a
recursive elimination algorithm, based on a step by step elim-
ination of items from the transaction database together with a
recursive processing of transaction subsets. This algorithm is
very simple, works without complicated data structures, and
allows us to find fuzzy frequent item sets easily.

Keywords: Frequent Item Set Mining, Fuzzy Frequent
Item Sets, Alarm Sequence Analysis

1 Introduction

Methods for mining frequent item sets have been studied
extensively. Among the best-known algorithms are Apriori
[1, 2], Eclat [11, 4], and FP-growth [7]. With these methods it
was investigated how to find frequent patterns efficiently and
how to mine data with different characteristics such as dense
vs. sparse, long vs. short patterns, memory-based vs. disk-
based etc. Algorithms for mining frequent item sets also form
the basis of manifold other tasks, for example, mining basket
data, mining molecular fragments, analysis of event sequences
or web accesses etc. Different applications represent different
frameworks and thus focus on different problems.

The framework of our study is alarm sequence analysis
in telecommunication networks. A telecommunication net-
work consists of a huge number of interconnected compo-
nents: switches, exchanges, transmission equipment etc. Each
component and software module can produce alarms, which
are messages describing some kind of abnormal situation.

A core task of analyzing alarm sequences is to find collec-
tions of alarms occurring frequently together—a task that can
also be modeled as finding frequent item sets. Unfortunately,
the alarms often get delayed, lost, or repeated due to the com-
plex system, which can render this task fairly difficult. In this
paper we consider mining fuzzy frequent item sets in such a
noisy environment, even though our approach is not limited to
this particular application. We present an algorithm to mine
data with missing information, which is based on a step by
step elimination of items together with a recursive processing
of transaction subsets and the insertion of missing items.

We first motivate our study from the considered application
domain, i.e. telecommunication alarm analysis. Then we in-
troduce the recursive elimination algorithm for fuzzy frequent
item sets based on the insertion of missing items, followed by
experimental results we obtained with some test data sets. Fi-
nally, we draw conclusions and discuss possible future work.

2 Mining Fuzzy Frequent Item Sets

2.1 Motivation

The problem of finding frequent collections of alarms by an-
alyzing data about alarms that occurred in telecommunication
networks is also known as the discovery of frequent episodes
in event sequences [8]. In general, an event (here: alarm) se-
quence can be seen as a sequence of items, in which each item
is associated with a time of occurrence. A frequent episode is
a collection of events that frequently occur together.

Since the events of an episode should occur close to each
other in time, [8] introduced a time window that moves along
the event sequence to build a sequence of partially overlapping
windows. Each window captures a specific slice of the event
sequence. Thus how close in time is “close enough” for a
collection of events to qualify as an episode is defined by the
width of the time window in which the events must occur.

This way of processing the data has the additional advan-
tage that the problem of finding frequent episodes in event se-
quences is transformed into the well-studied problem of find-
ing frequent item sets in a set of transactions, because the
events in a time window can be treated as a transaction: each
event is an item and the support of an episode is the number
of windows in which the episode occurred. The mining algo-
rithm used in [8] is based on an Apriori-like candidate gener-
ation and test scheme, which relies on exact event matching.

As already mentioned above, it happens quite often in
telecommunication networks that some alarms get delayed,
repeated, or lost because of noise, transmission errors, fail-
ing links etc. Repetition is usually not too much of a problem,
since no information is lost, but if alarms do not get through or
are delayed, they are missing from the time window its associ-
ated alarms occur in. To handle such situations, we rely on the
notion of a “fuzzy” frequent item set. However, in contrast to
other work on fuzzy association rules, where a fuzzy approach
is used to deal with quantitative items/attributes, in this paper
the term “fuzzy” means an item set that may not be found ex-
actly in all supporting transactions, but only approximately.

1



The rationale underlying our approach is as follows: if we
do exact matching, a time window that does not contain an
event will not be considered as supporting an episode contain-
ing that event. However, it may actually support the episode,
only the alarm corresponding to the missing event item got
lost or was delayed so that it arrived outside the specified time
window. As a consequence, the support of a potentially inter-
esting item set may lie below the user-specified minimum sup-
port, simply because the complete episode occurs too rarely.

In order to handle such situations we try to “complete”
transactions by inserting missing items during the mining pro-
cess. In this way we allow a certain number of mismatches, by
which we account for possibly lost alarms. That is, a transac-
tion still contributes to the support of an item set, though only
to a reduced degree, if it contains only a part of the items in
the set. How the transaction is weighted if an insertion is nec-
essary to make it match a given item set is described in detail
in Section 2.3. However, to convey a better understanding of
our approach, we describe it with exact matching first.

2.2 Recursive Elimination

Recursive elimination [5] (Relim for short) is an algorithm
for finding frequent item sets, which uses data structures very
similar to those of H-Mine [10], even though it was developed
independently and finds the frequent item sets in a different or-
der. Inspired by the FP-growth algorithm, but working without
a prefix tree representation, Relim processes the transactions
directly, organizing them merely into singly linked lists.

2.2.1 Preprocessing and Data Representation

Recursive elimination preprocesses the transaction database
similar to several other algorithms for frequent item set min-
ing, like e.g. Apriori or FP-growth: in an initial scan it de-
termines the frequencies of the items (support of single ele-
ment item sets). All infrequent items—that is, all items that
appear in fewer transactions than a user-specified minimum
number—are discarded from the transactions, since they can
obviously never be part of a frequent item set. In addition,
the items in each transaction are sorted inascendingorder
w.r.t. their frequencies in the database. Although the algorithm
does not require this specific order, experiments showed that
it leads to much shorter execution times than a random order.

This preprocessing is demonstrated in Table 1, on the left of
which is an example transaction database. The frequencies of
the items in this database, sorted ascendingly, are shown in the
table in the middle. If we are given a user specified minimum
support of 3 transactions, items f and g can be discarded. After
doing so and sorting the items in each transaction ascendingly
w.r.t. their frequencies we obtain the reduced database shown
in Table 1 on the right.

Relim uses very simple data structures: each transaction is
represented as an array of item identifiers (which are integer
numbers). The initial transaction database is turned into a set
of transaction lists, with one list for each item. These lists
are stored in a simple array, each element of which contains a
support counter and a pointer to the head of the list. The list
elements themselves consist only of a successor pointer and
a pointer to (or rather into, see below) the transaction. The

a d f
c d e
b d
a b c d
b c
a b d
b d e
b c e g
c d f
a b d

g 1
f 2

e 3
a 4
c 5
b 7
d 8

a d
e c d
b d
a c b d
c b
a b d
e b d
e c b
c d
a b d

Table 1: Transaction database (left), item frequencies (mid-
dle), and reduced transaction database with items in transac-
tions sorted ascendingly w.r.t. their frequency (right).

transactions are inserted one by one into this structure by sim-
ply using their leading item as an index. However, the leading
item is removed from the transaction, that is, the pointer in the
transaction list element points to the second item. Note that
this does not lose any information as the first item is implic-
itly represented by the list the transaction is in.

To illustrate this, Figure 1 shows, at the very top, the rep-
resentation of the reduced database shown in Table 1 on the
right. The first list, corresponding to item e, contains the sec-
ond, seventh and eighth transaction, with the item e removed.
The counter in the array element states the number of trans-
actions beginning with the corresponding item. Note that this
counter is not always equal to the length of the associated list,
although this is the case for this initial representation of the
database. Differences result from (shrunk) transactions that
contain no other items and are thus not represented in the list.

2.2.2 Recursive Processing

Recursive elimination works as follows: The array of lists that
represents a (reduced) transaction database is “disassembled”
by traversing it from left to right, processing the transactions
in a list in a recursive call to find all frequent item sets that
contain the item the list corresponds to. After a list has been
processed recursively, its elements are either reassigned to the
remaining lists or discarded (depending on the transactions
they represent), and the next list is worked on. Since all reas-
signments are made to lists that lie to the right of the currently
processed one, the list array will finally be empty (will contain
only empty lists).

Before a transaction list is processed, however, its support
counter is checked, and if it exceeds the user-specified mini-
mum support, a frequent item set is reported, consisting of the
item associated with the list and a possible prefix associated
with the whole list array (see below).

One transaction list is processed as follows: for each list el-
ement the leading item of its (shrunk) transaction is retrieved
and used as an index into the list array; then the element is
added at the head of the corresponding list. In such a reassign-
ment, the leading item is also removed from the transaction,
which can be implemented as a simple pointer increment. In
addition, a copy of the list element (with the leading item of
the transaction already removed by the pointer increment) is
inserted in the same way into an initially empty second array



initial database
e a c b d
3 4 2 1 0

c d

b d

c b

d

c b d

b d

b d

b

d

d

1j
e a c b d
0 4 4 2 0

d

c b d

b d

b d

b

d

b

d

d

d

prefix e
e a c b d
0 0 2 1 0

b

d

d

2j
e a c b d
0 0 5 4 1

b d

b

d

b

d

d

d

d

d

prefix a
e a c b d
0 0 1 2 1

b d d

d

3j
e a c b d
0 0 0 7 3

d

d

d

d

d

prefix c
e a c b d
0 0 0 3 2

d

4j
e a c b d
0 0 0 0 8

prefix b
e a c b d
0 0 0 0 5

Figure 1: Procedure of the recursive elimination with the mod-
ification of the transaction lists (left) as well as the construc-
tion of the transaction lists for the recursion (right).

of transaction lists. (Note that only the list element is copied,
not the transaction. Both list elements, the reassigned one and
the copy refer to the same transaction.)

Since the elements of a transaction list all share an item
(given by the list index), this second array collects the subset
of transactions that contain a specific item and represents them
as a set of transaction lists. This set of transaction lists is then
processed recursively, noting the item associated with the list
it was generated from as a common prefix of all frequent item
sets found in the recursion. After the recursion the next trans-
action list is reassigned, copied, and processed in a recursive
call and so on.

The process is illustrated for the root level of the recursion
in Figure 1, which shows the transaction list representation
of the initial database at the very top. In the first step all item
sets containing the item e are found by processing the leftmost

list. The elements of this list are reassigned to the lists to the
right (grey list elements) and copies are inserted into a second
list array (shown on the right). This second list array is then
processed recursively, before proceeding to the next list, i.e.,
the one for item a.

Note that a list element representing a (shrunk) transaction
that contains only one item is neither reassigned nor copied,
because the transaction is empty after the removal of the lead-
ing item. Instead only the counter in the lists array element is
incremented as an indicator of such elements. Such a situation
occurs when the list corresponding to the item a is processed.
The first list element refers to a (shrunk) transaction that con-
tains only item d and thus only the counter for item d (grey)
is incremented. For the same reason only one of the five ele-
ments in the list for item c is reassigned/copied in step 3.

After four steps all transaction lists have been processed and
the lists array has become empty. Note that the list for the last
element (referring to item d) is always empty, because there
are no items left that could be in a transaction and thus all
transactions are represented in the counter.

2.3 Fuzzy Mining

For fuzzy frequent item set mining we extend the recursive
elimination scheme presented above in the following ways:

1. Edit cost
The distance of two item sets can be defined as the sum
of the costs of the cheapest sequence of edit operations
needed to transform one item set into the other [9]. In
our case, we only consider “insertion” as the only edit
operation. Insertions are very easy to implement with the
Relim algorithm as we demonstrate below.

Note that different items can be associated with different
insertion costs. For example, in telecommunication net-
works different alarms can have a different probability of
getting lost. Usually alarms originating in lower levels
of the module hierarchy get lost more easily than alarms
originating in higher levels. Therefore the former can be
associated with lower insertion costs than the latter. The
insertion of a certain item may also be completely inhib-
ited by assigning a very high insertion cost.

2. Transaction weight
Each transaction in the original database is associated
with a “weight”; the initial weight of each transaction
is 1. To store this weight we add a component to each list
element mentioned in Section 2.2.2. After each insertion
of an item into a transaction, its weight is “penalized”
with the cost associated with this insertion.

For instance, in Table 1 on the right consider the sec-
ond transaction (ecd), the fifth (cb), the eighth (ecb) and
the ninth (cd). If we want to determine the support of
the item set “ec”, the second and the eighth transaction
contribute to the support with a weight of 1 each. How-
ever, the fifth transaction (cb) and the ninth (cd) can also
be made to contain the item set “ec” if we insert item e
into them. Due to this insertion, they should not con-
tribute with full weight, though, but only to some degree.
Therefore these two transactions are counted with penal-
ized weights for the support of item set “ec”.



Formally, the weighting can be described as follows: if
we denote the weight of a transaction byw and represent
the cost of inserting an itemi by a numberc(i), then the
new weightw′ of the transaction after editing is

w′ = f(w,c(i)),

where f is a function that combines the weight before
editing and the insertion cost, so that the new weight
is penalized by the last insertion. There is a wide vari-
ety of combination functions that may be used, for in-
stance, anyt-norm. For simplicity, we use multiplica-
tion, i.e.,w′ = w ·c(i), but this is a more or less arbitrary
choice. Note, however, that in this case lower values for
c(i) mean higher costs as they penalize the weight more.

How many insertions into a transaction are allowed can
be limited by a user-specified lower bound for the trans-
action weight. If the weight of a transaction falls below
this threshold, it is not considered in the next recursion
and thus no insertions can be done on it anymore.

3. Construction of the subset of transaction lists
The recursive processing of the array list that represents
a (reduced) transaction database remains basically the
same as before. The most important modification lies
in the construction of the subset of transaction lists, i.e.,
inserting the copy of the list elements into an initially
empty second array of transaction lists.

Recall that this second array collects the subset of trans-
actions that contain a specific item. Therefore, to find
fuzzy frequent item sets, we copy not only the elements
of the transaction list that contain this specific item, but
also some elements of the transaction lists associated
with other items, into which the item is then inserted.
Which elements we have to copy from the other lists is
determined as follows: for each transaction not contain-
ing the item under consideration the penalized weight
after insertion is computed as described above. If this
penalized weight exceeds the user-specified minimum
weight, the transaction is copied to the new lists array
and associated there with the penalized weight.

Note that with such operations we have more transac-
tions to process in the recursion and thus a (considerably)
longer execution time is to be expected.

Before a transaction list is processed, its support counter
in the array element is checked. Note that this support
counter is even less an indicator of the number of the
elements of the transaction list now, as it states the sum of
the weights of list elements, several of which may differ
from the initial weight of 1 (cf. Figure 2).

Figure 2 demonstrates the procedure of mining fuzzy frequent
item sets by recursive elimination with the insertion of missing
items for the root level of the recursion. We use the same
transaction database as in Figure 1. In this example we use the
same cost factorc(i) = 0.5 for all items, and thus the weight
is updated after an insertion according tow′ = w ·0.5.

In the first step all item sets containing the item e are found
by processing the leftmost list. Reassigning the elements of
this list to the lists on the right is the same as before (see Fig-
ure 1 left), but the copies inserted into a second list array are

initial database
e a c b d ε
3 4 2 1 0 0

c d

b d

c b

d

c b d

b d

b d

b

d

d

1j
e a c b d ε
0 4 4 2 0 0

d

c b d

b d

b d

b

d

b

d

d

d

prefix e

e a c b d ε
0 2 3 3/2 0 0

d

c b d

b d

b d

b

d

b

d

d

d

2j
e a c b d ε
0 0 5 4 1 0

b d

b

d

b

d

d

d

d

d

prefix a
e a c b d ε
0 0 3 3 1 0

b

b

d

b

d

d d

d

d

d

3j
e a c b d ε
0 0 0 7 3 0

d

d

d

d

d

prefix c
e a c b d ε
0 0 0 5 5/2 0

d

d

d

d

d

4j
e a c b d ε
0 0 0 0 8 2

×8

prefix b
e a c b d ε
0 0 0 0 13/2 1

×8

Figure 2: Procedure of the recursive elimination with the in-
sertion of missing items. Since insertions of all items are pos-
sible, the subset (right) always has the same structure as the
main set (left). The support values, however, differ due to the
transaction weighting.

different now (compare Figure 1 right and Figure 2 right): we
copy not only the elements of the leftmost list with a weight
of 1 (grey list elements), but also the elements of the lists cor-
responding to items a, c, and b with a penalized weight of
0.5 (white list elements, assuming that 0.5 is greater than the
lower bound for the transaction weight). That is, we virtually
inserted item e into the corresponding transactions.

Note that the structure of this list array (Figure 2 right),
which collects the subset of transactions sharing item e, and
that of the main set (Figure 2 left) are the same, since this is
the root level of the recursion. In deeper levels, where some



census number of sets time/s

Relim 244 0.38

Relx (no insertion) 244 0.47
Relx (t = 0.4) 1340 4.58
Relx (t = 0.2) 2510 13.14

T10I4D100K number of sets time/s

Relim 10 0.01

Relx (no insertion) 10 0.03
Relx (t = 0.4) 55 0.14
Relx (t = 0.2) 68 0.39

Table 2: Results on census and T10I4D100K.

transactions may be discarded due to the lower bound for the
transaction weight, this structural identity may not hold.

Note also that the support values differ for the subset (right)
and the main set (left) due to the transaction weighting. Be-
cause of the insertion, the support counter of the list corre-
sponding to item a is 4·0.5= 2 and that of the list correspond-
ing to item c is(2 ·1)+ (2 ·0.5) = 3, and so on. This second
list array is then processed recursively before working on the
next list, i.e., the one for item a in the main set (Figure 2 left).

It also has to be pointed out that there are now empty ele-
ments in the transaction lists. As mentioned in Section 2.2.2,
a list element representing a (shrunk) transaction that con-
tains only one item is neither reassigned nor copied, only the
counter in the lists array element is incremented. When min-
ing fuzzy frequent item sets, however, we have to reassign and
copy such an element as well. Even though the transaction is
empty after the leading item has been removed, it still can be
processed further by inserting items. Such a list element is
therefore reassigned/copied—as an empty transaction—to the
list associated with the only item it contains.

An example of this can be seen when the list corresponding
to item a is processed (step 2). The first list element refers
to a (shrunk) transaction that contains only item d. Thus the
counter for item d is incremented and an empty element is
kept in the list associated with item d (both reassignment and
copy), since items c and/or b could be inserted later.

In addition, in Figure 2 a new element labeled withε is
added to the array of transaction lists. This new list is needed
when an empty transaction has to be reassigned/copied. Since
an empty transaction obviously has no leading item, it cannot
be inserted into one of the lists corresponding to the items of
the transaction database. However, it cannot be discarded ei-
ther, because in later processing items may be inserted into it,
and then it has to be considered in the corresponding recur-
sion. Formally,ε can be seen as an additional pseudo-item,
which is contained in all transactions, but which is not to be
reported as part of a frequent item set.

An example of the use of this new array element can be seen
when the list corresponding to item b is processed (step 4). In
this list there are two empty transactions, which are reassigned
and copied to the additional lists array element labeled withε.
Even though these transactions are now empty, they have to
be considered when processing item d, because this item may
be inserted into them.

3 Experimental Results

To evaluate our algorithm, we implemented it in C and ran ex-
periments on a laptop with a 1.8 GHz Intel Pentium Mobile
processor and 1 GB main memory using Windows XP Pro-
fessional SP2. Results obtained with the original program for
normal frequent item sets mining are labeled “Relim”, those
for fuzzy frequent item sets mining “Relx” (which are actually
the names of the corresponding programs). In all experiments
we updated the weight of a transaction by simply multiplying
it with an insertion cost factor (if necessary).

In an initial test, we used the very simple transaction
database shown in Table 1, using a minimum support of 30%,
to check the basic functionality of the approach. When min-
ing this database with exact matching (i.e. without insertions)
11 frequent item sets are found. With fuzzy matching based
on uniform insertion costs of 0.5 for all items and a threshold
of 0.4 for the transaction weight (thus allowing exactly one in-
sertion), 23 item sets are found. The item set “ec”, which we
used as an example above, is found with fuzzy matching, but
not with exact matching. On the other hand, if the insertion of
item e is ruled out by settingc(e) = 0, the item set “ec” is not
found anymore. This is the behavior we want.

To check the performance on larger data sets, we tested our
programs on the data sets census [3] and T10I4D100K [12].
We used a minimum support of 30% for census and of 5%
for T10I4D100K. The insertion cost factor was chosen to be
0.5 for all items in both cases. The number of frequent item
sets discovered and the corresponding execution time (in sec-
onds) are shown in Table 2. If insertions were inhibited, the
number of sets reported by Relx coincides with that of Re-
lim, proving the sanity of the implementation. However, as
was to be expected, Relx needs more time as it has to invest
additional effort into managing empty transactions (cf. Sec-
tion 2.3; an additional factor is the computation of penalized
weights, which takes place nevertheless).

The results produced by Relx with different values for the
threshold of the transaction weight (that is, allowing 0, 1,
or 2 insertions) show—not surprisingly—that with decreas-
ing threshold the number of frequent item sets as well as the
execution time increases. That is, frequent item sets that could
not be found before are now discovered. Note, however, that
the resulting frequent item sets now have fractional support,
which is an effect of the transaction weighting. It is pleas-
ing to observe that the execution times are still bearable, even
though the insertions make it necessary to process a much
higher number of transactions in the recursion.

4 Conclusions

In frequent item sets mining on real-world data—like, for
example, alarm sequence analysis in telecommunication net-
works—there is a need for fuzzy mining, because alarms can
get lost or delayed and thus may be missing from the cor-
responding transactions. In order to face this challenge, we
developed an approach for mining fuzzy frequent item sets,
namely recursive elimination with the insertion of missing
items. This approach is based on deleting items, editing item
sets, recursive processing, and reassigning transactions. The
algorithm is very simple, works without complicated data



structures, and performs reasonably well, as can be seen from
the experiments reported in the preceding section.

Up to now, we only investigated how to edit an item set by
insertion. However, there are also other interesting editing op-
erations, like replacing an item with another (which for some
items could have different costs than deletion and subsequent
insertion). Furthermore, we plan to take the time order of the
alarms into account, which currently gets lost in the transfor-
mation into simple transactions. If, however, the sequence in-
formation is kept, operations like exchanging the order of two
items become possible and are definitely worth to be studied.

5 Program

The implementation of the recursive elimination algorithm
and the extended version for mining fuzzy frequent item sets
described in this paper (WindowsTM and LinuxTM executables
as well as the source code, distributed under the LGPL) can
be downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/relim.html

References

[1] R. Agrawal, T. Imielienski, and A. Swami. Mining Asso-
ciation Rules between Sets of Items in Large Databases.
Proc. Conf. on Management of Data, 207–216. ACM
Press, New York, NY, USA 1993

[2] A. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast Discovery of Association Rules. In:
[6], 307–328

[3] C.L. Blake and C.J. Merz.UCI Repository of Machine
Learning Databases. Dept. of Information and Com-
puter Science, University of California at Irvine, CA,
USA 1998
http://www.ics.uci.edu/˜mlearn/MLRepository.html

[4] C. Borgelt. Efficient Implementations of Apriori and
Eclat.Proc. 1st IEEE ICDM Workshop on Frequent Item
Set Mining Implementations (FIMI 2003, Melbourne,
FL). CEUR Workshop Proceedings 90, Aachen, Ger-
many 2003.
http://www.ceur-ws.org/Vol-90/

[5] C. Borgelt. Keeping Things Simple: Finding Fre-
quent Item Sets by Recursive Elimination. (unpublished
manuscript)
http://fuzzy.cs.uni-magdeburg.de/˜borgelt/relim.html

[6] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, eds.Advances in Knowledge Discovery
and Data Mining. AAAI Press / MIT Press, Cambridge,
CA, USA 1996

[7] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns
without Candidate Generation. In:Proc. Conf. on the
Management of Data (SIGMOD’00, Dallas, TX). ACM
Press, New York, NY, USA 2000

[8] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery
of frequent episodes in event sequences. In:Report C-
1997-15. University of Helsinki, Finland.

[9] P. Moen. Attribute, Event Sequence, and Event Type
Similarity Notions for Data Mining.Ph.D. Thesis, Re-
port A-2000-1. Department of Computer Science, Uni-
versity of Helsinki, Finland 2000

[10] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang.
H-Mine: Hyper-Structure Mining of Frequent Pat-
terns in Large Databases.IEEE Conf. on Data Mining
(ICDM’01, San Jose, CA), 441–448. IEEE Press, Piscat-
away, NJ, USA 2001

[11] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New
Algorithms for Fast Discovery of Association Rules.
Proc. 3rd Int. Conf. on Knowledge Discovery and Data
Mining (KDD’97), 283–296. AAAI Press, Menlo Park,
CA, USA 1997

[12] Synthetic Data Generation Code for Associations and
Sequential Patterns. Intelligent Information Systems,
IBM Almaden Research Center.
http://www.almaden.ibm.com/software/quest/
Resources/index.shtml


