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Abstract: More sophisticated fuzzy clustering algorittms2 M Ixture Modelsand EM Algor ithm
like the Gustafson—Kessel algorithm [11] and the fuzzy max-
imum likelihood estimation (FMLE) algorithm [10] offer theln & mixture model [9] it is assumed that a given data set
possibility of inducing clusters of ellipsoidal shape arifi d X = {Xj | j = 1,...,n} has been sampled from a population
ferent sizes. The same holds for the expectation maximigé-C clusters. Each cluster is characterized by a probabil-
tion (EM) algorithm for a mixture of Gaussians. Howevetlty distribution, specified as a prior probability and a cend
these additional degrees of freedom can reduce the rolsssttienal probability density function (cpdf). The data gemer
of the algorithm, thus sometimes rendering their applicatition process may then be imagined as follows: first a cluster
problematic. In this paper we suggest methods to introddce{l,...,c}, is chosen for a datum, indicating the cpdf to be
shape and size contraints that handle this problem eféggtiv used, and then the datum is sampled from this cpdf. Conse-

] i _ .. quently the probability of a data poiRtcan be computed as
Keywords. Fuzzy Clustering, Expectation Maximization,

Cluster Size, Cluster Shape, Regularization c _ .
Pz (X, 0) = _ZpC(Hei) : fx‘c(zu;ei),
=

1 Introduction whereC is a random variable describing the clustenosen in

) . the first stepX is a random vector describing the attribute val-
Prototype-based clustering methods, like fuzzy clusterifjag of the data point, ar@l= {©y, ..., O} with each®; con-

[ 2, 12],’ expectation mgximization (EM,) [6] of a miXtur‘?aining the parameters for one cluster (that is, its priabgr

of Gaussians [9], or Iearnln_g vector quantlzatlo.n [.15,- D8], bility 8 = pe(i; ;) and the parameters of the cpdf).

ten employ a distance function to measure the similarityof t Assuming that the data points are drawn independently
data points. If this distance function is theclidean distance ¢.5m the same distribution (i.e., that the probability dsi-

all clusters are (hyper-)spherical. However, more sophisf,ng of their underlying random vectoXs are identical), we
cated approaches rely on a cluster-spedifahalanobis dis-

. i . > =" can compute the probability of a data setis
tance making it possible to find clusters of (hyper-)ellipsoidal

shape. In addition, they relax the restriction (as it is pn¢s n ¢ _ )

e.g., in the fuzzyc-means algorithm) that all clusters have P(x;0) = rLZ pe; (i64) - f)?,- Ic; (Xjli;0i),

the same size [13]. Unfortunately, these additional degree ==

of freedom often reduce the robustness of the clusteringy alﬂlote, however, that we do not know which value the random

rithm, thus sometimes rendering their application prollée 5rjablec;, which indicates the cluster, has for each exam-
In this paper we consider how shape and size parame{Escasex;. Fortunately, though, given the data point, we can

of a cluster can be constrained, that is, modified in sucr};&npute the posterior probability that a data paihes been

way that extreme cases are ruled out and/or a bias agaighpled from the cpdf of thieth cluster using Bayes' rule:
extreme cases is introduced, which effectively improves ro

bustness. The basic idea of constraining shape is the same as . pc(i; ©) - fmc(iﬁ;@i)
that of Tikhonov regularization for linear optimizationgi- pqx(lli: 0) = f2(X.0)
lems [18, 8], while size and weight constraints can be based NN )
on a bias towards equality as it is well-known from Laplace _ Pe(i;G) - fi\C(Yl';@i)
correction or Bayesian approaches to probability estionati Y1 Pe(k Ok - fg e (XK Ok) |

This paper is organized as follows: in Sections 2 and 3 we
briefly review some basics of mixture models and the expddis posterior probability may be used to complete the datta s
tation maximization algorithm as well as fuzzy clusterihg. W.r.t. the cluster, namely by splitting each datkpinto c data
Section 4 we discuss our methods to constrain shape, spgnts, one for each cluster, which are weighted with the pos
and weight parameters in clustering. In Section 5 we prest&fior probabilityp, 5 (i|X;; ©). This ideais used in the well-
experimental results on well-known data sets and finally, known expectation maximization (EM) algorithm [6], which
Section 6, we draw conclusions from our discussion. consists in alternately computing these posterior prdibiaisi




and estimating the cluster parameters from the completiad dinit for w — 1. However, a hard assignment may also be de-

set by maximum likelihood estimation. termined from a fuzzy result by assigning each data point to
For clustering numeric data it is usually assumed that tthee cluster to which it has the highest degree of membership.

cpdf of each cluster is am-variate normal distribution (so- Constraint (1) guarantees that no cluster is empty and con-

calledGaussian mixture mod§gd, 3]). That is, straint (2) ensures that each datum has the same total infuen
_ - by requiring that the sum of the membership degrees of a da-
fyc(Xi:6i) = N(XH,Z) tum must be 1. Due to the second constraint this approach

1 e B is usually calledprobabilistic fuzzy clusteringoecause with
e exp<—(% Bz (X= M‘))a it the membership degrees for a datum formally resemble the
(2m)M ;| 2 L . i i
probabilities of its being a member of the corresponding-clu

where[j is the mean vector ang; the covariance matrix of ters. The partitioning property of a probabilistic cluster
the normal distributionj = 1,...,c, andm is the number of algorithm, which “distributes” the weight of a datum to the

dimensions of the data space. In this case the maximum likéferent clusters, is due to this constraint.

lihood estimation formulae are Unfortunately, the objective functiod cannot be mini-
| mized directly. Therefore an iterative algorithm is usetick
6 = 1 Z P (il%:©) alternately optimizes membership degrees and clustenpara
n& 1% eters [1, 2, 12]. That s, first the membership degrees aie opt
mized for fixed cluster parameters, then the cluster paemmet
for the prior probabilityd;, are optimized for fixed membership degrees. The main ad-
n . vantage of this scheme is that in each of the two steps the opti
— 2j=1 P (i[%;:0) % mum can be computed directly. By iterating the two steps the
25;1 Peix, (i|X;;0) joint optimum is approached (although, of course, it caeot
guaranteed that the global optimum will be reached—one may
for the mean vectdy;, and get stuck in a local minimum of the objective functidhn
N o = L The update formulae are derived by simply setting the
s — 2j=1 Peyx; (i%;0) - (%) — 1) (X — ) derivative of the objective functiod w.r.t. the parameters to
i = ST, Po (i|%;;0) optimize equal to zero (necessary condition for a minimum).
: Independent of the chosen distance measure we thus ol#ain th
for the covariance matriX; of thei-th clusterj =1,...,c. following update formula for the membership degrees [12]:
2
. d; "t
3 Fuzzy Clustering Uj = ——p, (3)
ko1t

While most classical clustering algorithms assign eachrdat
to exactly one cluster, thus forming a crisp partition of that is, the membership degrees represent the relativesmve
given data, fuzzy clustering allows falegrees of member-squared distances of a data point to the different cluster ce
ship, to which a datum belongs to different clusters [1, 2, 12krs, which is a very intuitive result.

Most fuzzy clustering algorithms are objective functiosbéd:  The update formulae for the cluster parameters, however,
they determine an optimal (fuzzy) partition of a given dagta sdepend on what parameters are used to describe a cluster
X={X;|j=1,...,n}intocclusters by minimizing an objec-(location, shape, size) and on the chosen distance measure.

tive function c N Therefore a general update formula cannot be given. Here
J(X,U,C) = Z W g2 we briefly review the three most common cases: The best-
T ag known fuzzy clustering algorithm is the fuzzymeans algo-

rithm, which is a straightforward generalization of thessla
cal crispc-means algorithm. It uses only cluster centers for the
n cluster prototypes and relies on tBaclidean distance.e.,

uij >0, forallie {1,...,c}, and ()
22 df = (% —F)" (% —F),
C

Zui,— =1, forall je{1,...,n}, (2) whereg is the center of thé-th cluster. Consequently it is
i= restricted to finding spherical clusters of equal size. The r
sulting update rule is

subject to the constraints

whereu;j € [0,1] is the membership degree of datuinto

clusteri anddj is the distance between datunand cluster. S0 UK

. . .. . = j=1%ij ™
Thec x nmatrixU = (ujj) is called thefuzzy partition matrix Hi = ST (4)
andC describes the set of clusters by stating location parame- =15

ters (i.e. the cluster center) and maybe size and shape pai@gy is, the new cluster center is the weighted mean of the dat
eters for each cluster. The parametemw > 1, is called the points assigned to it, which is again a fairly intuitive resu

fuzzifieror weighting exponentt determines the “fuzziness”  The Gustafson—Kessel algorithm [11] uses a cluster-specif
of the classification: with higher values farthe boundaries \jahalanobis distancé.e.,

between the clusters become softer, with lower values they g
harder. Usuallyv = 2 is chosen. Hard clustering results in the dﬁ =& - -w,



where[j is the cluster center ar is a cluster-specific co-4 ~ Constraini ng Cluster Parameters
variance matrix with determinant 1. It describes the shdpe o
the cluster, thus allowing for ellipsoidal clusters of egize. The large number of parameters (mainly the elements of the
This distance measure leads to same update rule (4) for@agariance matrices) of the more flexible fuzzy and prolibil
clusters centers, while the covariance matrices are ugdate tic clustering algorithms can render these algorithms less
. N oW = - bust or even fairly unstable, compared to their simpler eoun
5 — 2 Where S — 2j=1Yj (X — ) (X — ) 5) terparts that only adapt the cluster centers. Common urdesi
vz ! ZT:l u}’}’ results include very long and thin ellipsoids as well asteltss
) i i . collapsing to a single data point. To counteract such unde-
andm s the number of dimensions of the data SPaER.iS = gjreq tendencies, we introduce shape and size constrafots i
called thefuzzy covariance matrjwhich is simply normal- the update scheme. The basic idea is to modify, in every up-

ged to deéermlnar:jt 1dto mgeF thle ab_overnentlone(c:jil;n_str%tte step, the parameters of a cluster in such a way thaircerta
ompare tf’ stgp ard statistical estimation proce St constraints are satisfied or at least that a noticable teyden
also a fairly intuitive result. It should be noted that thstrie- \&1

of varying strength, as specified by a user) towards satisfy

tion to clusters of equal size may be relaxed by simply allo % these constraints is introduced. In particular we abersi

ing general covariance matrices. However, depending on g ||+ izin . .
i : - g the (ellipsoidal) shape as well as constrajttihe
characteristics of the data, this additional degree ofdive® (relative) size and the (relative) weight of a cluster.

can deteriorate the robustness of the algorithm.
Finally, the fuzzy maximum likelihood estimation (FMLE) .
algorithm [10] is based on the assumption that the data whd ~Constraining Cluster Shapes

sampled from a mixture af multivariate normal distributions 4 shape of a cluster is represented by its covariance ma-
as in the statistical approach of mixture models (cf. S iy 5. |ntitively, 5; describes a general (hyper-)ellipsoidal

It uses a (squared) distance that is inversely proportiorthe shape, which can be obtained, for example, by computing

probability that a datum was generated by the normal distrih, e cholesky decomposition or the eigenvalue decompasitio
tion associated with a cluster and also incorporates the pijs 5 and mapping the unit (hyper-)sphere with it.

probability of the cluster. That s, Shape regularization means to modify the covariance ma-

5 1 -1 trix, sothat a certain relation of the lengths of the majersaaf
di?] — <7' exp(—(xj ,Q)Tzi*l(xj m)) ., the represented (hyper-)ellipsoid is obtained or thatastle
(2mM|Zi 2 tendency towards this relation is introduced. Since thgttes
where®; is the prior probability of the clustep is the clus- of t_he major axes are th_e_roo_ts of the eig_envalues qf the co-
yariance matrix, regularizing it means shifting the eigdnv

ter center,2; a cluster-specific covariance matrix, which i f5 Note that h hift | the ei ¢
this case is not required to be normalized to determinant’£> ©'+i- NOte that such a shilt leaves the eigenvectors un-

and m the number of dimensions of the data space (cf. sé& anged, i.e., the orientation of the represented (hyglp)

tion 2). For the FMLE algorithm the update rules are not d%‘-"d is preserved. Note also that such a shift of the eigen-

rived from the objective function due to technical obsta;:leValues Is the basis of the well-known Tikhonov regulariti

but by comparing it to the expectation maximization (EM) a\((-)r linear optimization problems [le 8], which inspiredrou
gorithm for a mixture of normal distributions (cf. Sectioj 2 approach. We suggest two methods:

which, by analogy, leads to the same update rules for the clMsthod 1: The covariance matrices, i = 1,...,c, of the
ter center and the cluster-specific covariance matrix athéor clusters are adapted (in every update step) according to
Gustafson—Kessel algorithm [12], that is, equations (4) an

(5). The prior probabilityg; is, also in analogy to statistical sladap _ 2. S +h1 2. & +02h?1
. . . i — Vi | )
estimation (cf. Section 2), computed as WS + h21] m/|zi +o?h21)
n
6 = n Z uij- (6) wheremis the dimension of the data spadeis a unit ma-

trix, 07 = W is the equivalent isotropic variance (equiva-
Note that the difference to the expectation maximizatigoal lent in the sense that it leads to the same (hyper-)volumeg, i.
rithm consists in the different ways in which the membershipi| = |021]), S = o; 2%; is the covariance matrix scaled to
degrees (equation (3)) and the posterior probabilitieh@ tdeterminant 1, ant is the regularization parameter.
EM algorithm are computed and used in the estimation. This modification of the covariance matrix shifts all eigen-
Since the high number of free parameters of the FMLE aflues by the value af?h? and then renormalizes the resulting
gorithm renders it unstable on certain data sets, it is lysuahatrix so that the determinant of the old covariance masrix i
recommended [12] to initialize it with a few steps of the vergreserved (i.e., the (hyper-)volume of the cluster is kept-c
robust fuzzyc-means algorithm. The same holds, though tostant). It tends to equalize the lengths of the major axelseof t
somewhat lesser degree, for the Gustafson—Kessel algoritmepresented (hyper-)ellipsoid and thus introduces a teryde
It is worth noting that of both the Gustafson—Kessel algtewards (hyper-)spherical clusters. (Algebraically, ihkas
rithm as well as the FMLE algorithm there exist so-callettie matrix “less singular”, and thus “more regular”, whict e
axes-parallelversions, which restrict the covariance matrplains the nameegularizationfor this modification.) This ten-
cesz; to diagonal matrices and thus allow only axes-paraligéncy of equalizing the axes lengths is the stronger, tregre
ellipsoids [14]. These constrained variants have cerda@- the value oth. In the limit, forh — o, the clusters are forced
tages w.r.t. robustness and execution time. to be exactly spherical; fdr= 0 the shape is left unchanged.



Method 2: The above method always changes the length the sizes, so that the size sum is increasedtbyHowever,
tios of the major axes and thus introduces a general tendetity missing renormalization may be mitigated to some degre
towards (hyper-)spherical clusters. In this (second) wekthby specifying a value of the scaling parametérat is smaller
however, a limitr, r > 1, for the length ratio of the longestthan 1. Formally, the equivalent isotropic radijiare adapted
to the shortest major axis of the represented (hyper-3gliip (in every update step) according to

is used and only if this limit is exceeded, the eigenvalues ar

shifted in such a way that the limit is satisfied. 029 _ o/s. (07 + D).

Formally: letAx, k=1,...m, be the eigenvalues of the covari-

ance matrix;. Set (in every update step) Method 3: The above methods always change the relation

max® A 2 of the cluster sizes and thus introduce a general tendency to

0, — <r”, wards clusters of equal size. In this (third) method, howeve

2 ming Ak . . .
he = max™ . Ae — r2min™ . A alimitr, r > 1, for the size ratio of the largest to the smallest
X1k k=17K  otherwise, cluster is used and only if this limit is exceeded, the sizes a

2 ’ . oo e .
of(rz—1) changed in such a way that the limit is satisfied. To achieve

this,bii t(i date st ding t
and then execute Method 1 with this valuehdf 's,bis set (in every update step) according to

0 . max;_,op
4.2 Congtraining Cluster Sizes b={ A e . Minggof T
max;_,0% —rming_, o8 herwi
The size of a cluster can be described in different ways Xor e r—1 , otherwise,

ample, by the determinant of its covariance maklijxwhich _ _ _

is a measure of the clusters squared (hyper-)volume, ameqapd then Method 1 is executed with this valudof
alent isotropic variance? or an equivalent isotropic radius

(standard deviationy; (equivalent in the sense that they lead.3 Constraining Cluster Weights

to the same (hyper-)volume, see above). The latter two ms\a-I ‘ it v in the mixt del
sures are defined as cluster weight6; appears only in the mixture model ap-

proach and the FMLE algorithm, where it describes the prior
2 m/is o 2 om/is probability of a cluster. For cluster weights we may use-basi
s d =\/of = X/|Z . . .
9 [l an o 9 Bl cally the same adaptation methods as for the cluster sitle, wi
and thus the (hyper-)volume of a cluster may also be Writtg}?_ _e_xceP“O” of the scaling paramesgsince the; are prob- _
aso™ = \/W abilities, i.e., we must ensufgf_, 6; = 1. Therefore we have:
Contraining the (relative) cluster size means to ensure-a @d ethod 1: The cluster weight§; are adapted (in every update
tain relation between the sizes or at least to introduce a tgtep) according to
dency into this direction. We suggest three different warsi c c
of modifying cluster sizes, in each of which the measureithat g(adan _ i1 (6 +b) = =19 (6 +b),
used to describe the cluster size is specified by an expanent Yi-1(Bk+b) ch-+ 316k

of the equivalent isotropic radius. Special cases are whereb is a parameter that is to be specified by a user. Note

a=1: equivalentisotropic radius, that this method is equivalent to a Laplace corrected estima
a=2: equivalentisotropic variance, tion of the prior probabilities or a Bayesian estimationhaan
a=m: (hyper-)volume. uninformative (uniform) prior.

Method 2: The value of the adaptation paramelbeis com-

Method 1: The equivalent isotropic rada; are adapted (in X
puted (in every update step) as

every update step) according to

c O_a 07 if M S ,
s@dan  _ alo CZk:l k. (ga4b) b _ ming_, Bk
! Skei(of+b) maxg_, 8 —rming_, 6 otherwise
c a r-1 7 ,
_ a Zk:lok o2+ b . e . . .
- "ch+ 58,08 (07 +D). with a user-specified maximum weight ratior > 1, and then

Method 1 is executed with this value of the paraméter
That is, each cluster size is increased by the value of the pa-
rameterb and then the sizes are renormalized so that the s .
of the cluster sizes is preserved. However, the parameaiay g‘ﬂ Exper Iments
ts)e_ulsse(ilz(t)(: bSConeo 'f[:g 2:32,[2: ;?zeezlg(rees ggu(;r"ggévgo(r?égiﬁ}dg implemented all methods suggested above as part of an ex-
for b = 0 only the parametes has an effect. This method i%éctatlon maximization and fuzzy clustering program \@ritt

o ; ; L _ by the first author of this paper and applied it to severakdiff
inspired by Laplace correction or Bayesian estimation &ith . : :

; . . ent data sets from the UCI machine learning repository f]. |
uniformative prior (see below).

all data sets each dimension was normalized to mean value 0
Method 2: This method, which is meant as a simplified anahd standard deviation 1 in order to avoid any distortioas th
thus more efficient version of method 1, does not renormalinay result from different scaling of the coordinate axes.



Figure 1: Result of Gustafson-Kessel algorithm on the if8gure 2: Result of fuzzy maximum likelihood estimation
data with fixed cluster size without (top) and with shape re@MLE) algorithm on the wine data with fixed cluster weight
ularization (bottom, method 2 with= 4). Both images show without (top) and with an adaptation of (relative) clustees
the petal length (horizontal) and the petal width (verjica(bottom, method 3 witl = 2). Both images show attribute 7
Clustering was done on all four attributes (sepal length afftrizontal) and attribute 10 (vertical). Clustering wamd
sepal width in addition to the above). on attributes 7, 10, and 13.

As one illustrative example, we present here the result ofAs another example let us consider the result of clustering
clustering the iris data (excluding, of course, the class #ie wine data with the fuzzy maximum likelihood estimation
tribute) with the Gustafson—Kessel algorithm using thilasc (FMLE) algorithm using three clusters of variable size. We
ter of fixed size (measured as the isotropic radius) of Onkési used attributes 7, 10, and 13, which are the most informative
all dimensions are normalized to mean 0 and standard dewa-t. the class assignments. One result we obtained withou
tion 1, 0.4 is a good size of a cluster if three clusters are@onstraining the relative cluster size is shown in FiguretBe
be found). The result without shape regularization is show@p. However, the algorithm is much too unstable to present
in Figure 1 at the top. Due to the few data points located @aunique result. Often enough clustering fails completagy,

a thin diagonal cloud on the right border on the figure, tig@use one cluster collapses to a single data point—an effect
middle cluster is drawn into a fairly long ellipsoid. Althgr that is mainly due to the steepness of the Gaussian probabil-
this shape minimizes the objective function, it may not beity density function and the sensitivity of the algorithmthe
desirable result, because the cluster structure is not acmgitialization of the cluster parameters.

enough. Using shape regularization method 2 with4 the  This situation is considerably improved by constraining th
cluster structure shown at the bottom in Figure 1 is obtainécklative) cluster size, a result of which (that sometimét) a

In this result the clusters are more compact and resembleftivtunate initialization, can also be achieved withoughswn
class structure of the data set. at the bottom in Figure 2. It was obtained with method 3 with



r = 2. Although the result is still not unique and sometime$7] R.O. Duda and P.E. Hart.Pattern Classification and
clusters still focus on very few data points, the algoritlem i
considerably more stable and reasonable results are ebtain

much more often than without size constraints. Hence we can o
8] H. Engl, M. Hanke, and A. NeubaudR®egularization of

conclude that constraining (relative) cluster size cosrsidly
improves the robustness of the algorithm.

6

10
In this paper we suggested a shape regularization methoé a%
well as methods to constrain the (relative) cluster size and

9]

Conclusions

weight for clustering algorithms that use a cluster-spebifa-

halanobis distance to describe the shape and the size of-a clu
ter. The basic idea is to introduce a tendency towards egidl]

length of the major axes of the represented (hyper-)eliipso

and towards equal cluster sizes. As the experiments show,
these methods improve the robustness of the more sophisti-

cated fuzzy clustering algorithms, which without them suff

from instabilities even on fairly simple data sets. Regul 12

ized and constrained clustering is so robust that it can been
used without an initialization by the fuzzymeans algorithm.

It should be noted that with a time-dependent shape reguL&@
ization parameter one may obtain a soft transition from t
fuzzy c-means algorithm (spherical clusters) to the Gustafson-

Kessel algorithm (general ellipsoidal clusters).

Software

A free implementation of the described methods as command

line programs for expectation maximization and fuzzy dust

ing (written in C) can be found at

http://fuzzy.cs.uni-magdeburg.de/

“borgelt/software.html#cluster
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