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Abstract

In this paper we present NEFCLASS, a neuro—fuzzy system
for the classification of data. This approach is based on our
generic model of a fuzzy perceptron which can be used to
derive fuzzy neural networks or neural fuzzy systems for spe-
cific domains. The presented model derives fuzzy rules from
data to classify patterns into a number of (crisp) classes.
NEFCLASS uses a supervised learning algorithm based on
fuzzy error backpropagation that is used in other derivations
of the fuzzy perceptron.

Introduction

Combinations of neural networks and fuzzy systems are very
popular (for an overview see [4, 6]), but most of the ap-
proaches are not easy to compare because they use very dif-
ferent architectures, activation functions, propagation and
learning algorithms, etc. In [5] we presented a fuzzy per-
ceptron as a generic model of multilayer fuzzy neural net-
works. It can be used as a common base for neuro-fuzzy
architectures in order to ease the comparision of different
approaches. By applying additional constraints to the defi-
nition of the fuzzy perceptron one can e.g. obtain a structure
that can be interpreted as a usual fuzzy controller, and easily
create a neuro-fuzzy controller this way [3, 8, 9].

In this paper we present an approach to neuro-fuzzy data
analysis. The goal is to derive fuzzy rules from a set of data
that can be separated in different crisp classes, i.e. at this
moment we do not consider data where the patterns belong
to overlapping or fuzzy categories. The fuzziness involved is
due to an imperfect or incomplete measurement of features
thus rendering it difficult to assign a pattern to the correct
category.
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The fuzzy rules describing the data are of the form:
ifz; is py and z2 is p2 and ... and z, is g,
then the pattern (z1,z2,...,z,) belongs to class i,
where py, ..., pn are fuzzy sets. The task of the NEFCLASS
model is to discover these rules and to learn the shape of the
membership functions.

We will first briefly present the fuzzy perceptron model in
section II, and in section III we show how the NEFCLASS
model is derived from it. We also present the supervised
learning algorithm. In the fourth section we discuss the
learning results we got by applying NEFCLASS to the IRIS
data set, and we compare the results to other approaches.

The Fuzzy Perceptron

A fuzzy perceptron has the architecture of an usual multi-
layer perceptron, but the weights are modelled as fuzzy sets
and the activation, output, and propagation functions are
changed accordingly. The intention of this model is to be
interpretable in form of linguistic rules and to be able to use
prior rule based knowledge, so the learning has not to start
from scratch. In [5] we suggested a generic model for fuzzy
neural networks based on a 3-layer fuzzy perceptron. By
using it to derive neural fuzzy systems for special domains,
it would be possible to evalunate these different neuro-fuzzy
approaches by means of the same underlying model. The
fuzzy perceptron was used to derive the NEFCON model
(3, 8, 9] for neuro-fuzzy controll applications, and it is now
used to define the NEFCLASS model discussed in this pa-
per. We will therefore shortly present the definition of the
generic fuzzy perceptron.

Definition 1 A 3-layer fuzzy perceptron is a 3-layer
feedforward neural network (U, W,NET, A, O, ex) with the
following specifications:

(i) U = |J Ui is a non-empty set of units (neurons)
€M
and M = {1,2,3} is the index set of U. For alli,j €
MU #0andU;NU; =0 withi # j holds. U, is
called input layer, Uy rule layer (hidden layer), and
Us output layer.
(i) The structure of the network (connections) is defined
as W : U x U — F(R), such that there are only
connections W (u,v) with
u € Ui, v € Uipa(s € {1,2}) (F(R) is the set of
all fuzzy subsets of R ).



(iii) A defines an activation fuhction A. for each
u € U to calculate the activation a

(a) for input and rule units u € U U Us:
Au:R = R, ay = Au(nety) = net,,
(b) for output unitsu € Us:
Au F(R) — F(R),
@y = Au(nety) = net,.

(iv) O defines for each u € U an output function O, to
calculate the output o,

(a) for input and rule units u € U; U U,:
Ou:R =R, oy =0u(au) = ay,
(b) for output units u € Us:
O. F(R) — R,
0u Ou(ay) = DEFUZZy(a.),

where DEFUZZ, is a suitable defuzzification
function.

(v) NET defines for each unit u € U a propagation func-
tion NET,, to calculate the net input net,,

(a) for input units u € U, :
NET.: R — R, net, =ez,,,
(b) for rule units u € Us:

NET. (R x F(R))U* —[0,1],

net, T AW, u)(ow)},
u' €l

where T is a t-norm,

(c) for output units u € Us:

NET. ([0,1] x F(R))2 — F(R),
nety R — [o0,1],

netu(z) = u’é‘uz {T(Oul, W(u', u)(l’))} )

where L is a t-conorm.

If the fuzzy sets W(u',u), o' € U,
u € Us, are monotonic on their support, and
W= (u',u)(r) = z € R such that W(v',u)(z) =
7 holds, then the propagation function net,, of an
output unit u € Uz can alternatively be defined

as
Z 04 - m(0y)
. u/ €U.
1 ifz=2€0
nety(z) = }: 0w
u/ €Uy
0 otherwise
withm(oy) = W= (v, u)(ow). To calculate the

output o, in this case
0y = 1, with nety(z)=1.

is used instead of (iv.b).
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(vi) ex : Uy — R, defines for each input unit v € U, its
external input ex(u) = exy. For all other units ex is
not defined.

A fuzzy perceptron can be viewed as a usual 3-layer per-
ceptron that is “fuzzified to a certain extent”. Only the
weights, the net inputs, and the activations of the output
units are modelled as fuzzy sets. A fuzzy perceptron is like
a usual perceptron used for function approximation. The
advantage lies within the interpretation of its structure in
the form of linguistic rules, because the fuzzy weights can
be associated with linguistic terms. The network can also
be created partly, or in the whole, out of linguistic (fuzzy
if-then) rules.

The NEFCLASS model

NEFCLASS means NEuro Fuzzy CLASSification, and is
used to determine the correct class or category of a given
input pattern. The patterns are vectors x = (z1,..-,2a) €
R"™ and a class C is a (crisp) subset of R”. We assume
the intersection of two different classes to be empty. The
pattern feature values are represented by fuzzy sets, and the
classification is described by a set of linguistic rules. For
each input feature z; there are ¢; fuzzy sets u(li), ..,uf,'_),
and the rule base contains k fuzzy rules R;,..., Rx.

Figure 1: A NEFCLASS system with two inputs, five rules
and two output classes
The rule base is an approximation of an (unknown) func-
tion ¢ : R™ — {0,1}™ that represents the classifica-
tion task where @¢(x) = (c1,...,cm) such that ¢;
1 and ¢ 0 (j € {1,....,m},j # i), ie. x be
longs to class C;. Because of the mathematics involved
the rule base actually does not approximate ¢ but the
function ¢’ R™ — [0,1]™. We will get ¢(x) by
p(x) = ¥(¢'(x)), where ¢ reflects the interpretation of the
classification result obtained from a NEFCLASS system. In
our case we will map the highest component of each vector



c to 1 and its other components to 0, respectively.

The fuzzy sets and the linguistic rules which perform this ap-
proximation, and define the resulting NEFCLASS system,
will be obtained from a set of examples by learning. The
Fig. 1 shows a NEFCLASS system that classifies input pat-
terns with two features into two distinct classes by using five
linguistic rules.

Its main feature are the shared weights on some of the con-
nections. This way we make sure, that for each linguistic
value (e.g. “r; is positive big”) there is only one represen-
tation as a fuzzy set (e.g. ull) in Fig. 1), i.e. the linguistic
value has only one interpretation for all rule units (e.g. R;
and R; in Fig. 1). It cannot happen that two fuzzy sets that
are identical at the beginning of the learning process develop
differently, and so the semantics of the rule base encoded in
the structure of the network is not affected [7]. Connections
that share a weight always come from the same input unit.

Definition 2 A NEFCLASS system is a 3-layer fuzzy per-
ceptron with the following specifications:

(l) U, = {x;,...,zn}, U, = {Rl,n-,Rk}; and
U3 = {C],.‘.,Cm}.
(i) Each connection between unitsz, € U, and R, € U, is

labelled with a linguistic term Ag? Gre{1,...,q}).
(iis)
(iv)

W(R,c) € {0,1} holds for all, R€ U,, c € Us.

Connections comming from the same input unit z,
and having identical labels, bear the same weight at
all times. These connections are called linked con-
nections, and their weight is called shared weight.

(v)

Let L; r denote the label of the connection between the
unitsz € Uy and R € U;. For all R, R' € U, holds:

(V= €U1) Lo = Lypt) = R = R

For all rule units R € U, and all units

¢, ¢’ € Us we have

(vi)

(W(R,e)=1)A(W(R,)=1)=c=¢.

(vii) For all output units ¢ € Us, 0. = a. = net. holds.

(piii} For all output units ¢ € Us the net input net. is cal-

culated by:
Z W(R,c) or
ReU,

ST W)

ReU,

net, =

A NEFCLASS system can be build from partial knowledge
about the patterns, and can be then refined by learning, or
it can be created from scratch by learning. A user has to
define a number of initial fuzzy sets partitioning the domains
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of the input features, and must specify the largest number
of rule nodes that may be created in the hidden layer.

Each fuzzy set ug‘) is labelled with a linguistic term Ag")A
This may be terms like small, medium, large etc. The fuzzy
sets of those connections leading to the same rule unit R are
also called the antecedents of R.

A NEFCLASS system that is created from scratch starts
with no hidden units at all. They are created during a first
run through the learning task £, i.e. the set of examples.
A rule is created by finding for a given input pattern p the
combination of fuzzy sets, where each yields the highest de-
gree of membership for the respective input feature. If this
combination is not identical to the antecedents of an already
existing rule, and if the permitted number of rule units is
not yet reached, a new rule node is created. This is a very
simple way of finding fuzzy rules, and it can only be success-
ful, if the patterns are selected randomly from the learning
task, and if the cardinalities of the classes are approximately
equal. Another way would be, to use a scoring system, do
not restrict the number of rules at first, and then later se-
lect those rules that have the highest scores. But from an
implementational point of view, this would be more demand-
ing, especially when problems with a large number of input
features are considered.

When the rule base is created, the learning algorithm will
adapt the membership functions of the antecedents. In this
paper we consider triangular membership functions with
three parameters:

%:—: if z € [a, ),
p:R—=1[0,1], p(z)= £=2 ifzelbd,
0 otherwise.

We also use min as the i-norm to determine the degree of
fulfillment of a rule, i.e. the activation of a rule node.

Definition 3 (NEFCLASS learning algorithm)
Consider a NEFCLASS system with n input units
Z1,...,Zn, kK < Kkmax rule units Ry,..., Ry, and m out-
put units c1,...,¢m. Also given is a learning task £ =
{(p1,t1),...,(Ps, ts)} of s patterns, each consisting of an
input pattern p € R", and a target patternt € {0,1}™. The
learning algorithm that is used to create the k rule units of
the NEFCLASS system consists of the following steps (rule
learning algorithm):

(i) Select the nest pattern (p,t) from L

(ii) For each input unit z; € U, find the membership func-
tion ug-") such that

)= max (W)

(iii) If there are still less than kmax rule nodes, and there
i3 no rule node R with

W(z1,R) = pg-i),..

W (2, R) = p{™

In



than create such a node, and connect it to the ouput
node c; if t; = 1.

(iv) If there are still unprocessed patterns in £, andk <

kmax then proceed with step (i), and stop otherwise.

The supervised learning algorithm of a NEFCLASS system to
adapt its fuzzy sets runs cyclically through the learning task
L by repeating the following steps until a given end criterion
is met (fuzzy set learning algorithm):

(i) Select the nezt pattern (p,t) from L, propagate it
through the NEFCLASS system, and determine the

output vector c.

(ii) For each output unit c;:
Determine the delta value 5., = t; — oc;

(#ii) For each rule unit R with op > 0:

(a) Determine the delta value

Sr=or(1-or) Y _ W(R,c)bc.
ceU;

(b) Find z' such that
W(z', R)(ow) = min {W(z, R)(0)).
€U,

(c) For the fuzzy set W(z', R) determine the delta
values for its parameters a, b, c using the learning

rate 0 > 0:
6 = o-br-(c—a)-sgn(om —b),
a6 = —~0-8rp-(c—a)+b,
b = 6-5R-(C—a)+5b,

and apply the changes to W(z', R) if this does
not violate against a given set of constraints ®.
(Note: the weight W(z', R) might be shared by
other connections, and in this case might be
changed more than once)

(iv) If an epoch was completed, and the end criterion is
met, then stop; otherwise proceed with step (i).

Remarks

o The factor or(1 — or) in step (iii.2) of the fuzzy set
learning algorithm makes sure that the changes in the
fuzzy weights are bigger, if a rule node has an activa-
tion of approximately 0.5, and that they are smaller
if the activation approaches 0 or 1. By this a rule
is “forced to decide”, whether it wants to support a
pattern or not.

The sum in step (iii.a) is not really necessary, but
allows to implement learning weights between rule and
output units.

¢ The set of constraints ® mentioned in step (iii.c) usu-
ally makes sure that the fuzzy sets keep their triangu-
lar form, and do not leave the domain of the respective
input variable z.

The end criterion that terminates the learning process
is not easy to formulate, because the error can ususally
not assume 0 due to the definition of net.. A solution
would be to define a maximum number of admissable
misclassifications. <&

Results and Semantical Aspects

In this section we present classification results obtained from
NEFCLASS. We will also compare our findings with the per-
formance of a common multilayer perceptron on the same
data set, and with another neuro-fuzzy approach called
FuNe I [2).

As an example we applied NEFCLASS to the IRIS data set
[1]. The data set was split in half, and the patterns were or-
dered alternately within the training and test data sets. We
let the system create a maximum of 10 rules. After learning,
3 out of 75 patterns from the training set were still classified
wrongly (i.e. 96% correct). Testing the second data set, the
NEFCLASS system classified only 2 out 75 patterns incor-
rectly (i.e. 97.3% correct). Considering all 150 patterns the
system performed well with 96.67% correct classifications.

" We compared the learning results of the NEFCLASS system
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to an usual 3-layer perceptron trained by standard backpro-
pagation. We used a network of 4 input, 3 hidden and 3
output units. The network was able to learn the training set
completely, i.e. there were no classification errors on the 75
training patterns. But the network classified 5 of the 75 test
patterns incorrectly, using the same criterion for classifica-
tion as we did for the NEFCLASS system. So considering
all 150 patterns both models performed equally weil.

Incrementing the number of hidden units within the neural
network caused more training cycles, and ususally did not
produce a better result. We found one network with 10
hidden units that classified only 3 patterns of the test set
incorrectly, but the 10 hidden units are not necessary to
solve the problem, as can be seen in the before mentioned
network with only 3 hidden units. We did not further try
to obtain a better learning result with this network, e.g. by
changing the learning parameters.

To obtain exact ouput values of 0 or 1, it would be nec-
essary to learn the weights of the connections from the
rule to output units, too. This would result in weighted
rules, which give rise to some semantical problems, and we
have addressed this question in several of our papers already
[6, 7, 8, 9]. Allowing the weights to be selected from [0, 1]
could be interpreted as something like a degree of support
for a rule. A value less than 1 would denote something like
an ill-defined rule, that supports a class only to some extent.
But one would still not receive output values near 1, they
would be even smaller than with the weights fixed at 1. We
tried to learn the weights within [0,1] and found that they



usually have values greater than 0.95, and that the learning
results did not benefit from this. Another approach would
be to allow the weights to assume any value in IR, but one
would leave the semantics of fuzzy rules behind, because it is
not clear how rules weighted by absolute values greater than
1 or by negative values should be interpreted (for rules with
negative weights sometimes an interpretation as if not rules
is suggested [2]). Therefore we completely refrained from
learning the weights in such a way. But if an exact output
value is needed, and the interpretation of the learning result
is not important, this approach can make sense, anyway.

Another neuro-fuzzy approach to pattern classification is
presented in [2]. The authors use a system called “FuNe
I” to obtain rules and fuzzy sets from data samples. The
authors of [2] have applied their FuNe I system to several
real world examples, and also used the IRIS data set split in
a training and a test set. They have reached a classification
rate of 99% on the test set using 13 rules and four inputs, and
a 96% classification rate using 7 rules and 3 inputs. FuNe I
is offered in a limited test version by the authors of [2], so we
could run our own test to compare it with NEFCLASS. We
allowed the system to create 10 rules, and it came out with 5
classification errors on the test set after training. Therefore
the two models are comparable in their performance, even
if FuNe I has a much more complex structure, and a more
elaborated training procedure.

We think that simple models like NEFCLASS that are easy
to interpret should be tried first before turning over to more
complex approaches like FuNe I. They are usually harder
to interpret, and need more expensive training algorithms.
In addition there are sometimes semantical problems. FuNe
I, for example, can create non-normal fuzzy sets, and rule
weights greater than 1 (which is necessary to obtain exact
classifications, i.e. nearly exact output values). This makes
the interpretation of the model in form of fuzzy rules more
difficult. But approaches like FuNe I can be useful, when
models like NEFCLASS fail.

Conclusions

In this paper we have presented the NEFCLASS model, a
neuro-fuzzy classification system derived from the generic
model of a 3-layer fuzzy perceptron. NEFCLASS can be
initialized by prior knowledge using fuzzy if-then rules and
it can also be interpreted this way after the learning pro-
cess, i.e. it is not a black box like usual neural networks.
The model is able to create fuzzy rules from data examples
by a single run through the data set. After creating a rule
base NEFCLASS learns its fuzzy sets by adapting param-
eters of the membership functions in a supervised learning
algorithm. The rules are not weighted like in other neuro—
fuzzy approaches, thus avoiding semantical problems, and
simplifying the interpretation of the learning result.

NEFCLASS was tested on the IRIS data set and the perfor-
mance was satisfactory compared to usual neural networks
and another neuro—fuzzy approach FuNe I. Further research
will be conducted on applying NEFCLASS to real world clas-
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sification problems, and on the integration of boolean input
variables, and the handling of missing values, which is im-
portant for the processing of e.g. medical data. An imple-
mentation of a more elaborated rule learning algorithm will
also be considered.

For the reader who is interested in testing the NEF-
CLASS model or in repeating our learning results we offer
NEFCLASS-PC for MS-DOS personal computers. The pro-
gramm and the necessary data files can be obtained (from
January 1995 on) by anonymous ftp from ftp.ibr.cs.tu-bs.de
in the directory /pub/local/nefclass, or from the World Wide
Web (http://www.cs.tu-bs.de/~nauck).
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