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Abstract. The constantly increasing capabilities of database storage
systems leads to an incremental collection of data by business organi-
zations. The research area of Data Mining has become a paramount
requirement in order to cope with the acquired information by locating
and extracting patterns from these data volumes. Possibilistic networks
comprise one prominent Data Mining technique that is capable of encod-
ing dependence and independence relations between variables as well as
dealing with imprecision. It will be argued that the learning of the net-
work structure only provides an overview of the qualitative component,
yet the more interesting information is contained inside the network pa-
rameters, namely the potential tables. In this paper we introduce a new
visualization technique that allows for a detailed inspection of the quan-
titative component of possibilistic networks.

1 Introduction

The ongoing advance in the development of database systems enables today’s
business organizations to acquire and store huge amounts of data. However, the
more data are collected, the stronger is the requirement for sophisticated ana-
lyzation methods to extract hidden patterns. The research area of Data Mining
addresses these tasks and offers intelligent data analysis techniques such as clas-
sification, prediction or concept description, just to name a few.

The latter technique of concept description tries to identify common prop-
erties of conspicuous subsets of given samples in the database. For example,
an automobile manufacturer may plan to investigate car failures by identifying
common properties that are exposed by specific subsets of cars.

Good concept descriptions should have a reasonable length, i. e., they must
not be too short in order not to be too general. Then again, long descrip-
tions are too restrictive since they constrict the database samples heavily, re-
sulting in only a few covered sample cases. Since we have to assume that the
database entries expose hundreds of attributes, it is essential to employ a fea-
ture selection approach that reduces this number to a handy subset of significant
attributes.
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In this paper, we assume the database entries to have nominal attributes with
one distinguished attribute designating the class of each data sample. We will
use possibilistic network induction methods to learn a dependence network from
the database samples. Further, we only draw our attention to the class attribute
and its conditioning attributes, which are its direct parents in the network.

We then show that the network structure alone does not necessarily provide us
with a detailed insight into the dependencies between the conditioning attributes
and the class attribute. Finally, a new visualization method for these potential
tables is presented and evaluated on real-world data.

The remainder of this paper is structured as follows: Section 2 presents a brief
review of possibilistic networks. In section 3, arguments for the importance of
visualizing the network parameters are produced. This will lead to a concrete
application and analysis in section 4. The paper concludes with section 5, giving
an outlook of intended further investigations.

2 Background

A database D, interpreted as a table, shall contain a certain number of tuples
(rows) th (1 ≤ h ≤ N), each of which exposes a fixed number of attributes
(columns) {A1, . . . , An} with respective domains dom(Ai) = {ai1, . . . , airi}, i. e.
|dom(Ai)| = ri. We allow D to contain multiple identical tuples which is modeled
by a weight function w : D → IN+ that assigns to each distinct tuple t ∈ D the
number of occurrences in D.

In the case of precise tuples, each cell of this table contains exactly one
attribute value, i. e. each tuple t assumes one distinct value aik for each at-
tribute Ai: ∀t ∈ D : Ai(t) = aik, i = 1, . . . , n, 1 ≤ k ≤ ri. From such a database
(or relation) a joint probability distribution can be estimated for each tuple:
∀t ∈ D : p(t) = w(t)

N . Each attribute can be seen as a random variable:

P (Ai = aik) =
|{t ∈ D | Ai(t) = aik}|

N
, i = 1, . . . , n, k = 1, . . . , ri

Imprecision now enters through the absence of some of these table entries, i. e.
there are tuples that have one or more values missing. Since we do not know the
specific value of such cells (usually designated by a ‘?’ or ‘∗’ in the dataset) we
have to take into consideration all possible values of the corresponding attribute.
Thus, the absence of a specific value of attribute A of tuple t is modeled as A(t) =
dom(A). Of course, this approach can be used as well to model partial ignorance,
i. e. we can allow the attribute A to assume any subset of dom(A). Let us consider
the imprecise database depicted in table 1. The first column shows the tuple as
it may appear in a data file, the second and third column depict the values of
the binary attributes A and B, respectively.

Formally, we allow each attribute Ai to be a random set [1], rather than a
random variable. Let Ω be the finite set of all possible precise tuples over the
Cartesian product of all attributes’ domains, i. e. Ω = ×n

i=1 dom(Ai). Then,
we can define a mapping γ : D → 2Ω that assigns to each (possibly imprecise)
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Table 1. An imprecise example table. Note, that tuples t3, t4 and t5, t6 are identical

A B γ(ti)
t1 = (a1, ∗) {a1} {b1, b2} {(a1, b1), (a1, b2)}
t2 = (a1, b2) {a1} {b2} {(a1, b2)}
t3 = (a1, b1) {a1} {b1} {(a1, b1)}
t4 = (a1, b1) {a1} {b1} {(a1, b1)}
t5 = (∗, b2) {a1, a2} {b2} {(a1, b2), (a2, b2)}
t6 = (∗, b2) {a1, a2} {b2} {(a1, b2), (a2, b2)}
t7 = (a2, b2) {a2} {b2} {(a2, b2)}
t8 = (∗, ∗) {a1, a2} {b1, b2} {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}

tuple t ∈ D all (definitely precise) tuples ω ∈ Ω that are covered by t. These
sets are shown in the fourth column of table 1.

Fig. 1. The contexts induced by ta-
ble 1

With this interpretation, each tuple t∈
D can be considered a context. The ex-
ample contexts are shown in figure 1. A
precise tuple obviously only describes a
context that contains itself. Note, that due
to the presence of multiple identical tuples
(t3 ≡ t4 and t5 ≡ t6), we obtain identical
contexts as well. The degree of possibility
of any precise tuple ω ∈Ω is the probabil-
ity of the set of contexts that contain ω:

πD : Ω → [0, 1] with
πD(ω) = PD({t ∈ D | ω ∈ γ(t)})

This coincides with the one-point coverage [2] of ω under D. The probability
function PD belongs to the random set and is part of the probability space
(D, 2D, PD), where in our study each tuple t ∈ D has the same elementary
probability p(t) = 1

N . In the interpretation from [3] we can derive a possibility
measure Π from the distribution πD in the following way:

Π : 2Ω → [0, 1] with Π(E) = max
ω∈E

PD({t ∈ D | ω ∈ γ(t)})

2.1 Possibilistic Networks
Even though the database D will be much smaller than Ω in practice, we
need methods to further reduce the size of the joint possibility distribution in-
duced by D. One idea is to exploit certain independency conditions within πD

such as the possibilistic non-interactivity, which is defined as follows: Let X =
{A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} denote three disjoint
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subsets of attributes, then X and Y are conditionally possibilistically indepen-
dent given Z, if the following equation holds:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :
∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :

∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :
Π(A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

= min{Π(A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm),
Π(B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)}

(1)

where Π(· | ·) denotes the conditional possibility measure defined as follows:

Π(A1 = a1, . . . , Ak = ak | B1 = b1, . . . , Bl = bl)

= max{πD(ω) | ω ∈ Ω ∧
k∧

i=1

Ai(ω) = ai ∧
l∧

i=1

Bi(ω) = bi}
(2)

The graph nodes coincide with the attributes. Let parents(A) denote the set
of all nodes that have an edge pointing to node A. With these prerequisites we
can use a directed acyclic graph (DAG) to encode such independencies in the
following way: Given an instatiation of the attributes in parents(A), attribute A
is conditional independent of the remaining attributes. Such a DAG is said to
carry the structural or global or qualitative information of a possibilistic net-
work.

Fig. 2. A general potential table

If a network structure is given, each
attribute Ai is assigned a potential table,
i. e., the set of all conditional distribu-
tions, one for each distinct instantiation
of the attributes in parents(Ai). The gen-
eral layout of such a table is shown in fig-
ure 2. Each column (like the one shaded
in gray) corresponds to one specific par-
ent attribute instantiation Qij . Each en-
try θijk is read as

Π(Ai = aik | parents(Ai) = Qij) = θijk

These conditional distributions encode the parametrical or local or quantitative
component of the network. The usual learning task of a possibilistic network
consists of two components: a search heuristic and an evaluation measure. Ex-
amples for the former can be found in [4,5,6], examples for the latter are studied
in [7].
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3 Visualization of Potential Tables

After the learning task for a possibilistic network is completed, we are given
a DAG that is encoding the detected (in)dependencies in the above-mentioned
manner. A sample network is depicted in figure 3.

Fig. 3. A possibilistic network
example

Since we are interested in the impact that cer-
tain attribute (values) have on the class attri-
bute, we concentrate our attention on the direct
ancestors of the class node, i. e., its parent nodes.

Although such a network conveys valuable
information about the underlying data, some
important questions remain unanswered. Cut
short, it is desirable to know which combina-
tions of the conditioning attributes’ values have
what kind of impact on which class values? The
emphasized words in the last sentence mark the entities that carry much more
information about the database under consideration. We can use the potential
tables — or more specific: the class attribute’s potential table — to extract the
demanded information. Thus, the goal is to find an intuitive way of representing
a potential table graphically, incorporating the entities mentioned above.

In order to represent the entries of a potential table in a chart, we investigate
the semantics of these values a little bit further. A value θijk tells us that given
the j-th instantiation of the parent nodes of attribute Ai, then it is possible to
a degree of θijk that the attribute Ai assumes the i-th value of its domain.

In a probabilistic setting, i. e., if we dealt with Bayesian Networks [8,9], the
values θijk would designate probabilities in the following way:

P (Ai = aik | parents(Ai) = Qij) = θijk

For the next considerations, we assume the following abbreviations for the sake
of brevity: A subset of sample cases σijk is defined by the class value aik and
the instantiation of the parent attributes Qij : σijk = (Qij , aik) := (A, c). With
this interpretation, each σijk represents an association rule [10]:

If parents(Ai) = Qij then Ai = aik with confidence θijk

For each probabilistic entry θijk we would compute three different values of
evaluation measures from the domain of association rules,1 e. g.:

mx = recall(σijk), my = lift(σijk), mz = supp(σijk)

with

supp(σijk) = P (parents(Ai) = Qij , Ai = aik)

recall(σijk) =
supp(σijk)

P (Ai = aik)

lift(σijk) =
θijk

P (Ai = aik)
1 For a detailed analysis of such measures we refer to [11].
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Finally, we display each σijk as a circle of size mz and locate it at posi-
tion (mx, my) in a two-dimensional chart.

Since we intend to visualize possibilistic values, we interpret the σijk as possi-
bilistic association rules where the value of θijk represent the degree of possibility
rather than the confidence. The presented measures are transformed into their
possibilistic counterparts. Of course, we have to check whether the semantics
behind these measures remain intact. Since the definition of the conditional
possibility is symmetric, i. e., ∀A, B : Π(A | B) = Π(B | A) = Π(A, B), the def-
initions for recall, confidence and support would coincide. Therefore, we define
them as follows:

suppposs(σ) = Π(A, c) recallposs(σ) = Π(A, c)
Π(c)

confposs(σ) = Π(A, c)
Π(A) liftposs(σ) = Π(A, c)

Π(A)Π(c)

The justification for this type of definition is as follows: As the degree of
possibility for any tuple t, we assign the total probability mass of all contexts
that contain t [12]. With this interpretation, the term Π(A = a) refers to the
maximum degree of possibility of all sets of tuples, for which A(t) = a holds,
i. e., Π(A = a) = max{p(t) = w(t)

N | t ∈ Ω ∧ A(t) = a}. This probabilistic origin
allows us to look at the possibility of an event E (i. e., a set of tuples) as an
upper bound of elementary events’ probablitities contained in E [3].

4 Experiments and Evaluation

The visualization technique presented here was introduced during a data mining
project in cooperation with an automobile manufacturer. To justify the practi-
cal applicability, we intend to present real-world results. Since the underlying
datasets are highly confidential, we are not allowed to show any attribute names
or values. However, the charts will give a good insight, how suspiciuous subsets
of tuples can be identified.

The dataset under analysis contained approximately 50.000 vehicle descrip-
tions, including one class attribute designating, whether the respective car was
faulty or not. A network was learned which revealed the class attribute to have
two parent nodes, anonymized to X and Y . We then chose the three evaluation
measures to be recall, lift and support, which resulted in the chart depicted in
figure 4. Choosing these measures, a user can apply the following heuristic to
identify possible conspicuous tuples:

“Large circles in the upper right corner are promising candidate subsets of
samples that could most likely be suspicuous.”

Dark circles represent faulty vehicles, white circles non-faulty ones. In figure 4
we identify a large gray circle on the right side, labeled ‘1’. The corresponding
attribute values for X and Y belonging to this circle were identified by experts
as having a causal effect on these 800 faulty vehicles.
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Fig. 4. The circle with label ‘1’ represents 800 tuples having a large lift and recall

Fig. 5. Only faulty vehicles sets are shown. Again, the circle labeled ‘2’ represents
eye-catching tuples, that had a causal relationship with the corresponding values for
X and Y .
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Another way of looking at this dataset is by choosing different measures for
the x- and y-axis. Motivated by charts from the domain of Information Retrieval,
we assign the measures confidence and recall to the x- and y-axis, respectively.
Omitting the non-faulty circles for clarity results in the chart of figure 5.

Again, the circle marked as ‘2’ represents (the same) 800 faulty vehicles.

5 Conclusion and Future Work

In this paper, we gave a short introduction to possibilistic networks and its ability
of handling imprecise data which is becoming more and more a requirement for
industrial applications since real-world data often contains missing data. We ar-
gued further that the more interesting information is contained inside the quan-
titative part of a network, namely its potential tables. Then, a new visualization
technique was presented that is capable of displaying high-dimensional, nominal
potential tables containing possibilistic parameters. This plotting method was
evaluated in an industrial setting which produced empirical evidence that the
presented visualization method greatly enhances the exploratory data analysis
process. Since the presented visualization method aids to find concept descrip-
tions and combines identical tuples (w. r. t. a subset of attributes) it may be
promising to try to apply a modified version of this technique in the area of
Text Mining, where several documents (again, identical w. r. t. some attribute,
e. g. topic or keywords) may be grouped and displayed against other document
groups.
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