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Abstract. Precision agriculture (PA) and information technology (IT)
are closely interwoven. The former usually refers to the application of
nowadays’ technology to agriculture. Due to the use of sensors and GPS
technology, in today’s agriculture many data are collected. Making use
of those data via IT often leads to dramatic improvements in efficiency.
For this purpose, the challenge is to change these raw data into useful
information. In this paper we deal with neural networks and their usage
in mining these data. Our particular focus is whether neural networks
can be used for predicting wheat yield from cheaply-available in-season
data. Once this prediction is possible, the industrial application is quite
straightforward: use data mining with neural networks for, e.g., optimiz-
ing fertilizer usage, in economic or environmental terms.

Keywords: Precision Agriculture, Data Mining, Neural Networks, Pre-
diction.

1 Introduction

Due to the rapidly advancing technology in the last few decades, more and more
of our everyday life has been changed by information technology. Information
access, once cumbersome and slow, has been turned into “information at your
fingertips” at high speed. Technological breakthroughs have been made in in-
dustry and services as well as in agriculture. Mostly due to the increased use
of modern GPS technology and advancing sensor technology in agriculture, the
term precision agriculture has been coined. It can be seen as a major step from
uniform, large-scale cultivation of soil towards small-field, precise planning of,
e.g., fertilizer or pesticide usage. With the ever-increasing amount of sensors and
information about their soil, farmers are not only harvesting, e.g., potatoes or
grain, but also harvesting large amounts of data. These data should be used
for optimization, i.e. to increase efficiency or the field’s yield, in economic or
environmental terms.

Until recently [13], farmers have mostly relied on their long-term experience on
the particular acres. With the mentioned technology advances, cheaper sensors
have eased data acquisition on such a scale that it makes them interesting for the
data mining community. For carrying out an information-based field cultivation,
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the data have to be transformed into utilizable information in terms of manage-
ment recommendations as a first step. This can be done by decision rules, which
incorporate the knowledge about the coherence between sensor data and yield
potential. In addition, these rules should give (economically) optimized recom-
mendations. Since the data consist of simple and often even complete records of
sensor measurements, there are numerous approaches known from data mining
that can be used to deal with these data. One of those approaches are artificial
neural networks [4] that may be used to build a model of the available data and
help to extract the existing pattern. They have been used before in this context,
e.g. in [1], [7] or [12].

The connection between information technology and agriculture is and will
become an even more interesting area of research in the near future. In this
context, IT mostly covers the following three aspects: data collection, analysis
and recommendation [6]. This work is based on a dissertation that deals with
data mining and knowledge discovery in precision agriculture from an agrarian
point of view [15]. This research led to economically optimized decision rules,
but left out some of the details on the used techniques. Since we are dealing
with the above-mentioned data records, the computer science perspective will
be applied. The main research target is whether we can model and optimize the
site-specific data by means of further computational intelligence techniques. We
will therefore deal with data collection and analysis.

The paper is structured as follows: Section 2 will provide the reader with
details on the acquisition of the data and some of the data’s properties. Section 3
will give some background information on neural networks. In Section 4 we will
describe the experimental layout and afterwards, we will evaluate the results
that were obtained. The last section will give a brief conclusion.

2 Data Acquisition

The data available in this work have been obtained in the years 2003 and 2004
on a field near Köthen, north of Halle, Germany. All information available for
this 65-hectare field was interpolated to a grid with 10 by 10 meters grid cell
sizes. Each grid cell represents a record with all available information. During
the growing season of 2004, the field was subdivided into different strips, where
various fertilization strategies were carried out. For an example of various man-
aging strategies, see e.g. [11], which also shows the economic potential of PA
technologies quite clearly. The field grew winter wheat, where nitrogen fertilizer
was distributed over three application times.

Overall, there are seven input attributes – accompanied by the yield in 2004 as
the target attribute. Those attributes will be described in the following. In total,
there are 5241 records, thereof none with missing values and none with outliers.

2.1 Nitrogen Fertilizer – N1, N2, N3

The amount of fertilizer applied to each subfield can be easily measured. It
is applied at three points in time into the vegetation period. Since the site of
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Table 1. Data overview

Attribute min max mean std Description

N1 0 100 57.7 13.5 amount of nitrogen fertilizer applied at the first date

N2 0 100 39.9 16.4 amount of nitrogen fertilizer applied at the second date

N3 0 100 38.5 15.3 amount of nitrogen fertilizer applied at the third date

REIP32 721.1 727.2 725.7 0.64 red edge inflection point vegetation index

REIP49 722.4 729.6 728.1 0.65 red edge inflection point vegetation index

EM38 17.97 86.45 33.82 5.27 electrical conductivity of soil

Yield03 1.19 12.38 6.27 1.48 yield in 2003

Yield04 6.42 11.37 9.14 0.73 yield in 2004

application had also been designed as an experiment for data collection, the
range of N1, N2, and N3 in the data is from 0 to 100 kg

ha , where it is normally
at around 60 kg

ha .

2.2 Vegetation – REIP32, REIP49

The red edge inflection point (REIP) is a first derivative value calculated along
the red edge region of the spectrum, which is situated from 680 to 750nm. Ded-
icated REIP sensors are used in-season to measure the plants’ reflection in this
spectral band. Since the plants’ chlorophyll content is assumed to highly cor-
relate with the nitrogen availability (see, e.g. [10]), the REIP value allows for
deducing the plants’ state of nutrition and thus, the previous crop growth. For
further information on certain types of sensors and a more detailed introduction,
see [15] or [8]. Plants that have less chlorophyll will show a lower REIP value as
the red edge moves toward the blue part of the spectrum. On the other hand,
plants with more chlorophyll will have higher REIP values as the red edge moves
toward the higher wavelengths. For the range of REIP values encountered in the
available data, see Table 1. The numbers in the REIP32 and REIP49 names
refer to the growing stage of winter wheat.

2.3 Electric Conductivity – EM38

A non-invasive method to discover and map a field’s heterogeneity is to measure
the soil’s conductivity. Commercial sensors such as the EM-381 are designed for
agricultural use and can measure small-scale conductivity to a depth of about
1.5 metres. There is no possibility of interpreting these sensor data directly in
terms of its meaningfulness as yield-influencing factor. But in connection with
other site-specific data, as explained in the rest of this section, there could be
coherences. For the range of EM values encountered in the available data, see
Table 1.

1 Trademark of Geonics Ltd, Ontario, Canada.
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Table 2. Overview on available data sets for the three fertilization times (FT)

FT1 Yield03, EM38, N1

FT2 Yield03, EM38, N1, REIP32, N2

FT3 Yield03, EM38, N1, REIP32, N2, REIP49, N3

2.4 Yield 2003/2004

Here, yield is measured in t
ha . In 2003, the range for corn was from 1.19 to 12.38.

In 2004, the range for wheat was from 6.42 to 11.37, with a higher mean and
smaller standard deviation, see Table 1.

2.5 Data Overview

A brief summary of the available data attributes is given in Table 1.

2.6 Points of Interest

From the agricultural perspective, it is interesting to see how much the influen-
cable factor “fertilization” really determines the yield in the current site-year.
Furthermore, there may be additional factors that correlate directly or indirectly
with yield and which can not be discovered using regression or correlation anal-
ysis techniques like PCA. To determine those factors we could establish a model
of the data and try to isolate the impact of single factors. That is, once the cur-
rent year’s yield data can be predicted sufficiently well, we can evaluate single
factors’ impact on the yield.

From the data mining perspective, there are three points in time of fertiliza-
tion, each with different available data on the field. What is to be expected is
that, as more data is available, after each fertilization step the prediction of the
current year’s yield (Yield03) should be more precise. Since the data have been
described in-depth in the preceding sections, Table 2 serves as a short overview
on the three different data sets for the specific fertilization times.

For each data set, the Yield04 attribute is the target variable that is to be pre-
dicted. Once the prediction works sufficiently well and is reliable, the generation
of, e.g., fertilization guidelines can be tackled. Therefore, the following section
deals with an appropriate technique to model the data and ensure prediction
quality.

3 Data Modeling

In the past, numerous techniques from the computational intelligence world have
been tried on data from agriculture. Among those, neural networks have been
quite effective in modeling yield of different crops ([12], [1]). In [14] and [15],
artificial neural networks (ANNs) have been trained to predict wheat yield from
fertilizer and additional sensor input. However, from a computer scientist’s per-
spective, the presented work omits details about the ANN’s internal settings,
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such as network topology and learning rates. In the following, an experimental
layout will be given that aims to determine the optimal parameters for the ANN.

3.1 Neural Networks Basics

The network type which will be optimized here are multi-layer perceptrons
(MLPs) with backpropagation learning. They are generally seen as a practi-
cal vehicle for performing a non-linear input-output mapping [4]. To counter the
issue of overfitting, which leads to perfect performance on training data but poor
performance on test or real data, cross-validation will be applied. As mentioned
in e.g. [5], the data will be split randomly into a training set, a validation set
and a test set. Essentially, the network will be trained on the training set with
the specified parameters. Due to the backpropagation algorithm’s properties, the
error on the training set declines steadily during the training process. However,
to maximize generalization capabilities of the network, the training should be
stopped once the error on the validation set rises [2].

As explained in e.g. [3], advanced techniques like Bayesian regularization [9]
may be used to optimize the network further. However, even with those advanced
optimization techniques, it may be necessary to train the network starting from
different initial conditions to ensure robust network performance. For a more
detailed and formal description of neural networks, we refer to [3] or [4].

3.2 Variable Parameters

For each network there is a large variety of parameters that can be set. However,
one of the most important parameters is the network topology. For the data set
described in Section 2, the MLP structure should certainly have up to seven in-
put neurons and one output neuron for the predicted wheat yield. Since we are
dealing with more than 5000 records, the network will require a certain amount
of network connections to be able to learn the input-output mapping sufficiently
well. Furthermore, it is generally unclear and mostly determined experimentally
how many layers and how many neurons in each layer should be used [2]. There-
fore, this experiment will try to determine those network parameters empirically.
Henceforth, it is assumed that two layers are sufficient to approximate the data
set. This structure is generally assumed to be capable of approximating virtually
any function of interest, provided that sufficiently many hidden connections are
available [5]. To determine the exact number of neurons, a maximum size of 32
neurons in the first and second hidden layer has been chosen – this provides a
maximum of 1024 connections in between the hidden layers, which should be suf-
ficient. The range of the network layers’ sizes will be varied systematically from
2 to 32. The lower bound of two neurons has been chosen since one neuron with
a sigmoidal transfer function does not contribute much to the function approx-
imation capabilities. The upper bound is generally problem-dependent; here, it
was determined by preliminary experiments that showed that the generalization
capabilities are reduced by using more than a certain number of neurons. More-
over, the maximum network size has also been chosen for reasons of computation
time.
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3.3 Fixed Parameters

In preliminary experiments which varied further network parameters systemat-
ically, a learning rate of 0.5 and a minimum gradient of 0.001 have been found
to deliver good approximation results without overfitting the data. All of the
network’s neurons have been set to use the tanh transfer function, the initial
network weights have been chosen randomly from an interval of [−1, 1]. Data
have been normalized to an interval of [0, 1].

3.4 Network Performance

The network performance with the different parameters will be determined by
the mean of the squared errors on the test set since those test data will not be
used for training. Overall, there are three data sets for which a network will be
trained. The network topology is varied from 2 to 32 neurons per layer, leaving
961 networks to be trained and evaluated. The network’s approximation quality
can then be shown on a surface plot.

4 Results and Discussion

To visualize the network performance appropriately, a surface plot has been
chosen. In each of the following figures, the x- and y-axes show the sizes of the
first and second hidden layer, respectively. Figures 1(a), 1(b) and 2(a) show the
mean squared error vs. the different network sizes, for the three fertilization
times (FT), respectively. For the first FT, the mse on average is around 0.3,
at the second FT around 0.25 and at the third FT around 0.2. It had been
expected that the networks’ prediction improves once more data (in terms of
attributes) become available for training. There is, however, no clear tendency
towards better prediction with larger network sizes. Nevertheless, a prediction
accuracy of between 0.44 and 0.55 t

ha (the figures only show the mean squared
error) at an average yield of 9.14 t

ha is a good basis for further developments
with those data and the trained networks.

Furthermore, there are numerous networks with bad prediction capabilities in
the region where the first hidden layer has much fewer neurons than the second
hidden layer. Since we are using feedforward-backpropagation networks without
feedback, this behaviour should also be as expected: the information that leaves
the input layer is highly condensed in the first hidden layer if it has from two
to five neurons – therefore, information is lost. The second hidden layer’s size is
then unable to contribute much to the network’s generalization – the network
error rises.

For the choice of network topology, there is no general answer to be given
using any of the data sets from the different FTs. What can be seen is that the
error surface is quite flat so that a layout with 16 neurons in both hidden layers
should be an acceptable tradeoff between mean squared error and computational
complexity.
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(a) MSE for first data set (b) MSE for second data set

Fig. 1. MSE plots for first and second data set

(a) MSE for third data set (b) MSE difference from first to second
data set

Fig. 2. MSE plot for third data set, MSE difference plot for first data set

(a) MSE difference from second to third
data set

(b) MSE difference from first to third
data set

Fig. 3. MSE difference plots for second and third data set

4.1 Difference Plots

Figures 2(b), 3(a) and 3(b) show the difference between the networks’ mean
squared errors vs. the different network sizes, respectively. Therefore, they il-
lustrate the networks’ performance quite clearly. In the majority of cases, the
networks generated from later data sets, i.e. those with more information, can
predict the target variable better than the networks from the earlier data sets.
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Fig. 4. Comparison of data sets, absolute error vs. trial index

4.2 Comparison of Data Sets FT1, FT2, FT3

In the preceding section we assumed that the networks trained on those data
that were available later into the season perform better than the ones on less,
earlier data. To substantiate this claim we fixed the network structure to the
one that we established earlier: two hidden layers with 16 neurons each and
fully connected. The three data sets FT1, FT2, and FT3 were divided randomly
into training, validation and testing set at a ratio of 0.6/0.2/0.2. The division
and training steps were repeated 250 times and the absolute error was recorded.
Figure 4 shows the error on the different data sets against the trial index. It can
be seen quite clearly that our assumption could be substantiated: the average
error on FT3 is considerably smaller than the one on FT1 or FT2. For FT1,
the mean error is 0.53; for FT2, it is 0.49; and for FT3 it is 0.48. The error’s
standard deviation on all data sets is 0.015.

5 Conclusion

This paper contributes to finding and evaluating models of agricultural yield data.
Starting from a detailed data description, we built three data sets that could be
used for training. In earlier work, neural networks had been used to model the
data. Certain parameters of the ANNs have been evaluated, most important of
which is the network topology itself. We built and evaluated different networks
and substantiated the assumption that the prediction accuracy of the networks
rises once more data become available at later stages into the growing season.

5.1 Future Work

In subsequent work, we will compare ANNs with suitable further techniques
(such as regression or SVMs) to find the best predictor. We will make use of
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those techniques to model site-year data from different years. It will be evalu-
ated whether the data from one year are sufficient to predict subsequent years’
yields. It will also be interesting to study to which extent one field’s results can
be carried over to modeling a different field. The impact of different parameters
during cropping and fertilization on the yield will be evaluated. Finally, control-
lable parameters such as fertilizer input can be optimized, environmentally or
economically.
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Stickstoff-Ausbringung. PhD thesis, TU München (2006)


	Introduction
	Data Acquisition
	Nitrogen Fertilizer -- N1, N2, N3
	Vegetation -- REIP32, REIP49
	Electric Conductivity -- EM38
	Yield 2003/2004
	Data Overview
	Points of Interest

	Data Modeling
	Neural Networks Basics
	Variable Parameters
	Fixed Parameters
	Network Performance

	Results and Discussion
	Difference Plots
	Comparison of Data Sets FT1, FT2, FT3

	Conclusion
	Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


