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Abstract

Recently, semi-supervised learning has received quite a lot of attention. The idea of semi-supervised learning is
to learn not only from the labeled training data, but to exploit also the structural information in additionally available
unlabeled data. In this paper we review existing semi-supervised approaches, and propose an evolutionary algorithm
suited to learn interpretable fuzzy if-then classification rules from partially labeled data. Feasibility of our approach
is shown on artificial datasets, as well as on a real-world image analysis application.
© 2004 Published by Elsevier B.V.
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1. Introduction

Modern information technology, which produces more powerful computers every year, makes it possi-
ble today to collect and process huge amounts of data at very low cost. However, exploiting the information
contained in the data in an intelligent way turns out to be fairly difficult. In reply to this challenge a new
area of research has emerged, named “knowledge discovery in databases” or “data mining”[12]. Some
well-known analysis methods and tools that are used in data mining are, for instance, statistics (regres-
sion analysis, discriminant analysis, etc.), time series analysis, decision trees, cluster analysis, neural
networks, inductive logic programming, and association rules.

However, characteristics and thus demands of current applications are changing and call for new
algorithms. In this introduction we outline which important trends we see in the sources of the data to be
analyzed, and thus which trends we expect in the characteristics of the data. We argue why fuzzy methods
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are well suited to deal with these changing demands, and why these challenges consequently lately lead
to a considerably growing interest of the research community into semi-supervised learning methods.

1.1. Changing data characteristics

Most classical data mining methods, like decision trees and neural networks, expect an input of single
uniform tables of tuples of attribute values. In many modern applications, however, the data to be analyzed
come from heterogeneous information sources: Many of the archives contain images, texts, video, or even
sound data. We can certainly not expect to find data mining algorithms that are generally applicable to
all mentioned kinds of information sources. The approaches will always strongly depend on some kind
of application-specific pre-processing to extract characterizing features from the specific type of media.
Additionally, to enable data mining in such feature spaces we suppose that it is crucial to exploit any
availablea priori knowledge, and thus to have algorithms that support to incorporate such information.

As the data seldomly come from well-designed experiments or measurements, they are often unevenly
distributed in the input space and class frequencies are often unbalanced. Furthermore, the data are often
of low quality. Algorithms must thus be able to deal with uncertainty and imprecision. Missing values
are also a common problem that data mining algorithms should be able to handle. A special case of
missing values are missing class labels: The focusing of data mining methods on supervised learning is
a severe drawback in many real world applications. In contrast to the abundance of data available in the
archives, labeling these data is often a problem. In many cases, the labels for the training samples have to
be assigned manually or determined by expensive analyses. Typical examples of such domains include
speech processing, object recognition, text classification, or medical or biological applications. Labeling
a complete dataset can become an at least tedious if not infeasible task when there are many objects—and
in some applications “many” can easily mean tens of thousands. With increasing sizes of the databases
to be analyzed, learning from data that is only partially labeled becomes more and more interesting.

1.2. The role of fuzzy techniques

The outlined characteristics of the data sources—their quantity, complexity, dimensionality and
imperfection—, the essential of extracting understandable patterns from these, and the need to incor-
porate available background knowledge in that process, make fuzzy techniques an interesting tool for
data mining. They can transform between computer representations and (naturally linguistic) human con-
cepts. The inherent imprecision of words is not necessarily a weakness, but, on the contrary, can be crucial
to model complex systems. From our own experience we observed that many practical applications have
this certain robustness where full precision is not necessary. In such cases, exaggerated precision can be
a waste of resources, and solutions obtained using fuzzy approaches might be easier to understand and
to apply. Good examples of models that gain their strengths by explicitly taking into account vagueness,
imprecision or uncertainty are systems based on fuzzy rules.

One important task in data mining is classification. Fuzzyif-then rules have become popular for
this task, as the use of linguistic variables is close to human descriptions of structure in data. For data
analysis we are looking for procedures that can extract fuzzy rules from an example dataset. Ideally,
these rules allow to accurately classify new objects, and still describe the structure of the data distribution
in an understandable fashion. If we apply such techniques, we must be aware of the trade-off between
precision and interpretability. However, the results in data mining are not only judged for their accuracy,
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but also for their interpretability, as the ultimate goal is to extract human understandable patterns. Not all
possible choices for fuzzy models are equally suited to accurately solve the task at hand and still generate
interpretable models.

1.3. Semi-supervised learning

Most existing approaches to fuzzy rule extraction are supervised, i.e. they expect that all data are
labeled. However, as initially mentioned, in many current domains it is not possible to access the labels
for all objects. In such cases, one usually confines the examples to a certain—hopefully representative—
fraction of the data and leaves the unlabeled data aside. However, though unlabeled, the additional data
might still bear valuable information on the true distribution of the objects in the input space.

There have been several proposals for methods that use the remaining, otherwise discarded data to
support the learning of a classifier.With growing database sizes it is not surprising that there is an increasing
interest in approaches that are able to learn from partially labeled data. However, most approaches induce
models that are less human-understandable than fuzzy if-then rules. We thus investigate how to combine
fuzzy classification rules and semi-supervised learning.

1.4. Outline

In Section2, we review the key concepts of fuzzy rule based classifiers, including evaluation and
induction of fuzzy rules. In Section3, we review previous work in the field of semi-supervised learning.
We focus on methods for semi-supervised learning of fuzzy models. However, little has been done on
the extraction ofinterpretablefuzzy rules from partially labeled data. We thus propose our own semi-
supervised approach for fuzzy rule induction based on evolutionary algorithms in Section4. The working
of all semi-supervised methods is illustrated and compared on artificial datasets. In Section5, an additional
real-world application is presented to show the applicability of our approach.

2. Fuzzy rule-based classification

A fuzzy classification system[19] consists of a rule base, which contains a set of fuzzy classification
rules (like the one shown below), and an inference engine, which evaluates the rule base for the datum
to be classified. The basic idea of fuzzy classification systems is to describe the areas of the input space,
to which different class labels are assigned, by vague cluster prototypes. These prototypes are defined
by a number of fuzzy sets which characterize them in the different dimensions of the domain under
consideration. That is, a specific cluster� is defined by a fuzzy classification ruler of the form:

if A1 is �1 andA2 is �2 and . . .andAn is �n

then pattern(A1, A2, . . . , An) belongs to classc,

where the�k are fuzzy sets describing the cluster� in the corresponding dimensions. In addition, some
approaches introduce so-called rule weightswr , which are intended to indicate the “importance” or
“reliability” of a rule.



212 A. Klose, R. Kruse / Fuzzy Sets and Systems 149 (2005) 209–233

2.1. Supervised extraction of fuzzy rules

By far the most common learning paradigm in machine learning is supervised learning. The supervised
learning task consists of a dataset of tuplesx together with the corresponding class labelsc. The task is
to generalize the regularities found in the labeled example data.

There is a variety of methods that have been proposed to induce fuzzy rules from data.A popular way are
neuro-fuzzy systems, which use learning algorithms derived from neural network theory to generate fuzzy
rules[25]. Another group of approaches are based on decision trees. Decision trees can very efficiently be
induced from data by greedy divide-and-conquer heuristics, and rules can afterwards be extracted from
the trees[37]. Several extensions to generate fuzzy rules can be found in the literature[48,20].

Genetic or evolutionary algorithms are also often discussed for optimizing or creating fuzzy systems.
The advantage of evolution strategies is the ability to modify and optimize model structure and parameters,
whereas most optimization strategies can only adapt model parameters. Thus a unified optimization of
rule base and membership functions can be performed. This comes at the cost of an (possibly drastically)
enlarged search space. Discussions of evolutionary algorithms for fuzzy rule systems can for example be
found in[9].

Thefuzzymin–max neural network(FMM) proposed by Simpson[41,42]is another classical fuzzy rule
induction approach. The approach ishyperbox-oriented, i.e. each rule is associated with a hyperbox in
input space, within which the rule fully applies. The hyperboxes are represented by pairs of minimal and
maximal value in each dimension.1 The firing strength of the rule outside the hyperbox is controlled by a
fuzzy membership function and monotonously decreases with distance from the hyperbox. The original
algorithm loops once over the tuples. If a tuple is already contained in a compatible hyperbox, i.e. if
the corresponding rule’s and the tuple’s label match, the algorithm proceeds to the next tuple. If no such
hyperbox exists, the algorithm tries to extend the closest compatible hyperbox. If this violates the maximal
allowed size of a hyperbox, the algorithm creates a new hyperbox containing only the tuple. Additionally,
the resulting rules are checked for overlap with the other rules. If overlap occurs, the hyperboxes are
contracted based on the “minimal adjustment principle”, i.e. that dimension and min–max point is chosen
that allows to resolve the overlap with a minimal change.

2.2. Unsupervised extraction of fuzzy rules

The second important learning paradigm is unsupervised learning, i.e. learning from example data
without known class labels. The task to reconstruct the class information from the inherent structure in
the data, is also known as cluster analysis. Cluster analysis tries to find groups in the data such that objects
in the same group are similar to each other. Fuzzy extensions of cluster analysis represent the clusters by
multidimensional fuzzy sets and thus can better deal with partially overlapping clusters[19]. The results
of fuzzy clustering can be transformed into a fuzzy rule base, and can therefore be used for unsupervised
extraction of fuzzy rules from data[21]. Every cluster represents a fuzzy if-then rule. The fuzzy sets in the
single dimensions are derived by projecting the clusters to the specific dimensions. A fuzzy rule base can
be obtained by projecting all clusters. Usually the projection is approximated by triangular or trapezoidal
fuzzy sets. Due to this approximation and the projection of the clusters the generated fuzzy rules only

1 The name “Min–Max” classifier refers to these corner points of the hyperboxes. It does not specify the inference mechanism,
which is actually “average-max” in the original proposal[41].
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roughly represent the original clusters. This error can be reduced if the cluster search is restricted to
axes parallel clusters. It is also possible to improve the classification rules by fine tuning them with a
neuro-fuzzy approach.

However, the main problem of unsupervised learning is that it strongly depends on the given distance
measures and normalizations of the data. It has commonly problems in finding the right number of
clusters. Usually, we cannot guarantee that the clusters in the data space correspond to meaningful classes
of the objects. A further problem of the fuzzy rule bases obtained from cluster analysis is that they are
sometimes hard to interpret linguistically, since the resulting fuzzy sets are not restricted to match any
semantic interpretation.

3. Semi-supervised learning

The methods for the extraction of fuzzy classification rules from data that we mentioned in the last
sections are either supervised or unsupervised. Both learning paradigms have their drawbacks. The main
drawback of supervised learning is clearly its need for supervision, i.e. the need to present labels together
with the objects. The result of unsupervised learning, however, strongly depends on a number of prior
assumptions (explicitly or implicitly). Thus, it depends on an appropriate choice of, e.g. attribute scaling,
distance measure, distribution function and expected number of classes or clusters, whether the clusters
found in the data space correspond to any “meaningful” classes of objects. Hence, unsupervised learning
does in many cases not yield satisfactory results, and supervised learning is much more common in
practice.

If, however, the remaining, otherwise discarded, unlabeled data contained some additional useful
information, it would be an appealing idea to use it to support the learning of the classifier. The idea of
exploiting the information in both labeled and unlabeled data is not new, and early approaches of semi-
supervised learning date back to the 1980s[35]. However, as argued above, with tremendously growing
sizes of datasets in real-world applications labeling all of the data becomes more and more infeasible and
the exploitation of additional unlabeled examples gets increasingly interesting. Thus over the past years
a growing number of publications, workshops and conference tracks on semi-supervised learning can be
observed.

In most publications, the approach of Pedrycz[35] is cited as the first work in the area of semi-
supervised clustering. Twelve years later he revisited the problem and published some extended results
and more detailed discussion of his 1985s ideas. In[36] he stated that

“surprisingly, limited attention has been paid to the mechanisms of partial supervision.”

Ever since this publication partial supervision has obviously come into the focus of current research in
computational intelligence. There is a growing quantity of publications in that field, and Successful appli-
cations of semi-supervised approaches have been reported, for example, in the field of image processing
[4,47] and especially in text classification[32,29]. A number of different ideas have been proposed how
to combine the information of labeled and unlabeled data. These ideas can be categorized into four main
groups:
(1) Labeled examples as seed points: A supervised classifier is used to build a model from the class

information of labeled points. The model is then used to apply labels to the unlabeled points, and
is iteratively re-learned. Approaches differ in the type of model used (e.g. point prototypes, naive
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Bayes classifiers or neural networks), and the “speed” of applying the new labels (from one pattern
per iteration to labeling all unlabeled patterns in one step)[4,15,29,46].

(2) Labeled examples as cluster labels: An unsupervised algorithm is used to find structure in the dataset,
e.g. by cluster analysis. The clusters are then labeled using the given labeled points. This can be done
in various ways[3,34]. The labeled points can also be used to guide the clustering (e.g. the number of
clusters)[1,15]. Dara et al. proposed to find low-dimensional structures by training a self-organizing
map from all available data in an unsupervised manner[10]. The map nodes are then labeled from
the labeled dataset.

(3) Unlabeled examples for density estimation: The abundance of unlabeled examples can be used for a
more reliable estimation of the probability density function in the input space. This is similar to the
second group, as cluster analysis also performs a kind of density estimation. However, approaches
like [26,43]explicitly model and use the probability density function. A different approach has been
proposed in[2,13] for the semi-supervised learning of support vector machines. Instead of using
regions of high density to find clusters, regions of data scarcity are used to find the optimal class
borders. Verikas et al. propose a similar method for the learning of feed-forward neural networks
[46].

(4) Specialized objective functions: There is a variety of approaches that have specialized objective
functions that can take into account labeledandunlabeled examples, for example by adding a penalty
term for labeled examples that are assigned to ‘wrong’ clusters[35,36,45]or formulating a combined
probability [31,47]. In [11] a mixture of cluster dispersion and cluster impurity is optimized. Our
approach presented in Section4.2falls also into this group.

This categorization can only give a rough overview. The borders between the categories are not crisp, and
many approaches could be assigned to more than one category, depending on the point of view.

A number of approaches have been proposed for models like, for example, neural networks or support
vector machines, that are generally hardly human understandable. Little has been done on the semi-
supervised extraction of (interpretable) fuzzy rules. The methods described in the following sections
are able to induce fuzzy models in a partially supervised manner. In Section4, we will discuss their
capabilities and their suitability to induce interpretable fuzzy rule bases.

3.1. Semi-supervised extensions of fuzzy clustering

It is probably easier to support an unsupervised algorithm with additional labels than vice versa. Thus,
it is not surprising that there are a number of semi-supervised extensions of fuzzy clustering.

3.1.1. Semi-supervised FCM: ssFCM
Bensaid et al.[4] proposed an extension of the fuzzy c-means algorithm[5]. An unlabeled datasetDu

and a labeled datasetDl are concatenated, with a common membership matrixU with nl + nu columns
andnc = |C| rows (i.e. one row for each classci). The labels ofDl are presumed to be correct. This is
taken into account by setting the corresponding columns inU to the 1-in-n encoded class labels, i.e. let
j� denote the column index corresponding to object�, then

uij� =
{

1 if c� = ci,

0 else.
(1)
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These columns are fixed, i.e. they are ignored when updatingU from the current cluster prototypesV.
The memberships for the remaining columns are calculated exactly as in the original FCM. With these
memberships the updating of the prototypesV remains basically unchanged. The only difference is the
introduction of a factor�� to weight the influence of the labeled examples:

vi =
∑

�∈Dl∧c�=ci
��x� + ∑

�∈Du um
ij�

x�∑
�∈Dl∧c�=ci

�� + ∑
�∈Du um

ij�

. (2)

If nothing is known about the reliability of individual examples or classes, the same�� is chosen for all
� ∈ Dl .

The idea of this approach is simply to trust the labeled examples, and fix them in the (otherwise
almost unmodified) FCM clustering algorithm. Trusting the labeled examples is of course reasonable.
The problem is that, as the authors also remark, this approach expects the labeled examples to be good
estimations of the (final) cluster prototypes. If the chosen (or given) labeled examples are untypical for
their cluster, they will unwantedly attract the prototype. On the other hand, if they already were good
estimations of the cluster centers, it would not be necessary to take the additional unlabeled data into
account, and we could simply use any supervised approach on them.

The authors note that the straight-forward modification of the update equations interferes with the
minimization of the objective function the original FCM is based on. Alternatively, the approach of the
following section puts the focus on the extension of the objective function, and derives modified update
rules.

3.1.2. Partially supervised Gustafson and Kessel
The approach by Pedrycz[35,36]extends the objective function of Gustafson and Kessel[17]. As in

the previous section, the (input vectors of the) datasetsDu andDl are assumed to be joined in a matrix
X. Additionally, a vector�b = [bj ] with binary entries

bj� =
{

1 if � ∈ Dl

0 else
(3)

marks the labeled examples. A matrixF contains the known labels in 1-in-n encoding (cf. Eq. (1)). The
original Gustafson/Kessel objective functionJ GK

m is extended by adding a penalty term

Jm(U,V,A) = J GK
m (U,V,A) + �

k∑
i=1

n∑
j=1

(uij − fij bj )
m‖xj − vi‖2

Ai
, (4)

where� is intended to balance the influence of the labeled data. Intuitively, the added term penalizes
labeled points that have low membership degrees to the cluster suggested by their label.

In spite of the modifications ofJ GK
m , the update rules for the cluster centersV and the covariance

matricesA remain identical to the original algorithm. The modified update rule forU can be shown to be
(for m = 2)

uij = 1

1 + �
· 1 + �(1 − bj

∑k
i′=1 fi′j )∑k

i′=1
‖vi−xj‖2

Ai

‖vi′−xj‖2
A

i′

+ �

1 + �
· fij bj . (5)
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For unlabeled examples, this also leads to the original update rule

uij = 1∑k
i′=1

‖vi−xj‖2
Ai

‖vi′−xj‖2
A

i′

. (6)

As we assumed 1-in-n encoding (and thus
∑k

i=1 fij = 1, ∀j ), the memberships of the labeled examples
are updated with

uij = 1

1 + �
· 1∑k

i′=1
‖vi−xj‖2

Ai

‖vi′−xj‖2
A

i′

+ �

1 + �
· fij . (7)

For � = 0 (and thus�u = 1, �l = 0), the labels ofDl are completely ignored. Interestingly, for� → ∞,
the Gustafson/Kessel clustering with partial supervision becomes equal to ssFCM (except that ssFCM
uses fixed covariance matricesAi = 1I, ∀i). For intermediate values of�, the memberships of the labeled
data are more or less pushed towards their corresponding clusters. In the following, we refer to this
algorithm as ssGK.

3.1.3. Semi-supervised point-prototype clustering
Both presented semi-supervised fuzzy clustering approaches expect that each class can be represented

by one cluster. Complex classes, that cannot be appropriately described by one cluster, will lead to
significantly decreased performance.

Bensaid et al.[3,28]propose a semi-supervised point-prototype clustering algorithm that is based on the
fuzzy c-means algorithm. Their algorithm, called ssPPC, first overpartitions the unlabeled input patterns
in a fully unsupervised manner using fuzzy c-means (although the authors remark that any point-prototype
cluster algorithm can be used). Then the resulting clusters are labeled based on the labeled examples. In
a final step, the unlabeled tuples are labeled based on their memberships to the clusters. The algorithm
performs the following steps:
• ClusterXu with fuzzy c-means. The number of clusters is heuristically chosen asnd , i.e. there is one

cluster for each labeled example. LetV = {v1, . . . , vnd
} denote the resulting cluster prototypes, and

U(nd,nu) the matrix of cluster memberships.
• Assign class labels to the cluster prototypesvi . The labels of the prototypesL(nd,c) can be possibilistic,

i.e. lij ∈ [0, 1]. Three alternative strategies have been proposed to find the labels[28]:
A. For each prototypevi find the nearest labeled examplexd

jnn(i)
from Xd and adopt its (crisp) label

lj = ud
jnn(i)

.

B. Assign each labeled example to its nearest prototypes. LetXd
j be the labeled examples of class

j, andXd
ij ⊂ Xd

j the subset assigned to prototypevi . Use their fraction to define possibilistic
class labels:

lij = Xd
ij

Xd
j

. (8)
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C. The distance between a prototypevi and the labeled examples of a classj, Xd
j , is measured as

dij = minxd∈Xd
j
{‖vi − xd‖}. The labels for the prototype are defined as the ratio between the

class distances:

lij = 1

c − 1

(
1 − dij∑c

k=1 dik

)
. (9)

• Compute the labelŝulj , l = 1, . . . , nu for the unlabeled tuplesxu
l ∈ Xu by aggregating the prototype

labels and the tuples’ cluster memberships:

ûlj = min

{
1,

nd∑
k=1

lkjukl

}
. (10)

If necessary, crisp labels are generated fromûlj by winner-takes-all defuzzification.
Bensaid et al. use this approach for transduction, i.e. they label only the unlabeled fraction of the

example data. Application to new data was not intended by the authors. However, it is possible by
calculating membershipsU for new data from the given prototype positions.

As this approach allows multiple clusters for each class, it performs better on datasets that need this
flexibility. Therefore, the authors call their approach the “successor” of their proposal in[4] (see Section
3.1.1). However, the underlying mechanisms are obviously rather different. Additionally, due to the
initial overpartitioning, ssPPC cannot appropriately take the density information of the unlabeled data
into account, and results are close to supervised learning. The experiments on artificial datasets in Section
3.3underline this problem.

3.2. Generalized fuzzy min–max classifier: GFMM

In Section2, we reviewed thefuzzymin–max classifieras the prototype of hyperbox oriented fuzzy rule
learners. In[14] that scheme is extended to semi-supervised learning.2 The performed modifications to the
original operations (initializationof new rules,expansion,overlap test, andcontraction) are astonishingly
straightforward:
• First, the definition ofcompatibilitybetween hyperboxes and tuples is modified. If the label of a tuple

is unknown, or a hyperbox contains only unlabeled tuples and thus its consequent label is unknown,
then there is no information that the tuple isnotcompatible to the hyperbox. Therefore, these cases are
defined as compatible.

• The first labeled example that is added to a hyperbox defines the corresponding rule’s consequent.
• Unlabeled hyperboxes are tested for overlap with any other hyperbox, as they might assume any label.

The expansion and contraction operations remain unchanged.
GFMM was successfully applied a “toy dataset” and the Iris data. A similar semi-supervised extension
of the original fuzzy min–max classifier scheme is presented in[27]. The authors basically employ the
same semi-supervised operations, but use hyperspheres instead of hyperboxes as prototype shapes.

2 The extension to semi-supervised learning is only one aspect among several proposed modifications and enhancements.
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3.3. Capabilities and limitations

In the previous sections, we presented a variety of methods that learn from labeled and unlabeled data.
They have in common that they either induce fuzzy rules, or fuzzy cluster prototypes, or are general
enough to be extended to fuzzy classifier learning. Before we further discuss their suitability for the
semi-supervised learning of interpretable fuzzy rules on realistic problems, we demonstrate and compare
their classification abilities on an illustrative example.

So far, there are no publicly available and commonly agreed on benchmark datasets for semi-supervised
classifiers. The usual way of testing the methods uses the datasets of the UCI machine learning repository
[6], and treats an arbitrarily chosen random subset as unlabeled. However, evenly distributed missing
labels are neither the most realistic case in practice, nor the case, where semi-supervised learning can be
expected to yield its best results. Another problem is that many UCI datasets are rather small. Therefore,
it is not uncommon that in publications the labels of 50 (or more) percent of the data are used for
learning. From the practical point of view, the main motivation for semi-supervised learning algorithms
is of course their capability to work in cases where|Du|>|Dl|. 3 However, for real-world problems
with small numbers of possibly less representative labeled examples the underlying ground truth for the
unlabeled data is often not available, and therefore fair comparison of algorithms by e.g. the number of
misclassifications is not possible. Hence, we constructed two artificial datasets, that contain some of the
problems that we expect to occur in realistic applications. The datasets also raise difficulties for supervised
(on the labeled subset) or unsupervised methods. These examples help to illustrate how the presented
semi-supervised methods cope with these problems and which deficiencies they have.

Both datasets have two input dimensions and two classes, marked by “�” and “◦”. Each dataset
contains 1000 points, however, the labels of only a fraction of these points is assumed to be known (these
are indicated by bigger symbols).

In the first dataset (cf. Fig.1) the classes build two well separated clusters that should easily be identified
by most unsupervised clustering algorithms. The problem of the given class labels is that they do not
characterize the classes very well. A supervised classifier, which tries to separate the examples inDl ,
thus is easily misled. In practice such situations might be rather common if the data is labeled by hand.
Manually given labels are often defined for those objects that differ most significantly from the other
classes, and not for those that are typical for their own class.

The joint partially labeled datasetDl ∪ Du was used to induce the classifiers. The induced models
have been applied to an independent test dataset of 1000 tuples from the same distribution. The results
are shown in Fig.3. Misclassified points are shown darker with the symbol that corresponds to their true
class label. Additionally, the decision boundaries are shown. The background shading of the diagrams
relates to activation of a rule or to distance from prototype center.

Both partially supervised algorithms directly based on fuzzy clustering—namely ssFCM and ssGK—
perform rather well on this dataset. This is not surprising, as the unlabeled data contain much information
on the optimal location of the decision boundary, and thus even pure unsupervised learning would yield
satisfying results. Generally speaking, ssPPC is closer to supervised learning. Its decision boundary is
located half-way between the labeled examples and thus less optimal for the given unlabeled examples.

3 If someone has already labeled 50% of the data, he or she can probably as well label all of it. Or, from the learner’s side: if
50% of the data are not sufficient to learn the model in an fully supervised manner, then the remaining 50% will probably not
be of much help either (especially as they are unlabeled).



A. Klose, R. Kruse / Fuzzy Sets and Systems 149 (2005) 209–233 219

Fig. 1. The first artificial dataset.

GFMM fails almost completely to assign labels to the unlabeled examples and thus produces an extremely
high error rate.

The second dataset is more complex (cf. Fig.2). The first class is split into two clusters. One of them
is well separated from the remaining examples. However, the other cluster lies very close to, and even
slightly overlaps with the second class. Their boundary can hardly be found in the density distribution of
the points. Thus, unsupervised learning will very probably fail on this dataset. Additionally, the chosen
labeled examples are not very representative for their respective clusters. A supervised classifier, that can
only learn from the labeled data, is again easily mislead. We suppose that such distributions bear the
highest potential for semi-supervised methods (Fig.3).

The partial supervision of ssFCM and ssGK could potentially solve these challenges. However, both
approaches do not allow to induce more than one cluster per class. As can be seen in Figs.4a and b, this
significantly deteriorates the performances of these semi-supervised algorithms on this dataset. Notice
that in both approaches, the upper left cluster is attracted to a certain degree by the labeled examples
at the lower right, as they belong to the same class. The result of ssPPC, shown in Fig.4c is rather
good. However, it shows a tendency of ssPPC to overfitting due to the highly flexible decision boundary.
Obviously, this boundary is pretty close to that resulting from nearest neighbor classification from the
labeled data alone. This is not surprising, as ssPPC does not really seek for structure, but effectively
uses the distance from the labeled examples. Fig.4d depicts the results of GFMM. It again generates
hyperboxes from unlabeled examples that remain unlabeled and thus unavoidably produce errors. As in
the first example, the error for these rejected tuples could be reduced simply byguessingtheir class label
(or that of the containing hyperbox). However, this does obviously not help to reveal the structure of the
dataset.
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Fig. 2. The second artificial dataset.

As already mentioned, for knowledge discovery, we are interested into models that give the user insight
into his data. Hence, we discuss the capabilities of the presented semi-supervised models in the following
aspects:
• Expressiveness:How flexible is the induced model? What kind of distribution and decision boundaries

can be modeled? How capable are single rules/clusters? How flexible is the model induced by the
interaction of rules/clusters?

• Interpretability:How difficult is it to transform the model into a fuzzy rule base? How readable will
this rule base be? How many rules does it have? Will it give the user insight to the data?

• Semi-supervised learning:How capable was the semi-supervised learning algorithm? Does it depend
on the representativeness of the examples? How strongly does it respect the information of the labeled
dataDl?
Generally, fuzzy classifiers are very flexible models that can approximate arbitrary class boundaries

with arbitrary precision—at least if the number of fuzzy rules is unrestricted. Both, ssPPC and GFMM
use generally rather high numbers of clusters or hyperboxes, respectively. This allows them to represent
a wide range of decision boundaries. On the other hand, the strict cluster-class correspondence of ssFCM
and ssGK wastes much of the flexibility of fuzzy classifiers. While ssGK can partially compensate for
that weakness by its more flexible cluster shape, ssFCM can only represent Voronoi cells, as it considers
only Euclidean distances. This means that for any problem to be perfectly modeled with ssFCM, each
pair of classes has to be linear separable, which is obviously a strong restriction.

One common motivation for using fuzzy methods is the demand for explicable data analysis results,
that can be understood by human experts and, for example, checked for plausibility. However, the models
generated by fuzzy methods somewhat differ in their interpretability.
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(a) (b)ssFCM (3.1% errors) ssGK (1.7% errors)

(c) (d)ssPPC (6.2% errors) GFMM(46.7% errors)

Fig. 3. Experimental results on the first artificial dataset: (a) ssFCM (3.1% errors); (b) ssGK (1.7% errors); (c) ssPPC (6.2%
errors); (d) GFMM (46.7% errors).

As we would like to have the classification knowledge in form of fuzzy rules, for all models but
GFMM the first problem is to transform clusters into fuzzy membership functions and rules. In GFMM
each hyperbox corresponds to a fuzzy rule with trapezoidal membership function and�min-conjunction.
For the cluster approaches, the projection method mentioned in Section2.2 can be used. If we restrict
ssGK to axis-parallel clusters, the projection errors should be reasonably small.

All compared approaches yield local (i.e. rule-wise) definitions of membership functions. In general it
is much easier to find linguistic descriptions for globally defined membership functions that are shared by
all rules. However, for ssFCM and ssGK, only one membership function per class is created for each input
dimension. If the number of classes is small, generating linguistic descriptions—like “small”, “medium”,
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(a) (b)ssFCM (40.0 % errors) ssGK (32.9% errors)

(c) (d)ssPPC (10.4% errors) GFMM (17.1% errors)

Fig. 4. Experimental results on the second artificial dataset: (a) ssFCM (40.0% errors); (b) ssGK (32.9% errors); (c) ssPPC
(10.4% errors); (d) GFMM (17.1% errors).

“large”—will be possible in most cases. The generally high numbers of rules extracted by ssPPC and
GFMM make a linguistic description almost infeasible.

One aspect that is often more relevant than expressiveness and interpretability is the ability to learn
high quality models from partially labeled data. Semi-supervised learning can be expected to be most
effective in situations where many unlabeled, but only few labeled, possibly untypical examples are
available for inducing a classifier. One question was thus whether an algorithm is able to cope with such
situations. None of the models showed an overall convincing performance on the considered example
datasets. Especially the second dataset is certainly rather difficult, and the algorithms could perform much
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better (e.g. if the cluster-class relationship is not violated for ssFCM/ssGK). However, we assume that
the artificial datasets contain realistic problems of partially labeled datasets.

We conclude that none of these algorithms is fully appropriate for the semi-supervised induction of
readable and interpretable rule based fuzzy classifiers. In the next section, we propose our semi-supervised
learning algorithm for fuzzy classification rules.

4. An evolutionary algorithm for semi-supervised fuzzy classification

There are several reasons why we see the need to propose another algorithm. First, the algorithms are
not aimed at inducing fuzzy classifiers that are satisfying when interpreted as rule bases. The strict cluster-
class correspondence of ssFCM and ssGK wastes much of the flexibility of fuzzy classifiers. The extreme
overpartitioning of ssPPC, on the other hand, degrades interpretability and readability of the rule base.
We would like to have an algorithm that exploits the expression ability of fuzzy rule bases (including, for
example, flexible cluster shapes, or “don’t cares” in the antecedents), and still preserves interpretability
and readability. Secondly, neither of the approaches is very good in learning when the labeled examples
are less representative for the prototypes. However, these are the cases where semi-supervised learning
could be most powerful (if the labeled examples were representative, supervised methods would also
perform well).

In this section, we present an alternative approach to the induction of fuzzy rules from partially labeled
data. We use an evolutionary algorithm (EA) that incorporates labeled and unlabeled examples into its
objective function. Several reasons speak for evolutionary rule learning in comparison to other search
techniques like, for example, alternating optimization or gradient descent. EAs allow to learn structure
and incorporate constraints to maintain interpretability. They are less sensitive to premature convergence
in local minima, which can be a problem in semi-supervised learning due to the “strong” guidance from
the labeled and the “weak” guidance from the unlabeled examples. And, last but not least, it also works
with non-differentiable objective functions, as that presented in this section. In the following, we briefly
discuss the key implementation aspects of our evolutionary rule learner.

4.1. Evolutionary fuzzy rule learning

Our implementation roughly follows the “Pittsburgh-style”[44] approach described in[8]. As opposed
to “Michigan-style”[18] approaches, each candidate solution represents a complete rule base (instead of
cooperating individual rules).

As selection operator we chose the tournament selection[16], i.e. we randomly choose two chromo-
somes from the pool and take the fitter of the two. This operator is more robust compared to fitness
proportional approaches, as it does not depend on the scaling of the fitness function, and computationally
cheaper than rank based selection, which implies sorting the chromosomes by fitness.

Good recombination operators should produce valid offsprings that preserve good partial solutions
from their parents. In our case, reasonable building blocks are obviously the rules, or combinations of
them. Usual crossover operators work on the one-dimensional gene string and hence cannot take the
multi-dimensional position of the rules into account. We use a variant of the so-calledone-point ordered
crossover[8,22]. Intuitively, it splits the input space into two parts. It then exchanges the parents’ rules
in these subspaces. Thus, positional information is preserved.
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The mutation operator changes structure as well as parameters of the fuzzy sets. Thus rules might be
deleted or added, dimensions might be set to “don’t care”, and the fuzzy set parameters are overlayed with
small Gaussian distributed noise. To still enable linguistic interpretation of the fuzzy sets after learning,
a minimum requirement is that they are ordered. In that way we can assign the usual labels (e.g.small,
medium, large) or mixtures of them (e.g.small to medium). We implemented a repair mechanism that
checks the fuzzy sets of every dimension after crossover and mutation. If the constraints are violated, the
fuzzy sets are appropriately shifted to restore them.

4.2. A fitness function based on the MDL principle

To measure the quality of a rule base for a given partially labeled dataset, we have to take several
aspects into account: The error on the labeled examples, the fitting of the model to the unlabeled data,
and, possibly, the complexity of the model. We based our fitness function on the minimum description
length principle (MDL), which gives us the appealing opportunity to derive all three aspects in the same
theoretic context[38].

The idea of MDL is that the data has to be transmitted from an (imaginary) sender to an (imaginary)
receiver. Structure in the data can be used for more efficient codes that result in shorter messages. However,
both sender and transmitter need to know the encoding scheme of the data. Thus the message is compound
by first transmitting the coding scheme, and then the data, encoded using this scheme. Complex models
need a longer coding scheme, as more free parameters have to be transmitted. However, the resulting
data part of the message will usually be shorter. The model with the shortest overall message length is
assumed to fit the data best and is chosen. MDL is equivalent to maximum likelihood for the estimation of
models with a fixed number of free parameters, but additionally offers a possibility to compare objectively
between models of different complexity.

To apply the MDL principle to our problem, we have to define an appropriate encoding scheme. The
message consists of the following parts:
• the rule base(the code), e.g. the number of dimensions, the number of rules, the fuzzy sets used in a

rule. This information is then used to encode
• the data tuples(the data itself), e.g. the index of the rule that is used to encode this tuple, the exact

values of the tuple using a rule specific code, and the class labels.
According to Shannon’s coding theorem, the lengths in bits of parts of a message are calculated as

− log2 pi , wherepi is the probability of an instantiationi within all possible alternatives over some
appropriately chosen probability distribution. To illustrate this, we present the equations for the message
length for data tuples below.

If the t-norm�prod is used and some restrictions are placed on the fuzzy sets and rule weights, (neuro-)
fuzzy classification systems can be shown to perform the same calculations as Naive Bayes classifiers
[33]. We can use this interpretation of the fuzzy membership values as probability densities to transmit
the tuple coordinates. Letx be a tuple,r the rule which is used to encode it, i.e. the rule with the highest
activation, andwr the appropriate normalizing rule weight. Then the part of the message that transmits
the coordinates of thed dimensions of a tuple has a length of

l(x) = − log2 wr −
d∑

i=1

log2 �r,i(xi).
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This part measures cluster dispersion. It is used for encoding both, labeled and unlabeled tuples. The
closer a tuple lies to the center of the membership functions of its rule (i.e. the better the rule is adapted
to the data), the higher the probabilities and thus the shorter the code length is.

Additionally, we have to transmit the class labels of the tuples. We associate each rule with the majority
class of the tuples covered by it. Thus we can use the (already transmitted) information which rule is used
to encode a tuple. However, there might be tuples of several classes covered by one rule. Therefore, we
have also to transmit the exceptions from the rule. We have to encode the class distribution in a rule and
the explicit class labels for the tuples. LetXi denote the tuples covered by a rulei, and within those let
Xij denote the tuples of classj. Let c be the number of classes in the dataset. In that part of the message
theXu

i unlabeled points play a role. We consider them as belonging to the majority classjmax in that rule
and thus transmit this class (the most probable class yields the shortest message length). For the encoding
of the class information for all tuples covered by one rulei we thus get a length of

l(r) = log2
(|Xi | + c − 1)!
|Xi |!(c − 1)! + log2

|Xi |!
(
∏c

j=1,j �=jmax
|Xij |!)|Xijmax ∪ Xu

i |! .

Misclassified labeled tuples make that part of the message longer, as the probability distribution of a rule
becomes more heterogeneous, and thus this part of the measure quantifies cluster impurity.

One problem of this measure is that the relation of the lengths of the code part and the data part of the
message depends on the number of tuples and the number of dimensions. It can therefore be important
to weight the individual parts of the message. This can be interpreted as adjusting the precision of the
transmitted tuple coordinates.

Figs.5 and6 show the result of applying our proposed algorithm to the artificial datasets. Although
these datasets were challenging for the other semi-supervised algorithms, and in spite of the restrictions
that we imposed on the fuzzy sets to maintain linguistic interpretability, the algorithm performs almost
perfect.

In the next section, we demonstrate applicability of our approach to a real world problem.

5. Filtering object primitives in image analysis

This application considered in the following has been studied in a cooperation with theResearch
Institute for Optronics and Pattern Recognition(FGAN/FOM) in Ettlingen/Germany. The focus of this
project was the analysis of aerial images to extract man-made structures, like, for instance, airfields.
Results of the cooperation are described in[23,24]. In these publications we had a different view on the
problem, and applied pure supervised learning. However, as we will explain, it might be more appropriate
to consider the task as semi-supervised.

5.1. Application domain

The automatic identification of man-made objects in remotely sensed images is still a challenging task.
In the framework of structural analysis of complex scenes a blackboard-based production system (BPI)
has been developed at FGAN/FOM[30]. In this system transformations of the simple objects extracted
from SAR (synthetic aperture radar) images into more complex objects are controlled by production
rules. A production net proceeds stepwise according to a model and produces intermediate results with
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Fig. 5. Experimental result on the first artificial dataset (0.1% errors).

Fig. 6. Experimental result on the second artificial dataset (3.4% errors).
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Fig. 7. (a) Example SAR image (b) 37,659 line segments extracted from the SAR image by Burns’ edge detector.

an increasing degree of abstraction[39,40]. For instance, the abstraction degrees for the construction of
a runway are

edges⇒ lines ⇒ long-lines ⇒ parallel-lines ⇒ runways.

The image analysis is based on line segments as object primitives, which is typical for the extraction of
man-made objects. Fig.7a shows a typical SAR image of an airfield. The result of gradient-based edge
detection4 applied to the SAR image is shown in Fig.7b. As the resolution of the images is rather high,
the edge detector extracts more than 37, 000 edges on this image, which have to be considered during
the structural analysis. Although only a fraction of the lines are used to construct, e.g., the runway, the
analyzing system has to take all of the lines into account. Unfortunately, time consumption is typically
at least O(n2). Although the system is usually successful in extracting the desired structures from single
images, the runtimes are too slow to process image data for larger areas. The idea was that the production
process could significantly be sped up if only the most promising primitive objects are identified and the
analysis is started with them.

4 The used edge extraction algorithm was proposed in[7]. Especially in noisy images, this operator has a tendency of extracting
high numbers of short line segments.
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The idea was to extract features from the image that describe the primitive objects and allow to train a
classifier that decides which lines can be discarded. Experiments showed that in the case of line primitives
the regions next to the lines bear useful information. Therefore, rectangular windows adjacent to the lines
are constructed. The gradient across the edge is used to define the line direction and to uniquely distinguish
between left and right window. For each line segment a set of statistical (e.g. mean, standard deviation)
and textural features (e.g. energy, entropy) is calculated from the gray values in the region. From this set
of features, we chose the eight most important features.

The initial idea in our project was to apply the analysis process for a number of images on the complete
set of object primitives. The resulting extracted runways are used to divide the lines into those that were
used for the construction of complex structures (thepositiveclass) and those that were not (thenegative
class). We tried to learn to differentiate between the classes with a number of classifier approaches.
However, it turned out that the problem can hardly be solved by most classifiers without modifications.
The classes were extremely unbalanced. For the shown image, only 20 lines were used to build the
runway, and are thus used as positive examples. Moreover, the classes were strongly overlapping, and
thus almost any classifier approach will simply predict the majority class for any input, because this leads
to an extremely low error rate of20

37,659 ≈ 0.05%.Although it is seemingly perfect, this result is obviously
completely useless, as it filters out all object primitives, and thus hinders any object recognition.

We concluded that a classifier has to take into account the special semantics of the task. Misclassi-
fications of positive and negative class have to be treated differently. As a matter of fact, every missed
positive can turn out to be very expensive. Too many false negatives5 can completely prevent the cor-
rect recognition of objects, whereas false positives6 lead ‘only’ to considerably longer execution times.
We considered this asymmetry in a misclassification cost matrix. This matrix was integrated into the
NEFCLASS rule learning and pruning algorithms, which allowed successful application of NEFCLASS
on this task. Although the classification was not perfect, in most cases all (or at least enough) relevant
object primitives were classified as positive, while the total number of line segments to be processed was
significantly reduced[23].

5.2. Semi-supervised line filtering

Although the obtained error rates seemed to be rather high for a classification problem, the image
processing experts were quite content.7 It turned out that they were actually glad about some of the false
positives: the edges of taxiways, parking lots, or roads—having characteristics very similar to those of
runway edges—are also needed in later processing stages. We concluded that the classification problem as
formulated by the experts was actually ill-posed: although these additional object primitives should in fact
be positive examples, they appear as negative examples in the training dataset. This makes the learning
task harder for the classifier, as it—in spite of the included asymmetric misclassification costs—still tries
to separate positives from negatives.

5 False negatives, i.e. positives classified as negatives, refer to runway primitives that are discarded.
6 False positives, i.e. negatives classified as positives, result in superfluous primitives that have to be considered in the

production process.
7 On some images about 50% of the examples were classified as positive, and thus the (unweighted) error rate was about the

same. However, this still means halving the number of the object primitives.
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Fig. 8. Manually labeled examples: 57 positive examples (runway line segments, in red), 98 negative examples (in green).

We thus think that it might be more appropriate to understand the problem as one of semi-supervised
learning. The runway segmentsplus similar primitives like taxiways make up the positive examples,
though only a part of them is labeled. Additionally, we manually label some negative examples, i.e. line
segments that should be discarded during the analysis process. A supervised learning algorithm is then
applied to the corpus of unlabeled data plus the few labeled examples. The algorithm should learn to
separate the labeled examples, and additionally locate the decision boundary according to the structure
of the unlabeled examples.

Fig.8shows the line segments that we manually labeled as positive and negative examples, respectively.
Altogether, we labeled only 155 examples (out of 37, 659). Obviously, the dataset has the mentioned
challenges for semi-supervised learning: extremely few labeled examples, and manually given labels that
are probably neither prototypical for their respective classes, nor do they cover the complete spectrum of
occurring edge segment characteristics. We applied our semi-supervised evolutionary fuzzy rule learner
to this problem.

As the number of unlabeled examples exceeds the number of labeled examples by far, we have to
balance the influences of the parts of the quality measure (cf. Section4.2). For the presented result,
we set the weightwlabelsof the impurity measure to ten times the weightwbaseof the rule base length,
and to 2000 times the weightwtuples of the dispersion measure, which brings the individual lengths to
roughly the same ranges. On this dataset, ssMDL was not too sensitive to changes of the weights. Fig.9a
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Fig. 9. (a) 3878 lines classified as positive by semi-supervised ssMDL; (b) 6994 by pure supervised learning.

depicts the 3878 line segments that ssMDL classified as positive. On the labeled examples, it produces 5
errors (3.2%). It can be seen that the line segments necessary to construct runway, taxiways, and traffic
system have been successfully identified. The number of potentially relevant object primitives is reduced
to 10.3%, which leads to an significantly decreased processing time.

As a comparison, we alternatively treated the problem by pure supervised learning. To reduce the
influence of the learning algorithm, we again applied ssMDL to the problem. However, we presented
only the 155 labeled examples for learning, and still used a higher weight for the impurity measure. In
this way, ssMDL works as a pure supervised rule learner. It produces the same number of misclassification,
i.e. 5% or 3.2%. However, it cannot take the unlabeled data into account for locating the decision boundary.
On this image, it extracts 6994 lines as possible runway or traffic system primitives, only a reduction
to 18.6%. The resulting positive lines are shown in Fig.9b. Obviously, the segments extracted by this
classifier are also sufficient to construct the desired objects. Although the results of the two classifiers
look rather similar, it can clearly be seen that there are many more spurious positive edge segments in
Fig. 9b.

It should be noted that we presented the results of reclassification, i.e. we applied the classifier to the
data it was trained on. Error rates estimated from reclassification are usually optimistically biased, and
thus less credible. However, we suppose that our application is less prone to this optimistic bias. The
main problem of reclassification is that of overfitting: a classifier could ‘memorize’ the examples’ labels
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instead of revealing the underlying regularities. However, most of the data in our application do not have
a class label. In case of the supervised application of ssMDL, the unlabeled data were not used at all.
In case of semi-supervised learning, only their positional information is used. Thus, the results are still
meaningful (apart from the certainly optimistically estimated 3.2% errors on the labeled data). Another
typical problem of semi-supervised learning can also be seen: since the labels of the unlabeled data are
indeed unknown, we can hardly estimate the overall error rate. However, in image analysis applications
like ours, we can often at least visually inspect the results.

The alternative interpretation of the line filtering problem as a semi-supervised learning task yields
a feasible solution, comparable to the results of our previous approach using asymmetric error costs
[23,24]. The semi-supervised learning from labeled and unlabeled data resulted in a much more selective
classifier than the pure supervised approach. However, we should note that we can only visually assess
the classification results, as we do not have the true class labels.

6. Conclusions

The state of the art in knowledge discovery techniques is dominated by supervised approaches. However,
in many current real-world problems the assignment of labels for all objects is a severe problem and thus
calls for semi-supervised methods.

We presented an evolutionary algorithm to induce fuzzy rules that exploits labeled and unlabeled
training data. We compared it to existing fuzzy semi-supervised algorithms. Our MDL-based approach
outperformed the other semi-supervised algorithms on the artificial example datasets, where a certain
flexibility was required to model the distribution and where the given labeled examples were less repre-
sentative.Additionally, we have shown the applicability of our semi-supervised rule learner on a real-world
problem.

It remains an interesting open question to investigate, if it is possible to decide in advance, whether semi-
supervised learning will be promising for a given dataset, i.e. whether the data have suitable characteristics.
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