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Abstract: More sophisticated fuzzy clustering algorithms,
like the Gustafson–Kessel algorithm [11] and the fuzzy max-
imum likelihood estimation (FMLE) algorithm [10] offer the
possibility of inducing clusters of ellipsoidal shape and dif-
ferent sizes. The same holds for the expectation maximiza-
tion (EM) algorithm for a mixture of Gaussians. However,
these additional degrees of freedom can reduce the robustness
of the algorithm, thus sometimes rendering their application
problematic. In this paper we suggest methods to introduce
shape and size contraints that handle this problem effectively.
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1 Introduction

Prototype-based clustering methods, like fuzzy clustering
[1, 2, 12], expectation maximization (EM) [6] of a mixture
of Gaussians [9], or learning vector quantization [15, 16],of-
ten employ a distance function to measure the similarity of two
data points. If this distance function is theEuclidean distance,
all clusters are (hyper-)spherical. However, more sophisti-
cated approaches rely on a cluster-specificMahalanobis dis-
tance, making it possible to find clusters of (hyper-)ellipsoidal
shape. In addition, they relax the restriction (as it is present,
e.g., in the fuzzyc-means algorithm) that all clusters have
the same size [13]. Unfortunately, these additional degrees
of freedom often reduce the robustness of the clustering algo-
rithm, thus sometimes rendering their application problematic.

In this paper we consider how shape and size parameters
of a cluster can be constrained, that is, modified in such a
way that extreme cases are ruled out and/or a bias against
extreme cases is introduced, which effectively improves ro-
bustness. The basic idea of constraining shape is the same as
that of Tikhonov regularization for linear optimization prob-
lems [18, 8], while size and weight constraints can be based
on a bias towards equality as it is well-known from Laplace
correction or Bayesian approaches to probability estimation.

This paper is organized as follows: in Sections 2 and 3 we
briefly review some basics of mixture models and the expec-
tation maximization algorithm as well as fuzzy clustering.In
Section 4 we discuss our methods to constrain shape, size,
and weight parameters in clustering. In Section 5 we present
experimental results on well-known data sets and finally, in
Section 6, we draw conclusions from our discussion.

2 Mixture Models and EM Algorithm

In a mixture model [9] it is assumed that a given data set
X = {~x j | j = 1, . . . ,n} has been sampled from a population
of c clusters. Each cluster is characterized by a probabil-
ity distribution, specified as a prior probability and a condi-
tional probability density function (cpdf). The data genera-
tion process may then be imagined as follows: first a clusteri,
i ∈ {1, . . . ,c}, is chosen for a datum, indicating the cpdf to be
used, and then the datum is sampled from this cpdf. Conse-
quently the probability of a data point~x can be computed as

p~X(~x;Θ) =
c

∑
i=1

pC(i;Θi) · f~X|C(~x|i;Θi),

whereC is a random variable describing the clusteri chosen in
the first step,~X is a random vector describing the attribute val-
ues of the data point, andΘ = {Θ1, . . . ,Θc} with eachΘi con-
taining the parameters for one cluster (that is, its prior proba-
bility θi = pC(i;Θi) and the parameters of the cpdf).

Assuming that the data points are drawn independently
from the same distribution (i.e., that the probability distribu-
tions of their underlying random vectors~Xj are identical), we
can compute the probability of a data setX as

P(X ;Θ) =
n

∏
j=1

c

∑
i=1

pCj (i;Θi) · f~Xj |Cj
(~x j |i;Θi),

Note, however, that we do not know which value the random
variableCj , which indicates the cluster, has for each exam-
ple case~x j . Fortunately, though, given the data point, we can
compute the posterior probability that a data point~x has been
sampled from the cpdf of thei-th cluster using Bayes’ rule:

pC|~X(i|~x;Θ) =
pC(i;Θi) · f~X|C(~x|i;Θi)

f~X(~x;Θ)

=
pC(i;Θi) · f~X|C(~x|i;Θi)

∑c
k=1 pC(k;Θk) · f~X|C(~x|k;Θk)

.

This posterior probability may be used to complete the data set
w.r.t. the cluster, namely by splitting each datum~x j into c data
points, one for each cluster, which are weighted with the pos-
terior probabilitypCj |~Xj

(i|~x j ;Θ). This idea is used in the well-
known expectation maximization (EM) algorithm [6], which
consists in alternately computing these posterior probabilities
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and estimating the cluster parameters from the completed data
set by maximum likelihood estimation.

For clustering numeric data it is usually assumed that the
cpdf of each cluster is anm-variate normal distribution (so-
calledGaussian mixture model[9, 3]). That is,

f~X|C(~x|i;Θi) = N(~x;~µi ,Σi)

=
1

√

(2π)m|Σi |
exp

(

−
1
2
(~x−~µi)

⊤Σ−1
i (~x−~µi)

)

,

where~µi is the mean vector andΣi the covariance matrix of
the normal distribution,i = 1, . . . ,c, andm is the number of
dimensions of the data space. In this case the maximum like-
lihood estimation formulae are

θi =
1
n

n

∑
j=1

pC|~Xj
(i|~x j ;Θ)

for the prior probabilityθi ,

~µi =
∑n

j=1 pC|~Xj
(i|~x j ;Θ) ·~x j

∑n
j=1 pC|~Xj

(i|~x j ;Θ)

for the mean vector~µi, and

Σi =
∑n

j=1 pC|~Xj
(i|~x j ;Θ) · (~x j −~µi)(~x j −~µi)

⊤

∑n
j=1 pC|~Xj

(i|~x j ;Θ)

for the covariance matrixΣi of the i-th cluster,i = 1, . . . ,c.

3 Fuzzy Clustering

While most classical clustering algorithms assign each datum
to exactly one cluster, thus forming a crisp partition of the
given data, fuzzy clustering allows fordegrees of member-
ship, to which a datum belongs to different clusters [1, 2, 12].
Most fuzzy clustering algorithms are objective function based:
they determine an optimal (fuzzy) partition of a given data set
X = {~x j | j = 1, . . . ,n} into c clusters by minimizing an objec-
tive function

J(X,U,C) =
c

∑
i=1

n

∑
j=1

uw
i j d2

i j

subject to the constraints

n

∑
j=1

ui j > 0, for all i ∈ {1, . . . ,c}, and (1)

c

∑
i=1

ui j = 1, for all j ∈ {1, . . . ,n}, (2)

whereui j ∈ [0,1] is the membership degree of datum~x j to
clusteri anddi j is the distance between datum~x j and clusteri.
Thec×n matrix U = (ui j ) is called thefuzzy partition matrix
andC describes the set of clusters by stating location parame-
ters (i.e. the cluster center) and maybe size and shape param-
eters for each cluster. The parameterw, w > 1, is called the
fuzzifieror weighting exponent. It determines the “fuzziness”
of the classification: with higher values forw the boundaries
between the clusters become softer, with lower values they get
harder. Usuallyw= 2 is chosen. Hard clustering results in the

limit for w→ 1. However, a hard assignment may also be de-
termined from a fuzzy result by assigning each data point to
the cluster to which it has the highest degree of membership.

Constraint (1) guarantees that no cluster is empty and con-
straint (2) ensures that each datum has the same total influence
by requiring that the sum of the membership degrees of a da-
tum must be 1. Due to the second constraint this approach
is usually calledprobabilistic fuzzy clustering, because with
it the membership degrees for a datum formally resemble the
probabilities of its being a member of the corresponding clus-
ters. The partitioning property of a probabilistic clustering
algorithm, which “distributes” the weight of a datum to the
different clusters, is due to this constraint.

Unfortunately, the objective functionJ cannot be mini-
mized directly. Therefore an iterative algorithm is used, which
alternately optimizes membership degrees and cluster param-
eters [1, 2, 12]. That is, first the membership degrees are opti-
mized for fixed cluster parameters, then the cluster parameters
are optimized for fixed membership degrees. The main ad-
vantage of this scheme is that in each of the two steps the opti-
mum can be computed directly. By iterating the two steps the
joint optimum is approached (although, of course, it cannotbe
guaranteed that the global optimum will be reached—one may
get stuck in a local minimum of the objective functionJ).

The update formulae are derived by simply setting the
derivative of the objective functionJ w.r.t. the parameters to
optimize equal to zero (necessary condition for a minimum).
Independent of the chosen distance measure we thus obtain the
following update formula for the membership degrees [12]:

ui j =
d
− 2

w−1
i j

∑c
k=1d

− 2
w−1

k j

, (3)

that is, the membership degrees represent the relative inverse
squared distances of a data point to the different cluster cen-
ters, which is a very intuitive result.

The update formulae for the cluster parameters, however,
depend on what parameters are used to describe a cluster
(location, shape, size) and on the chosen distance measure.
Therefore a general update formula cannot be given. Here
we briefly review the three most common cases: The best-
known fuzzy clustering algorithm is the fuzzyc-means algo-
rithm, which is a straightforward generalization of the classi-
cal crispc-means algorithm. It uses only cluster centers for the
cluster prototypes and relies on theEuclidean distance, i.e.,

d2
i j = (~x j −~µi)

⊤(~x j −~µi),

where~µi is the center of thei-th cluster. Consequently it is
restricted to finding spherical clusters of equal size. The re-
sulting update rule is

~µi =
∑n

j=1uw
i j ~x j

∑n
j=1uw

i j
, (4)

that is, the new cluster center is the weighted mean of the data
points assigned to it, which is again a fairly intuitive result.

The Gustafson–Kessel algorithm [11] uses a cluster-specific
Mahalanobis distance, i.e.,

d2
i j = (~x j −~µi)

⊤Σ−1
i (~x j −~µi),



where~µi is the cluster center andΣi is a cluster-specific co-
variance matrix with determinant 1. It describes the shape of
the cluster, thus allowing for ellipsoidal clusters of equal size.
This distance measure leads to same update rule (4) for the
clusters centers, while the covariance matrices are updated as

Σi =
Σ∗

i
m
√

|Σ∗
i |

where Σ∗
i =

∑n
j=1uw

i j (~x j −~µi)(~x j −~µi)
⊤

∑n
j=1uw

i j
(5)

andm is the number of dimensions of the data space.Σ∗
i is

called thefuzzy covariance matrix, which is simply normal-
ized to determinant 1 to meet the abovementioned constraint.
Compared to standard statistical estimation procedures, this is
also a fairly intuitive result. It should be noted that the restric-
tion to clusters of equal size may be relaxed by simply allow-
ing general covariance matrices. However, depending on the
characteristics of the data, this additional degree of freedom
can deteriorate the robustness of the algorithm.

Finally, the fuzzy maximum likelihood estimation (FMLE)
algorithm [10] is based on the assumption that the data was
sampled from a mixture ofc multivariate normal distributions
as in the statistical approach of mixture models (cf. Section 2).
It uses a (squared) distance that is inversely proportionalto the
probability that a datum was generated by the normal distribu-
tion associated with a cluster and also incorporates the prior
probability of the cluster. That is,

d2
i j =

(

θi
√

(2π)m|Σi |
exp

(

−
1
2
(~x j −~µi)

⊤Σ−1
i (~x j −~µi)

)

)−1

,

whereθi is the prior probability of the cluster,~µi is the clus-
ter center,Σi a cluster-specific covariance matrix, which in
this case is not required to be normalized to determinant 1,
andm the number of dimensions of the data space (cf. Sec-
tion 2). For the FMLE algorithm the update rules are not de-
rived from the objective function due to technical obstacles,
but by comparing it to the expectation maximization (EM) al-
gorithm for a mixture of normal distributions (cf. Section 2),
which, by analogy, leads to the same update rules for the clus-
ter center and the cluster-specific covariance matrix as forthe
Gustafson–Kessel algorithm [12], that is, equations (4) and
(5). The prior probabilityθi is, also in analogy to statistical
estimation (cf. Section 2), computed as

θi =
1
n

n

∑
j=1

uw
i j . (6)

Note that the difference to the expectation maximization algo-
rithm consists in the different ways in which the membership
degrees (equation (3)) and the posterior probabilities in the
EM algorithm are computed and used in the estimation.

Since the high number of free parameters of the FMLE al-
gorithm renders it unstable on certain data sets, it is usually
recommended [12] to initialize it with a few steps of the very
robust fuzzyc-means algorithm. The same holds, though to a
somewhat lesser degree, for the Gustafson–Kessel algorithm.

It is worth noting that of both the Gustafson–Kessel algo-
rithm as well as the FMLE algorithm there exist so-called
axes-parallelversions, which restrict the covariance matri-
cesΣi to diagonal matrices and thus allow only axes-parallel
ellipsoids [14]. These constrained variants have certain advan-
tages w.r.t. robustness and execution time.

4 Constraining Cluster Parameters

The large number of parameters (mainly the elements of the
covariance matrices) of the more flexible fuzzy and probabilis-
tic clustering algorithms can render these algorithms lessro-
bust or even fairly unstable, compared to their simpler coun-
terparts that only adapt the cluster centers. Common undesired
results include very long and thin ellipsoids as well as clusters
collapsing to a single data point. To counteract such unde-
sired tendencies, we introduce shape and size constraints into
the update scheme. The basic idea is to modify, in every up-
date step, the parameters of a cluster in such a way that certain
constraints are satisfied or at least that a noticable tendency
(of varying strength, as specified by a user) towards satisfy-
ing these constraints is introduced. In particular we consider
regularizing the (ellipsoidal) shape as well as constraining the
(relative) size and the (relative) weight of a cluster.

4.1 Constraining Cluster Shapes

The shape of a cluster is represented by its covariance ma-
trix Σi . Intuitively, Σi describes a general (hyper-)ellipsoidal
shape, which can be obtained, for example, by computing
the Cholesky decomposition or the eigenvalue decomposition
of Σi and mapping the unit (hyper-)sphere with it.

Shape regularization means to modify the covariance ma-
trix, so that a certain relation of the lengths of the major axes of
the represented (hyper-)ellipsoid is obtained or that at least a
tendency towards this relation is introduced. Since the lengths
of the major axes are the roots of the eigenvalues of the co-
variance matrix, regularizing it means shifting the eigenval-
ues ofΣi . Note that such a shift leaves the eigenvectors un-
changed, i.e., the orientation of the represented (hyper-)ellip-
soid is preserved. Note also that such a shift of the eigen-
values is the basis of the well-known Tikhonov regularization
for linear optimization problems [18, 8], which inspired our
approach. We suggest two methods:

Method 1: The covariance matricesΣi , i = 1, . . . ,c, of the
clusters are adapted (in every update step) according to

Σ(adap)
i = σ2

i ·
Si +h21

m
√

|Si +h21|
= σ2

i ·
Σi + σ2

i h21
m
√

|Σi + σ2
i h21|

,

wherem is the dimension of the data space,1 is a unit ma-
trix, σ2

i = m
√

|Σi | is the equivalent isotropic variance (equiva-
lent in the sense that it leads to the same (hyper-)volume, i.e.,
|Σi | = |σ2

i 1|), Si = σ−2
i Σi is the covariance matrix scaled to

determinant 1, andh is the regularization parameter.
This modification of the covariance matrix shifts all eigen-

values by the value ofσ2
i h2 and then renormalizes the resulting

matrix so that the determinant of the old covariance matrix is
preserved (i.e., the (hyper-)volume of the cluster is kept con-
stant). It tends to equalize the lengths of the major axes of the
represented (hyper-)ellipsoid and thus introduces a tendency
towards (hyper-)spherical clusters. (Algebraically, it makes
the matrix “less singular”, and thus “more regular”, which ex-
plains the nameregularizationfor this modification.) This ten-
dency of equalizing the axes lengths is the stronger, the greater
the value ofh. In the limit, for h→ ∞, the clusters are forced
to be exactly spherical; forh = 0 the shape is left unchanged.



Method 2: The above method always changes the length ra-
tios of the major axes and thus introduces a general tendency
towards (hyper-)spherical clusters. In this (second) method,
however, a limitr, r > 1, for the length ratio of the longest
to the shortest major axis of the represented (hyper-)ellipsoid
is used and only if this limit is exceeded, the eigenvalues are
shifted in such a way that the limit is satisfied.
Formally: letλk, k = 1, . . .m, be the eigenvalues of the covari-
ance matrixΣi . Set (in every update step)

h2 =















0, if
maxm

k=1λk

minm
k=1λk

≤ r2,

maxm
k=1λk− r2minm

k=1λk

σ2
i (r

2−1)
, otherwise,

and then execute Method 1 with this value ofh2.

4.2 Constraining Cluster Sizes

The size of a cluster can be described in different ways, for ex-
ample, by the determinant of its covariance matrixΣi , which
is a measure of the clusters squared (hyper-)volume, an equiv-
alent isotropic varianceσ2

i or an equivalent isotropic radius
(standard deviation)σi (equivalent in the sense that they lead
to the same (hyper-)volume, see above). The latter two mea-
sures are defined as

σ2
i = m

√

|Σi | and σi =
√

σ2
i = 2m

√

|Σi |

and thus the (hyper-)volume of a cluster may also be written
asσm

i =
√

|Σi |.
Contraining the (relative) cluster size means to ensure a cer-

tain relation between the sizes or at least to introduce a ten-
dency into this direction. We suggest three different versions
of modifying cluster sizes, in each of which the measure thatis
used to describe the cluster size is specified by an exponenta
of the equivalent isotropic radiusσi . Special cases are

a = 1 : equivalent isotropic radius,
a = 2 : equivalent isotropic variance,
a = m : (hyper-)volume.

Method 1: The equivalent isotropic radiiσi are adapted (in
every update step) according to

σ(adap)
i = a

√

s·
∑c

k=1 σa
k

∑c
k=1(σa

k +b)
· (σa

i +b)

= a

√

s·
∑c

k=1 σa
k

cb+ ∑c
k=1 σa

k
· (σa

i +b).

That is, each cluster size is increased by the value of the pa-
rameterb and then the sizes are renormalized so that the sum
of the cluster sizes is preserved. However, the parametersmay
be used to scale the sum of the sizes up or down (by default
s= 1). Forb→ ∞ the cluster sizes are equalized completely,
for b = 0 only the parameters has an effect. This method is
inspired by Laplace correction or Bayesian estimation withan
uniformative prior (see below).

Method 2: This method, which is meant as a simplified and
thus more efficient version of method 1, does not renormalize

the sizes, so that the size sum is increased bycb. However,
this missing renormalization may be mitigated to some degree
by specifying a value of the scaling parameters that is smaller
than 1. Formally, the equivalent isotropic radiiσi are adapted
(in every update step) according to

σ(adap)
i = a

√

s· (σa
i +b).

Method 3: The above methods always change the relation
of the cluster sizes and thus introduce a general tendency to-
wards clusters of equal size. In this (third) method, however,
a limit r, r > 1, for the size ratio of the largest to the smallest
cluster is used and only if this limit is exceeded, the sizes are
changed in such a way that the limit is satisfied. To achieve
this,b is set (in every update step) according to

b =











0, if
maxc

k=1σa
k

minc
k=1σa

k
≤ r,

maxc
k=1σa

k − r minc
k=1σa

k

r −1
, otherwise,

and then Method 1 is executed with this value ofb.

4.3 Constraining Cluster Weights

A cluster weightθi appears only in the mixture model ap-
proach and the FMLE algorithm, where it describes the prior
probability of a cluster. For cluster weights we may use basi-
cally the same adaptation methods as for the cluster size, with
the exception of the scaling parameters, since theθi are prob-
abilities, i.e., we must ensure∑c

i=1 θi = 1. Therefore we have:

Method 1: The cluster weightsθi are adapted (in every update
step) according to

θ(adap)
i =

∑c
k=1 θk

∑c
k=1(θk +b)

· (θi +b) =
∑c

k=1 θk

cb+ ∑c
k=1 θk

· (θi +b),

whereb is a parameter that is to be specified by a user. Note
that this method is equivalent to a Laplace corrected estima-
tion of the prior probabilities or a Bayesian estimation with an
uninformative (uniform) prior.

Method 2: The value of the adaptation parameterb is com-
puted (in every update step) as

b =











0, if
maxc

k=1θk

minc
k=1θk

≤ r,

maxc
k=1θk− r minc

k=1θk

r −1
, otherwise,

with a user-specified maximum weight ratior, r > 1, and then
Method 1 is executed with this value of the parameterb.

5 Experiments

We implemented all methods suggested above as part of an ex-
pectation maximization and fuzzy clustering program written
by the first author of this paper and applied it to several differ-
ent data sets from the UCI machine learning repository [4]. In
all data sets each dimension was normalized to mean value 0
and standard deviation 1 in order to avoid any distortions that
may result from different scaling of the coordinate axes.



Figure 1: Result of Gustafson-Kessel algorithm on the iris
data with fixed cluster size without (top) and with shape reg-
ularization (bottom, method 2 withr = 4). Both images show
the petal length (horizontal) and the petal width (vertical).
Clustering was done on all four attributes (sepal length and
sepal width in addition to the above).

.

As one illustrative example, we present here the result of
clustering the iris data (excluding, of course, the class at-
tribute) with the Gustafson–Kessel algorithm using three clus-
ter of fixed size (measured as the isotropic radius) of 0.4 (since
all dimensions are normalized to mean 0 and standard devia-
tion 1, 0.4 is a good size of a cluster if three clusters are to
be found). The result without shape regularization is shown
in Figure 1 at the top. Due to the few data points located in
a thin diagonal cloud on the right border on the figure, the
middle cluster is drawn into a fairly long ellipsoid. Although
this shape minimizes the objective function, it may not be a
desirable result, because the cluster structure is not compact
enough. Using shape regularization method 2 withr = 4 the
cluster structure shown at the bottom in Figure 1 is obtained.
In this result the clusters are more compact and resemble the
class structure of the data set.

Figure 2: Result of fuzzy maximum likelihood estimation
(FMLE) algorithm on the wine data with fixed cluster weight
without (top) and with an adaptation of (relative) cluster sizes
(bottom, method 3 withr = 2). Both images show attribute 7
(horizontal) and attribute 10 (vertical). Clustering was done
on attributes 7, 10, and 13.

.

As another example let us consider the result of clustering
the wine data with the fuzzy maximum likelihood estimation
(FMLE) algorithm using three clusters of variable size. We
used attributes 7, 10, and 13, which are the most informative
w.r.t. the class assignments. One result we obtained without
constraining the relative cluster size is shown in Figure 2 at the
top. However, the algorithm is much too unstable to present
a unique result. Often enough clustering fails completely,be-
cause one cluster collapses to a single data point—an effect
that is mainly due to the steepness of the Gaussian probabil-
ity density function and the sensitivity of the algorithm tothe
initialization of the cluster parameters.

This situation is considerably improved by constraining the
(relative) cluster size, a result of which (that sometimes,with a
fortunate initialization, can also be achieved without) isshown
at the bottom in Figure 2. It was obtained with method 3 with



r = 2. Although the result is still not unique and sometimes
clusters still focus on very few data points, the algorithm is
considerably more stable and reasonable results are obtained
much more often than without size constraints. Hence we can
conclude that constraining (relative) cluster size considerably
improves the robustness of the algorithm.

6 Conclusions

In this paper we suggested a shape regularization method as
well as methods to constrain the (relative) cluster size and
weight for clustering algorithms that use a cluster-specific Ma-
halanobis distance to describe the shape and the size of a clus-
ter. The basic idea is to introduce a tendency towards equal
length of the major axes of the represented (hyper-)ellipsoid
and towards equal cluster sizes. As the experiments show,
these methods improve the robustness of the more sophisti-
cated fuzzy clustering algorithms, which without them suffer
from instabilities even on fairly simple data sets. Regular-
ized and constrained clustering is so robust that it can evenbe
used without an initialization by the fuzzyc-means algorithm.
It should be noted that with a time-dependent shape regular-
ization parameter one may obtain a soft transition from the
fuzzyc-means algorithm (spherical clusters) to the Gustafson-
Kessel algorithm (general ellipsoidal clusters).

Software

A free implementation of the described methods as command
line programs for expectation maximization and fuzzy cluster-
ing (written in C) can be found at

http://fuzzy.cs.uni-magdeburg.de/
˜borgelt/software.html#cluster
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