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Zu guter Letzt möchte ich mich bei Markus Preuss, Prof. Erich Kasten,

Carolin Gall, Kerstin Hahn, Julia Gudlin, Sunita Singh und Silvana Cieslik

für die vielen fachlichen und persönlichen Gespräche bedanken. Ich werde
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Abstract
In medicine, treatment outcome prediction models (TOPM) are used to com-

pare the restoration potential with the costs of a treatment. A TOPM was

developed to predict areas where vision restoration is most likely to occur

in patients with visual field defects after brain damage. The deficit can be

reduced by a vision stimulation treatment but the extent of restoration is

highly variable between patients and not homogeneously distributed in the

visual field. The TOPM is based on features which were constructed from

visual field diagnostic charts and incorporates a priori knowledge from the

domain of visual field plasticity. The features were evaluated to examine

the statistical association between the features and the treatment outcome.

Further features are derived from a review of vision restoration literature.

A data pool with diagnostic charts from (n = 52) patients with visual field

damage was used for model learning. The core of the TOPM is the Self-

Organizing-Map (SOM) which is applied in data exploration and prediction.

For model evaluation, a method is proposed to calculate the graph of the

Receiver-Operating-Characteristic (ROC) for the SOM. Issues relevant for

machine learning in medicine are discussed such as appropriateness to the

patient sample and the clinical relevance of the prediction model.
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Zusammenfassung
Vorhersagemodelle werden in der Medizin verwendet, um das potentiell er-

reichbare Behandlungsergebnis mit dem Aufwand der Behandlung zu ver-

gleichen. In dieser Arbeit wird ein Therapie-Vorhersagemodell (TOPM)

für die visuelle Restorationstherapie vorgestellt. Das Modell prognostiziert

den allgemeinen Therapieerfolg und ermöglicht die Lokalisierung visueller

Areale mit hohem und geringem Verbesserungspotential. Die Trainings-

daten des Modells wurden aus Diagnostikkarten von Patienten (n = 52) mit

visuellen Wahrnehmungsstörungen erzeugt. Dazu wurden Merkmale unter

Berücksichtigung von a priori Wissen und der aktuellen Plastizitätsliteratur

aus den Diagnostikergebnissen extrahiert. Die Selbst-Organisierende-Karte

(SOM), welche zur Datenexploration und auch für die Vorhersage genutzt

werden kann, ist der Kern des TOPM. Für die TOPM-Evaluierung wird

ein Algorithmus vorgeschlagen, mit dem die Funktionskurve der ’Receiver-

Operating-Characteristic’ (ROC) erstellt werden kann. Die Arbeit diskutiert

außerdem die Eignung des Modells für Patienten und relevante Aspekte zur

Anwendung von maschinellen Lernverfahren in der Medizin.



7

Glossary

Component plane The visual illustration of SOM unit positions
in Φ is used for data exploration

ρ Correlation Measure of the statistical linear association
between two variables

e Eccentricity Angular distance between the central fixa-
tion point and the visual stimulus

Feature An attribute of the diagnostic chart

Φ Feature space The vector space spanned by the features

FCT Fixation catch trial Assesses the fixation stability during HRP

Foveal vision Center of vision with highest acuity which is
surrounded by peripheral vision

Hemianopia Visual field defect with visual damage to the
left or right hemifield in both eyes

Hemifield The visual field, separated into the left and
right hemifield enclosing the fixation point

HRP High Resolution
Perimetry

Diagnostic procedure to assess the visual
damage by detection of visual stimuli

µ Mean Statistical measure describing the central lo-
cation in a set of observations

ϕ Polar angle Horizontal angle of the visual stimulus
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ROC Receiver Operating
Characteristic

A measure evaluating the prediction error
of the TOPM

SOM Self-Organizing-
Map

A non-linear algorithm which is used for
data exploration, classification and predic-
tion

Spot The smallest unit in the visual field de-
scribing the response to a visual stimulus

S.E. Standard Error The spread around the statistical mean

Scotoma Visual field area without perception of vi-
sual stimuli

TOPM Treatment outcome
prediction model

Predicts the treatment outcome for sub-
jects based on a history of treated patients

Γ Test set Set of samples used for SOM testing

Training The SOM model learning phase

Λ Training set Set of samples used for SOM training

Treatment outcome Improvement (hot spot) or lack thereof
(cold spot) after VRT

VRT Vision Restoration
Therapy

An experimental treatment reducing visual
field damage by intense visual stimulation
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Chapter 1

Introduction

In medical applications, treatments were administered by the physician to

support the patient’s recovery. If the treatment is time consuming and if

it does not have the same result for all patients with a specific disease, it

is desirable to use a prediction model telling whether the regimen is helpful

or not. A simple manual approach to built such a prognostic system would

require the following steps:

1. Collect as much data as possible about patients: the therapeutic regi-

men and the result after treatment.

2. To make the prognosis for a new patient P , just look into the set of

collected samples and find a patient P ′ with identical properties (with

respect to age, the history of the patient’s diseases, the regimen and

some other criteria which were collected).

3. Return the treatment outcome from P ′ as prognosis for P .

This approach lacks some very important aspects. If the database is huge

(containing more than 10,000 cases), it is tedious to go through the database

manually and finding the correct match. Furthermore, each patient is unique;

no two patients are identical. This example shows that computers are helpful

to support the physician who wants to make a prognosis for a new patient.

Data Mining tools were designed to efficiently access large databases and can

be used to find cases which best match the properties of the patient P ′.

12
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1.1 The Aim of Data Mining Algorithms

The discipline of Data Mining is described by Fayyad et al. [1996] as: ’Data

Mining’ is the step in the KDD1 process that consists of applying data analy-

sis and discovery algorithms that produce a particular enumeration of pat-

terns (or models) over the data’. Another but equally valid definition was

formulated by Thuraisingham [1998]: ’Data mining is the process of posing

various queries and extracting useful information patterns from large quan-

tities of data’.

To give a short insight into the diversity of Data Mining algorithms,

several concepts are briefly summarized below. For further reading, recent

text books give a detailed introduction to the field of Data Mining [Han and

Kamber, 2006, Hand et al., 2001, Hastie et al., 2002, Mitchell, 1997, Peter,

1986, Wi et al., 2007, Witten and Frank, 1999].

1.1.1 Properties of Data Mining Problems

The domain or problem to which data mining is applied is different with

respect to the available type of data, the representation and quality of data.

This section shows a categorization of Data Mining problems. The descrip-

tion of these problems is supported by a formal model in which R is the

result of the Data Mining process. M is the model which is learned by

the Data Mining algorithm. The model input are n samples S1, .., Sn which

are the training set. The samples are comprised of d observation variables

V ar1, ..., V ard.

Known and Unknown Target Variable

A typical goal of data mining is to extract a more abstract representation

from a huge number of samples such that the domain expert can interpret

the result of the data mining algorithm to gain new hypothesis. An example

for this could be that the learning set consists of diagnostic data with the

1KDD = ’Knowledge discovery in databases’ aims on mapping raw data into a more
compact and more useful representation
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observed variables, blood pressure (V ar1), body temperature (V ar2) and

pulse rate (V ar3). M is the model which extracts general rules R from

the n patient samples. The k-th sample is described by the observations

Sk = [V ar1, V ar2, V ar3] and the formal description of the problem is:

R = M(S1, S2, S3, ..., Sn) (1.1)

An interpretation of R could have the following form: ”In many patients,

the pulse raises and decreases together with the blood pressure, but the body

temperature is independent of blood pressure and the pulse rate”. Another

form of R could represent clusters in the learning set, for example: ”A large

group of patients has a large blood pressure, a low temperature and a high

pulse rate but another and different group of patients has a high blood pres-

sure, high temperature and a normal pulse rate”.

The presented problem is an unsupervised learning problem because the

samples in the learning set are described by observations without additional

information and the output is a more abstract description of the learning

samples. In supervised learning, the learning samples are described addi-

tionally by a class variable (also termed target variable) and the k-th sample

is now described by Sk = [V ar1, ..., V ard, class]. The formal description is

identical to 1.1 but, R can be used now for predicting the class of a novel sam-

ple S ′ which is comprised of the observations S ′ = [V ar1, ..., V ard] according

to:

class = R(S ′) (1.2)

For example, R could be used to predict whether patients have a disease

or not, on the basis of the diagnostic test results (blood pressure, body tem-

perature and pulse rate). If the target variable represents a class, the variable

is nominal or ordinal scaled. Another type of algorithms are required to find

a model M for which the target variable is interval scaled.
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Framework Requirements

In the example presented above, the model M was learned during model

training to approximate the learning samples. This means that any model is

an acceptable result that can sufficiently approximate the learning samples

irrespective of the specific model parameters. In some problems the high de-

gree of freedom of resulting models is payed by a high computational effort.

In other problems, it is important that the model parameters satisfy further

requirements, for example, if machine learning is used to learn a motor con-

troller, the controller should never overload the engine. Thus, background

knowledge D (also termed a priori knowledge or domain knowledge) limits

the number of acceptable models to only those, which satisfy the domain

knowledge or the framework requirements:

RD = M(S1, S2, S3, ..., Sn, D) (1.3)

Problems with Uncertain Data

Data in real world problems are often gathered by sensor systems (e.g. med-

ical diagnostic systems). Those systems are not without error. The mea-

surements often contain a source of noise. If the uncertainty of the model

input (N) is known to some degree or can be extracted from inconsistent

learning samples, the uncertainty (U) which is contained in the results can

be estimated and equ. 1.1 has now the following form :

[R,U ] = M(S1 + N, S2 + N, S3 + N, ..., Sn + N) (1.4)

Vague Data Representation

The description of data is often made with precise numbers (e.g. ”the tem-

perature today is 30.5 ◦”). To humans, this precise description is not very

intuitive and linguistic terms are preferably used (e.g. ”it is hot today”).

Thus, precise numbers are substituted by intervals such that ’hot’ is equiva-

lent to a subject specific interval (e.g. between 27 ◦ and 35 ◦). In problems,

where the model M shall be learned to substitute human decision making, the
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variables V ari are substituted by linguistic terms which are more compatible

to the human language.

1.1.2 Properties of Data Mining Algorithms

Lazy versus Eager Learning

In lazy learning (also termed ’Case based reasoning’ or ’Prototype learning’)

the data processing of the learning samples is delayed until a novel sample

is classified (e.g. k-means [Jain and Dubes, 1988]). In eager learning, the

process of model learning is separate from the process of applying the model.

The data approximation model is created at first on the basis of a training

set and then used later for predicting the target variable (or class) of novel

samples (e.g. Association learning [Agrawal et al., 1993] for ordinal target

variables or linear regression [Karlsson, 2007] for metric target variables).

As eager learning algorithms create an approximation model, a priori

knowledge is often used to specify the bounds of the resulting model (e.g.

Prolog-EGB [Wusteman, 1992]). This example uses a strongly defined do-

main theory in the form of logical expressions. However, in most real world

problems, an explicit domain theory is either hard to define or often, the

domain theory is not an input source but, contrastingly, the final goal.

Interpretability of the Model

In some problems, not only the resulting class or pattern (R) are interesting

for the user but so is the model M which generates R. Algorithms are

then preferred which generate an interpretable model (e.g. in the form of

rules in the decision tree algorithm C4.5 [Quinlan, 1993]). Contrarily, other

algorithms produce a black box model which is not interpretable (e.g. in

neural networks [Nürnberger et al., 2002]. In these algorithms, often no

interpretation is found for weights between neurons or the structure of the

network [Schwarzer et al., 2000]).
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Quantification of Model Uncertainty

An appropriate method that considers the uncertainty in model generation

are probabilistic models. These introduce the concept of belief. It is in-

terpreted as confidence of the correctness of assumptions and is based on

the Bayesian theory. Applications of Bayesian theory are graphical models

[Borgelt and Kruse, 1997, 2002, Kruse and Borgelt, 1998] which represent the

observations as nodes, and the conditional dependence between the observa-

tions as links between the nodes. The advantage of such a graphical rep-

resentation is the propagation of belief. The confidence about observations

which are not known is computed from observations from known variables.

Probabilistic models consider uncertainty, and their output is the predicted

class together with a confidence that the class is correct. Other algorithms,

for example, the k-Nearest-Neighbor classifier in its unmodified form, does

not support the quantification of uncertainty in its prediction results.

Algorithms Processing Vagueness

One purpose of ’Fuzzy Theory’ is to provide linguistic terms for describing

vague data. The user specifies the meaning of linguistic terms and the ’Fuzzy’

algorithm uses this definition to compute a model. During model learning,

the fuzzy algorithms manipulate the definition of the linguistic terms such

that the linguistic model describes the raw data approximately and in a form

which is pleasant for human interpretation. Concepts from Fuzzy Theory

were also combined with algorithms from other domains, e.g. neuro-fuzzy

nets [D. Nauck and Kruse, 1997] and fuzzy decision trees [Wang et al., 2004].

Another theory which also incorporates vagueness is Rough Sets [Skowron

et al., 2002].

1.1.3 Requirements of a TOPM

In this Thesis, Data Mining and machine learning are primarily used to dis-

cover general rules from a medical dataset. The samples in the learning set

are patient data and are comprised of observations derived from diagnostic
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charts of the patient’s visual field. The samples are supervised, hence, for

each sample it is known whether the treatment was successfully or not (ac-

cording to equ. 1.1). Variables are metric or ordinal scaled. The output

variable is nominal scaled. How much the observations are confounded by

noise is not known. After the relations between observed variables and the

class label are approximated by a model, it is used to predict the treatment

outcome of a novel patient (according to equ. 1.2). The domain knowledge is

not an explicit input to the model learner (as in equ. 1.3) but is used to con-

struct the variables from the diagnostic charts (see chapter 3). I have decided

to use the Kohonen Self-Organizing-Map (in it’s supervised mode) as model

learner because the model results are interpretable and can be used for pre-

diction and for data visualization as well (see chapter 4.3). The visualization

of data and the interpretability of the model is explicitly relevant in clinical

problems (see chapter 4.6). For prediction, a k-Nearest-Neighbor component

[Tan et al., 2006] is added to the model. The prediction model supports the

assessment of uncertainty about the correct prediction in the form of outlier

detection and computation of the degree of concordance between sample and

learning data (see chapter 4.2).

A more detailed introduction and concrete applications of machine learn-

ing in medicine are presented below.

1.2 Machine Learning in Medicine

In the medical domain and in other areas as well, where the ’curse of dimen-

sionality’ makes effective human interpretation of collected data practically

impossible [Ubaudi, 2005], machine learning provides tools that help with the

interpretation of high-dimensional and complex sets of data [Sajda, 2006]. In

this Thesis, the fundamentals were developed to use machine learning for (i)

prediction of diseases on the basis of available test results and (ii) prediction

of the course of diseases based on test results and the history of patients (who

have been in a similar situation and finished the treatment). The cardinal

problem for both applications is to transform the knowledge of the domain

expert into a machine-accessible form. As a major topic, the Thesis shows,
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how diagnostic data are processed by algorithms from image processing and

spatial data-mining such that the data complexity is reduced and how ma-

chine accessible features are constructed with the help of expert knowledge.

The benefits of diagnosis prediction models and TOPMs are briefly re-

viewed.

1.2.1 Prediction of Disease

Diagnosis prediction models are used to improve the detection, diagnosis, and

therapeutic monitoring of a disease. Well designed prediction models can im-

prove the efficiency and quality of medical care significantly [Magoulas and

Prentza, 2001] because such predictions are independent of subjective judge-

ment. They are used for novelty detection of diseases [Marsland and Buchan,

2004] and support the recognition of rare diagnostic types. In clinical prac-

tice, prediction models can reduce errors caused by habituation and human

fatigue. They supplement physician judgement as a ’second opinion’, based

on the scheme of double reading; it was shown that the scheme of double

reading increases the detection rate of breast cancer by 5 % - 15 % [Sajda,

2006]. However, double reading by two human experts is expensive. When

a verified diagnosis prediction model is used as a second ’expert’, the double

reading scheme is implemented at significantly reduced costs. Furthermore,

by using an objective diagnosis prediction model, the concordance of experts

improves as examined in the field of reproductive medicine [Steeg et al., 2006].

Several experts who have received the same medical data varied largely in the

proposed therapeutic regimens. Invasive treatments of childless women were

less frequent when prediction models were consulted. For the visual domain,

diagnosis prediction models were constructed to support the identification of

visual disorders [Ruseckaite, 1999].

1.2.2 Prediction of Treatment Outcome

In contrast to predicting the type of diseases, treatment outcome prediction

considers the time component [Abu-Hanna and Lucas, 2001]. Such a model

helps to make a prediction of recovery on the basis of baseline test results



CHAPTER 1. INTRODUCTION 20

of the subject. This requires a history of pre and post treatment results

such that appropriate rules are found describing the post-treatment results

as a function of pre-treatment diagnostic data [Pepe, 2005]. In general, the

TOPM is used by clinicians as a recommendation tool to select the treatment

with the highest expected benefit to the patient. As in diagnosis prediction,

the prediction model extends the knowledge of the physician by the knowl-

edge base of the model and offers the benefit of a second opinion. To achieve

this goal, methods of machine learning are combined with a priori knowl-

edge of a specific disease to be able to forecast specific treatment effects.

If successful, it will aid the clinician to estimate efficacy in an individual

patient and perhaps provide new hints at improving efficacy. The construc-

tion of such models requires expensive studies for data collection, but, after

completion and validation, the prediction model is applied to many patients

[Alexopoulos et al., 1999].

1.3 The Clinical Application

1.3.1 The Visual System

For a proper understanding of the domain in which the present TOPM is

used, some fundamental aspects of the visual system are presented in Fig.

1.1.

The visual system information pathway begins at the retina (I) where

light is transformed to electrophysiological signals which are transmitted by

the retinal ganglion cells (leaving the eye via the optic disc II) through the

optic nerve (III) to other brain regions. The primary and most important

stream of information travels through the thalamus, where information is

relayed onto geniculate neurons (VI) which, in turn, send their axons (VII)

directly to the primary visual cortex (VIII) located in the occipital lobe.

A neuron n in the primary visual cortex (also called ’V1’) receives input

from many receptors in the retina. This area of the visual field that is able to

excite the neuron is called ’receptive field’ of n (see Fig. 1.2). The primary

visual cortex analyzes abstract features of visual images and scenes and works
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Figure 1.1: The visual information pathway. Adapted figure from [Kandel
and Schartz, 1996].

in concert with many ’higher’ brain regions with which it is reciprocally

connected [Chalupa and Werner, 2004]. The visual system is the largest

sensory processing system in the brain. About 30 % - 50 % of the cerebral

cortex is committed to process visual information in comparison to only 8 %

for the auditory and 7 % for the somatosensory system [Van Essen, 2004]. For

this reason, brain damage due to stroke or head injury is often accompanied

by loss of visual functions, leading to partial or total blindness.

1.3.2 Damage to the Visual System

Retinal (I) and/or optic nerve (III) lesion damage which is located in the early

visual pathway (pre-chiasmatic lesions, e.g., after glaucoma or optic nerve

trauma) cause different types of visual field loss in both eyes (heteronymous

field defect) or monocular damage if only one eye or one optic nerve is affected

(see Fig. 1.3, left). Damage to the mid-section of the visual pathway (e.g.,
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Primary visual cortex

Retina

Cortical neuron

Retinal receptor
Receptive field

Visual information pathway

Lateral connection

Eccentricity

Figure 1.2: Neurons in the primary visual cortex are connected via the visual
pathway with receptors located in the retina (left). All receptors which cause
activation of the cortical neuron are termed ’receptive field’. Receptive fields
are not of equal size but depend on the eccentricity from which the cortical
neurons receive visual information (right). Cortical neurons from the periph-
ery (high eccentricity) have larger receptive fields than cortical neurons from
the foveal area (low eccentricity).

lesions of the optic chiasm, IV, or optic tract, V) typically produces visual

field defects which are inverted in both eyes and are restricted to one side

of the visual field, i.e., the deficit does not cross the zero vertical meridian

(see Fig. 1.3, middle). Damage higher up in the visual pathway (e.g., optic

radiation, VII or visual cortex, VIII) typically produces visual field loss which

is more or less symmetrical in both eyes (homonymous field defect, see Fig.

1.3, right) and is usually limited to one side of the visual field [Purves et al.,

2004]. Typically, the deficit does not cross the zero vertical meridian. Such

’post-chiasmatic’ deficits are observed in about 20 % of stroke survivors [Gray

et al., 1989] and are the most frequent diagnosis (75 %) of visual impairment

[Zihl, 1995].
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Figure 1.3: This graph displays three different types of visual defects. The
solid black circle represents the blind spot in the left (L) and right (R) eye,
the cross indicates the center of the visual field. Left: After damage to the
left optic nerve (III), a heteronymous scotoma (hatched area) results in the
visual field of the left eye. Middle: Damage to the optic chiasm (IV) causes
heteronymous damage (not identical in both eyes) to the temporal visual
field in each eye. Right: In cases of post-chiasmatic damage (damage of the
optic radiation, VII and visual cortex, VIII) the damage is homonymous,
i.e., the damage is identical in both eyes). The case presented here suffers a
complete loss of the right visual field (termed hemianopia). In most subjects
the visual field loss is not in the ’ideal’ form as presented here but is a mixture
of different lesion types with different extent of impairment.

1.3.3 Visual System Plasticity

Plasticity of the visual system is not just limited to early development (pre-

and postnatal) but continues throughout life. It is the basis for spontaneous

recovery in animals with visual system damage [Chino et al., 1995, Heinen

and Skavenski, 1991, Sober et al., 1997]. Restoration (improvements of sen-

sory functions) was observed after retinal lesions [Das and Gilbert, 1995,

Giannikopoulos and Eysel, 2006] and deprivation (the visual input is sup-

pressed) [Gilbert and Wiesel, 1992] or after nerve segregation (the nerves

are chirurgically cut) [Buonomano and Merzenich, 1998]. Visual plasticity is

observed in humans, as well. Patients with damage to the visual pathway

typically experience visual field enlargements within the first few weeks or

months after brain trauma or stroke [Zhang et al., 2006]. Visual system plas-

ticity is also a feature of the intact brain [Pascual-Leone et al., 2005] and is

believed to be the basis for the learning of perceptual tasks [Gilbert, 1994,

Teyler et al., 2005, Watanabe et al., 2002]. In patients with damage to the

post-chiasmatic visual system, repetitive visual stimulation (the treatment)
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also helps to improve visual performance such as detection in perimetric tasks

[Kasten et al., 1998a, Mueller et al., 2003, Sabel et al., 2004, Zihl and von

Cramon, 1985] and improves vision parameters confirmed by electrophysio-

logical recordings [Julkunen et al., 2003] or functional magnetic resonance

imaging [Henriksson et al., 2007, Julkunen et al., 2006, Marshall et al., 2007,

Pleger et al., 2003]. In this present Thesis, only subjects with different types

of homonymous damage (the damage is identical in both eyes) are examined.

Whereas diagnosis prediction models are not considered further, the The-

sis focuses on the development of a TOPM for VRT.

1.3.4 Vision Restoration Therapy

The principle of Vision Restoration Therapy (VRT) is visual stimulation of

the visual field border in order to repetitively activate partially damaged re-

gions located between areas of the intact and defective visual fields [Kasten

et al., 1998a]. The treatment is typically carried out in a step-wise fashion.

Regions of unreliable vision (also termed ’residual’) are identified using the

visual field diagnostic charts (see chapter 2). Depending on the type of stim-

ulation, static or dynamic visual stimuli of increasing brightness thresholds

are then presented in these treatment regions. Depending on the progress

of the subject, the treatment area is adjusted monthly. When hemianopic

subjects carry out this treatment for a period of six months (one hour per

day), significant improvements (enlargements) of the visual field have been

observed in 30 % to 70 % of all subjects [Kasten et al., 1998a, 1999, 2000,

Mueller et al., 2003, Sabel and Kasten, 2000, Sabel et al., 2004].

1.4 Outline of this Thesis

After a brief overview on data mining and machine learning in medicine was

presented in the first chapter, the second chapter describes the visual field

diagnostics and the resulting diagnostic charts which have a fundamental role

in the Thesis. The third chapter describes the features which are extracted

from the diagnostic charts [Guenther et al., 2007a]. Some of these features
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make use of a transformation model which allows bridging the visual field and

the visual cortex, offering a variety of new features [Guenther et al., 2007b].

The newly designed features were evaluated in a retrospective study [Guen-

ther et al., subm.c]. In the fourth chapter, I describe the treatment outcome

prediction model (TOPM) which was built on top of the features [Guenther

et al., subm.b]. The fifth chapter derives quality guidelines and examines

eye movements during the diagnostic testing [Guenther et al., subm.a]. The

Thesis closes with a summary and an outlook.



Chapter 2

Assessing the Visual Field

This chapter describes the background of assessing the visual field by diag-

nostic testing. The algorithm of the diagnostic test procedure is described

and different types of diagnostic charts are presented. These form the basis

of the subsequent chapters. Generally, locations in the diagnostic charts are

measured in visual field degree and are localized by using two different coor-

dinate systems (see Fig. 2.1). Hereby, the visual field is the complete visual

area which is perceived when the eye fixates upon a static fixation point.

2.1 Visual Field Testing

Visual field diagnostic testing is needed to detect and localize defective areas

and is required to determine the specific pattern, size and depth of visual

field loss. The observed visual field defect (also called scotoma) is indica-

tive of specifically where the damage may be located in the visual pathway.

The analysis of the visual field by perimetric and campimetrical methods

has therefore a high diagnostic value and is an important part of the neuro-

logical and ophthalmologic examination [Barton and Benatar, 2003]. Visual

field charts drawn from such diagnostic testing are used as well to document

the dynamics (deterioration or improvements) or stability of the visual field

damage [Spry et al., 2001].

There are various types of visual field test methods which are designed to

26
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Figure 2.1: This figure illustrates the basic terms in visual field diagnostics.
The eye fixates a specific point on the presentation screen (fixation point,
black) which is located at the center between the left and right hemifield.
A stimulus (white) is presented on the screen at one position of the rec-
tangular test grid (open circles) which stimulates the respective region on
the retina when the stimulus position is within the eye’s visual field. The
distance between fixation point and stimulus is measured in degree (eccen-
tricity e). Together with the polar angle which measures the deviation from
the horizontal axis (ϕ, also in degree), every position is located using this
polar coordinate system. Alternatively, visual field positions are located in
the Cartesian coordinate system by using the distance, measured in degree of
visual angle, between stimulus and the horizontal axis (V Fx) and the vertical
axis (V Fy). All measures are dependent on the eye-screen distance d. The
angle β is the maximally examined horizontal degree after all grid positions
were tested.
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assess the visual field. Two main methods are kinetic and static perimetry

[Barton and Benatar, 2003]. The kinetic perimetry involves the presentation

of moving targets of a defined size and intensity. Each stimulus moves from

the peripheral toward the central visual field until the subject acknowledges

the stimulus by pressing a key on the keyboard. Although the automated

static perimetry is most commonly used in the clinical practice for testing

visual function, there are situations in which kinetic perimetry is preferable

(e.g. in case of patients with visual field loss in the far periphery or in patients

with short attention spans). There are some other perimetric procedures such

as e.g. the short-wavelength-automated perimetry and motion perimetry,

which assess specific aspects of visual function. These perimetric methods

are still partly experimental tools [Barton and Benatar, 2003], but it has been

shown that these tests are superior to standard perimetry e.g. in identifying

glaucoma [Bayer and Erb, 2002, Johnson et al., 1993, Sample et al., 2000].

2.2 The High Resolution Perimetry

One static perimetric test procedure is the High Resolution Perimetry (HRP).

It was developed to assess the visual field in high spatial resolution with fairly

bright, high-contrast (super-threshold) stimuli. HRP is a perimetric test but

uses a flat screen instead of a hemispheric presentation screen as in standard

perimetry (see Fig. 2.2). Accordingly, the more specific term campimetry is

often used which is derived from the latin word campus (meaning ’flat’ or

’plane’). With HRP, visual field loss is investigated in much finer detail than

it is possible with conventional perimetry.

In HRP, the stimuli are presented on a computer screen which is posi-

tioned at 30 cm to 40 cm in front of the subject while the head of the subject

is stabilized with a chin rest (this reduces body and head movements during

the diagnostic session). The subject responds by pressing a button whenever

the presented test stimuli are perceived. During the complete diagnostic pro-

cedure of about 20 minutes, the subject is required to fixate upon a static

point positioned usually at the center of the screen (the fixation spot). The

validity and reliability of this diagnostic procedure was established elsewhere
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Figure 2.2: The presentation screen is located in front of the subject. A
chin rest is used to reduce head and body movements which would otherwise
interfere with the diagnostic accuracy. In this figure, an eye tracker is shown
measuring eye movements during the diagnostic session. For the complete
time of diagnostic testing, the subject is required to fixate upon the cen-
tral fixation point (located in the center of the screen). Test white stimuli
(enlarged for illustrative purposes) appear randomly at different screen loca-
tions. The subject is asked to respond to the stimuli by pressing a button.

[Kasten et al., 1997].

Technically, a visual field chart is generated in HRP by a repetitive 4-step

algorithm on a dedicated personal computer:

1. Stimulus onset

(a) The stimulus position is chosen randomly among all previously

untested grid positions.

(b) The number of test positions is determined by the chosen test

grid; usually 25 x 19 positions (resulting in 474 stimuli without

the fixation point), within a test range between 40 ◦ and 52 ◦

horizontally and 20 ◦ and 32 ◦ vertically, depending on the distance

d between screen and subject.

(c) The stimulus has a constant size (e.g. between 0.43 ◦ and 1.76 ◦).
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(d) The presentation time (time from stimulus onset until the stimulus

disappears) is constant (e.g. 150 ms).

(e) The stimulus luminance is well above-threshold (super-threshold)

with a bright gray color (e.g. 48 cd/m2) on a dark gray background

(e.g. 0.2 cd/m2).

2. Subject response

(a) The reaction time is measured from stimulus onset until the sub-

ject responds by pressing a button.

3. Interstimulus interval

(a) The interval between two consecutive stimulus onsets varies at

random between the predefined maximal and minimal length (e.g.

between 1000 ms and 2000 ms).

4. Fixation catch trial (FCT)

(a) It is required that the subject focuses on the fixation point during

the entire diagnostic test session.

(b) The fixation point is colored (e.g. yellow with luminance:

124.2 cd/m2).

(c) Whenever the fixation point color alternates at random (e.g. to

light green, but optimally without a detectable change in lumi-

nance) the subject responds by pressing a key.

(d) The number of presented FCTs is specified as the ratio of all

presented test stimuli (e.g. 25 %).

(e) The size of the fixation stimulus is constant during the testing

session (e.g. 0.43 ◦).

(f) The position of the fixation point is also fixed. The position can

be chosen before the testing session to be anywhere on the presen-

tation screen, in order to focus the visual field test on a specific

visual hemifield or quadrant.
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This algorithm is repeated until all positions in the test grid have been

tested once. One test usually takes about 20 minutes to complete. The

complete diagnostic test procedure is repeated twice. All results are super-

positioned forming a diagnostic chart. Between two consecutive sessions, a

break of at least 10 minutes is required to reduce the effect of fatigue.

2.3 Diagnostic Charts

The HRP diagnostic output is a topographic chart for each subject which

illustrates schematically the visual field defects of the subject. Three single

diagnostic tests assessed sequentially after each other are superimposed to

obtain a chart that displays visual detections (chartDetection) and reaction

times (chartReactionT ime) to the presented test stimuli. This computer-based

perimetric procedure examines the central visual field in a range of ± 20 ◦.

2.3.1 Reaction Time Chart

The reaction time chart shows the response time of the subject to the pre-

sented stimuli (see Fig. 2.3). The response times vary largely between, and

also within subjects.

2.3.2 Detection Chart

The detection chart (see Fig. 2.4) shows the overall response to the presented

test stimuli omitting the specific spot related response time.

Each of the 474 spots in the HRP chart was classified as to its detec-

tion probability (Residual Function) indicating a specific functionality state:

intact function (shown in white, the subject responded correctly to 3 out

of 3 stimulus presentations), mild-defect (shown in light gray, the subject

responded to 2 out of 3 stimulus presentations), moderate-defect (shown in

dark gray, the subject responded to only one stimulus presentation) and

absolute-defect (shown in black, the subject does not respond to any of the

stimulus presentations). The term absolute-defect region is identical to the
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Figure 2.3: Left panel: HRP response time chart. Minimal response time
is coded in white (≈ 350 ms), maximal response time is coded in black
(≈ 800 ms). A cross represents detection misses. A tendency is apparent
that the perception of above-threshold stimuli is slower (dark gray) in intact
areas of the bottom right hemifield, in comparison to intact areas (light gray)
of the left hemifield.

term ’blind region’ or ’scotoma’. Intact regions are sub-sectors of the visual

field which are unaffected by the injury having perfect or nearly perfect de-

tection performance. The term ’areas of residual vision’ (ARV) or ’relative

defect region’ is characterized by mild and moderate-defect vision. Here,

the response time is slower [Sabel and Kasten, 2000] and the probability of

being able to detect super-threshold stimuli is reduced [Kasten et al., 1999].

For the purpose of further analysis, the moderate-defect spots and absolute-

defect spots were pooled to one class termed ’impaired spots’. Likewise, the

term ’healthy spots’ represents the category that includes mild-defect and

intact spots. Intact, residual, and defect spots from the baseline diagnostic

chart (at time t0) are accessed for later use by the concept of a stencil matrix:

stencilDefect(x, y) =

1 iff chartBaseline
Detection(x, y) = 0

0 else
(2.1)
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Figure 2.4: The HRP detection chart classifies a spot (which is the smallest
atomic unit in the chart) according to the subject’s functional state at the
respective position (intact perception in white, absolute-defect perception in
black, residual vision of unreliable perception (mild- and moderate-defect) in
shades of gray).

stencilIntact(x, y) =

1 iff chartBaseline
Detection(x, y) = 1

0 else
(2.2)

stencilResidual(x, y) =

1 iff chartBaseline
Detection(x, y) = 1

3
∪ 2

3

0 else
(2.3)

2.3.3 Dynamic Chart

The development of individual perception performance as measured with

HRP is interesting after brain or eye surgery, conventional treatment, in the

process of spontaneous recovery, or as it is used here to assess the differ-

ences before (at t0) and after VRT (at t1). The dynamic chart visualizes the

change over baseline after 6 months of VRT. Just as in the baseline chart,

the dynamic chart is subdivided into identical squares. Each square was

assigned a symbol after calculating the difference between the HRP charts
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from a subject which were assessed at time t0 and t1. Depending on their

respective ’change over baseline’, dynamic spots are defined as follows: (i)

spots which were impaired spots at t0 and became healthy spots at t1 are

termed ’hot spots’, and (ii) spots which were impaired spots at t0 and were

still impaired at t1 are termed ’cold spots’. These detection differences (po-

sitions of improvement or without improvement ) were calculated for each

visual field spot, which then combined to form the ’dynamic chart’ (see Fig.

2.5).

Dynamic chart

t0

t1

Figure 2.5: Left panel: The baseline diagnostic chart at time t0 shows a
defect-intact border oriented almost vertically and located in the right hemi-
field. In this example, the lower part of the defect-intact border moved
rightwards as it is shown in the post-treatment chart at t1. Right panel: The
dynamics of the visual field were calculated for every position by subtract-
ing the chart at t1 from the chart at t0. Accordingly, hot spots are located
mostly in the lower right hemifield (’+’) whereas cold spots (’.’) are observed
throughout the complete right hemifield.

2.3.4 False Positive Chart

Another chart is obtained from false positive responses which assesses the

zealousness to respond. Random responses would result in a high number

of false positives which are evenly distributed throughout the intact visual
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field. Subject responses outside the valid time interval (e.g. 150 ms to 1000

ms) after the stimulus onset are termed ’false positives’ and a topographic

chart of false positives is obtained by associating the false positive response

with the last stimulus onset position (see Fig. 2.6, right). Therefore, false

positives are comprised of either random reactions unrelated to the stimulus

presentations or reactions which are delayed. The number of false positives

which occurred in the intact hemifield is used as an exclusion criterion for

the subsequent analysis.

Figure 2.6: The chart of false positives (left) shows invalid responses outside
the valid time interval (represented by a cross). Only few false positives
were detected in the intact area of the right hemifield (the baseline detection
chart is shown in the right panel) indicating that the number of false positives
which are associated with the intact visual field are within normal variations.
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2.4 Data Analysis Infrastructure

Technically, the diagnostic data is efficiently stored in a relational data-

bases such that diagnostic results are retrieved for visual inspection or pre-

processing. In the database, each stimulus is represented as triple (column,

row, response time). The column and row positions are related to the loca-

tion of the stimulus in the rectangular test grid (see Fig. 2.1). In order to use

the prediction model, the raw diagnostic data (sets of triples) are extracted

from the database and transfered to the feature computation module. An ap-

propriate environment for feature computation is the Matlab programming

environment (distributed by Mathworks). The visualization of diagnostic

data is based on system variables which (i) define the minimal and maximal

time interval in which a subject response is considered valid and (ii) define

the color modus (color, shades of gray or symbolic) which is used to visualize

the diagnostic results.

Program for Visualization of Diagnostic Data

In order to visualize the different aspects of the diagnostic results, several

presentation modi are available in the graphical user interface (see Fig. 2.7)

and process (interpret) the raw diagnostic data triplets as follows:

• The ’Reaction time chart’ shows response times for all test stimuli

(see Fig. 2.3). No additional interpretation of the triplets is required,

except for invalid response times outside the valid time interval, which

are omitted.

• The ’Detection chart’ shows the strength of damage for all test stimuli

(see Fig. 2.4) and is based on the reaction time. Stimulus responses

within the valid time interval are considered valid (hits), whereas re-

sponses outside the valid time interval or no responses are considered

invalid (misses). Hits and misses among three stimulus presentations

per location define the Residual Function of the respective spot (see

chapter 3.3.1).
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• The ’False positive chart’ shows false positives (response times out-

side the valid time interval) which are associated with the preceding

stimulus location (see Fig. 2.6).

• The mode ’No interpretation’ does not filter the raw data in any way

(used for data exploration and experimentation).

• The ’Dynamic chart’ shows the difference between two diagnostic charts

(see Fig. 2.5).

• The ’Cortical projection’ shows the diagnostic chart as a cortical projec-

tion either onto the left or the right primary visual cortex (see chapter

3.4).

The diagnostic results are shown in a rectangular grid which is identical

to the grid used in the diagnostic testing. The position of a spot in the

diagnostic chart visualization is determined by (i) the maximal horizontal

angle of the diagnostic array (β, measured in degree, see also Fig. 2.1), (ii)

by the relative horizontal (Fx) and vertical position (Fy) of the fixation spot

with respect to β, (iii) the horizontal (row) and vertical position (column) of

the stimulus in the test grid and (iv) by the total number of horizontal rows

of the test grid (GX). The distance d between eye and screen is contained

in the parameter β. The horizontal (V Fx) and vertical (V Fy) components of

the visual field position (measured in degree) are calculated as follows:

V Fx = row · β
GX

−Fx · β (2.4)

V Fy = −column · β
GX

+Fy · β (2.5)

Chart Operators

For the analysis of diagnostic data and in the process of feature selection

and construction, many hypothesis were formulated and were examined. A

flexible data access is provided by the following operations:
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Figure 2.7: A Matlab control center for visualization, feature extraction and
feature computation was developed.

• Combination and allocation of diagnostic charts from different subjects

and different studies.

• Manipulation of diagnostic charts by using a temporary image buffer

(accumulator).

• Calculation of mean and difference of two or more diagnostic charts.

• Batch processing of feature extraction algorithms applied on a set of

diagnostic charts.
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• Unary operators for calculation of fixation stability and the total num-

ber of false positives.

By using the infrastructure presented above, the next chapter introduces

features which were extracted and computed from the diagnostic charts.



Chapter 3

Vision Restoration Features

The building of a TOPM requires appropriate features which are clearly asso-

ciated with the treatment outcome. This chapter introduces features which

were constructed from the diagnostic reaction time and detection charts (see

Fig. 2.3 and 2.4) and are motivated from neuroscientific literature. As a ma-

jor part of the Thesis, those features were implemented by considering the

anatomy of the visual cortex, results of cortical lesion experiments and expert

knowledge in VRT. The predictive value of three newly constructed features

was evaluated in a retrospective study. Yet additional features were derived

from the specific literature on VRT. The examined features are grouped into

global features, local features and features which are not related to diagnostic

charts. Whereas global and local features are used in the TOPM, the last

group is not considered because the association with the treatment outcome

was not clearly shown. A short introduction to feature selection precedes the

description of the features.

3.1 Introduction

Feature selection is the task of deciding which features are relevant with

respect to the target classification (in this case: treatment outcome). The

suitability of features which are used for the TOPM determines the perfor-

mance of the prediction model even more than the choice of the classification

40
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algorithm. Generally, choosing an internal model is far less important than

choosing the right features [Ubaudi, 2005]. This is important especially for

the medical domain if automatically collected data sets contain many ’don’t

care’ attributes [Alexopoulos et al., 1999]. Therefore, the feature selection

should be evaluated by domain experts using the available numerical infor-

mation [Lucas and Abu-Hanna, 1999].

For evaluation, the features are usually ranked with respect to their treat-

ment outcome association using a ranking measure. A large variety of such

association measures are available for feature ranking, for example, informa-

tion based measures (information gain), distance based measures (Euclidean

distance) or dependence measures (Pearson correlation). A detailed analysis

of measures is available elsewhere [Guyon and Elisseeff, 2003, Liu and Mo-

toda, 1998]. Some evaluation measures require a discrete scale (e.g. mutual

information gain) such that continuous scale features are at first transformed

into discrete features which divides the continuous scale into non-intersecting

intervals (also termed ’bins’).

Features with low ranking positions are then either removed in filter [Liu

and Motoda, 1998] or wrapper models [John et al., 1994] or their impact

is reduced by assigning low weights in Bayesian classifiers and neural net-

works [Langley, 1994]. If the ranking considers single features (univariate)

instead of sets of features (multivariate), interdependent relationships be-

tween features are lost and the highest ranked features are prone to be

mutually redundant if they correlate significantly [Jong et al., 2004]. In

wrapper models, feature ranking considers the features in combination with

the classifier. The learning process and the evaluation of the classification

is repeated with different sets of features. The feature ranking is now de-

termined by the classification error. The advantage of wrapper methods is

their multivariate variable evaluation such that interdependent relations are

considered. Disadvantages are higher computation time because the learn-

ing process is repeated for each iteration. Because the best feature set is

determined with respect to the selected classifier, wrapper models can often

outperform filter models [John et al., 1994]. In this Thesis, features were

evaluated semi-automatically (see chapter 3.6) or an evaluation is available
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in the VRT literature. In the next sections, the features from the domain of

visual system plasticity are presented.

3.2 Global Features

Global features address information which is derived from the diagnostic

chart as an atomic entity and are not specific to spots of the diagnostic charts.

Therefore, all spots from the same diagnostic charts share the respective

global feature value.

3.2.1 Border Diffuseness

The Border Diffuseness is the ratio of residual spots among all spots in the

border area of the diagnostic chart. The border area is 5 ◦ wide and located

between the defect and the intact area (see Fig. 3.1, top right). The border

is defined as ’diffuse’ if many residual spots lay inside the border area and

’sharp’ if almost no residual spots are inside the visual scotoma border.

The scotoma border is located with the following algorithm in which the

detection chart is interpreted as a gray scale image (see Fig. 2.4):

1. All residual positions were transformed into intact positions (pixels in

gray become white)

2. The median filter (size: 3x3 pixel) was used to reduce noise in the

diagnostic chart such that isolated spots and fibers are eliminated.

3. The orthogonal border orientation and border position is obtained by

convolution with a 3x3 horizontal 1
4
·
( 1 0 −1

4 0 −4
1 0 −1

)
and vertical 1

4
·
( 1 4 1

0 0 0
−1 −4 −1

)
gradient kernel which approximates the first derivative of the gray scale

distribution. The border orientation is used for subsequent analysis (see

Fig. 3.12).

4. The vector field thus obtained (each vector has a horizontal and a

vertical component) was smoothed by a 3x3 Gaussian kernel:
1

100
·
( 7 12 7

12 2 12
7 12 7

)
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5°

Figure 3.1: Top panels: Detection of border position and border orientation.
After the visual field border is detected (shown by white arrows, left) the
border area is defined as the area within a distance of 5 ◦ viewing angle
from the border line into the direction of the intact visual field (hatched
area, right). Bottom panels: Original examples of different visual diagnostic
charts ordered according to Border Diffuseness from diffuse (left) to sharp
border (right).

5. The amplitude of vectors in absolute-defect areas which do not border

residual or intact areas were set to zero.

As the result of this algorithm, the intact-defect border as well as the

orientation of the border is detected (vectors are oriented orthogonally to

the border in direction to the intact visual field (see arrows in Fig. 3.1, top

left).

Border Diffuseness is specific to the exact location of the visual field

border, irrespective to the occurrence of residual spots in the remaining chart.

An interesting and repetitive observation in the VRT literature is that the

improvements after treatment are most pronounced in subjects with many

residual positions in the diagnostics chart around the intact-defect border

[Sabel and Kasten, 2000]. The extent to which the visual field border is diffuse
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or sharp was often identified as a relevant parameter in vision restoration

[Kasten et al., 1998b, 1999, Mueller et al., 2003, Sabel, 1999, Sabel and

Kasten, 2000].

3.2.2 Reaction Time

The feature Reaction Time is derived from the reaction time chart (see Fig.

2.3) and is the average response time of intact spots (such that the reaction

time is averaged among the reaction times from three stimulus presentations

at the same location) as follows:

Reaction Time :=

∑GY
y=1

∑GX
x=1

(
chartBaseline

ReactionT ime(x, y) · stencilIntact(x, y)
)∑GY

y=1

∑GX
x=1 stencilIntact(x, y)

(3.1)

The reaction time varies largely between and also within subjects and

the VRT literature reports inconsistent observations. Although one study

found no correlation between reaction times and treatment outcome [Poggel,

2002], results of another study (assessing a different group of subjects) showed

a clear association: subjects with faster reaction time experienced a more

pronounced visual field increase [Mueller et al., 2002].

3.2.3 Conformity to Hemianopia and Quadrantanopia

This feature expresses the degree of similarity of the visual field of a given

patient with an ’ideal’ hemianopia and quadrantanopia as displayed in Fig.

3.2. These features are based on combined values from the ratio of defect

spots (ratioi
def ) and the homogeneity (noisei) of the i-th quadrant:

degreei
def := ratioi

def · (1− noisei) (3.2)

The homogeneity is obtained by convolution of the quadrant with the 2x2

kernel
( −1 1

1 −1

)
. The convolution result is scaled such that the noisei value is

close to ’0’ if the respective area is homogeneous and close to ’1’ if the area

is noisy.
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The conformity to hemianopia and quadrantanopia is then calculated

from combining the degreei
def values from all four quadrants such that, for

example, quadrantanopia of the second quadrant is represented by many

defect spots in the second quadrant with little noise and many intact spots

with little noise in the first, third and fourth quadrant (see Fig. 3.2, left).

Horizontal visual angle [°]Ve
rti

ca
l v

is
ua

l a
ng

le
 [°

]

-20 0 20

-10

0

10

-20 0 20

-10

0

10

-20 0 20

-10

0

10
12

43

12

43

12

43

Horizontal visual angle [°] Horizontal visual angle [°]

Figure 3.2: Prototypic ideal visual field defects. Homonymous quadrant-
anopia (left) in the upper left quadrant and hemianopia (middle) of the left
hemifield. In many subjects, the border zone is not as sharp as in the left and
middle panel but shows variable performance (i.e. broken up with residual
spots forming a diffuse residual border) as in the right panel.

Hemianopia :=

max

(
degree1

def · degree4
def · (1− degree2

def ) · (1− degree3
def )

degree2
def · degree3

def · (1− degree1
def ) · (1− degree4

def )

)
(3.3)

Quadrantanopia :=

max


degree1

def · (1− degree2
def ) · (1− degree3

def ) · (1− degree4
def )

degree2
def · (1− degree1

def ) · (1− degree3
def ) · (1− degree4

def )

degree3
def · (1− degree2

def ) · (1− degree1
def ) · (1− degree4

def )

degree4
def · (1− degree2

def ) · (1− degree3
def ) · (1− degree1

def )


(3.4)

The ’ideal’ hemianopia where one hemifield is completely intact and the

other hemifield is completely blind, is very rare. It is usually caused by

total anatomical damage of the visual system in one hemisphere or results
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from a complete cut of the optic radiation [Barton and Benatar, 2003]. Both

features are considered in the TOPM because the clinical experience showed

that restoration is unlikely if a visual field defect is complete and close to the

ideal form.

3.2.4 Size of Residual and Defect Area

Both features are equal to the total number of occurrences of the respective

spot type in the detection chart:

Defect Area :=
GY∑
y=1

GX∑
x=1

stencilDefect(x, y) (3.5)

Residual Area :=
GY∑
y=1

GX∑
x=1

stencilResidual(x, y) (3.6)

The defective sector of the visual field is usually rather compact and covers

large areas of the visual field, for example, up to half of the visual field in

subjects with hemianopia and about a quarter in quadrantanopia (see Fig.

3.2). Areas of residual vision are usually located at or near the border region

separating the seeing field from the blind region although residual vision can

also occur in compact areas within the defect or intact visual field.

The literature shows ambivalent results with respect to the predictive

value of the features. In one study the size of the visual field defect did

not correlate with the outcome [Sabel et al., 2004]. This was in contrast to

other studies where the subject group with small defect areas had improved

significantly more then the group of subjects with large defect areas [Kasten

and Sabel, 1995, Poggel et al., subm.]. It was repeatedly observed that visual

field improvements are located in areas where the detection of stimuli is

unreliable (termed residual areas, indicated by shades of gray (see Fig. 2.3)

[Kasten et al., 1999, Sabel and Kasten, 2000]. Specifically, the size of the

residual area before treatment correlated significantly with the treatment

outcome [Mueller et al., 2002, Poggel et al., 2004, subm.]. However, the

position of residual spots are somewhat unstable because residual functions
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are prone to fluctuations caused by fatigue, stimulus saliency and in general,

by attention during the diagnostic testing [Poggel et al., 2006].

3.3 Local Features

Local features are directly related to the spot itself and extend the above

introduced global features. By using local features the prediction can be

applied specifically for each spot in the diagnostic chart.

3.3.1 Residual Function

Residual Function measures the strength of damage to a spot. It is a di-

chotomous measure and its value is either 0 or 1
3

indicating that 0 or 1 of

3 presented stimuli were detected by the subject (shown in dark gray and

black in Fig. 2.4). This feature is interpreted as the probability of stimulus

detection at the respective spot position. Note that Residual Function is not

a measure of individual electrophysiological activity of single neurons but it

is the overall residual function of the corresponding region probed by the

stimulus detection. It shows how often the subject has responded to a total

of 3 stimulus presentations (detection rate) per specific test position. Spots

with a Residual Function at baseline above 1
3

(2
3

or 1) are excluded from the

analysis and prediction because those spots are classified as ’healthy’ (shown

in light gray and white in Fig. 2.4). The Residual Function of the spot is

equal to the detection chart value at the respective grid position (x, y):

ResidualFunction(x, y) :=

0 iff chartBaseline
Detection(x, y) = 0

1
3

iff chartBaseline
Detection(x, y) = 1

3

(3.7)

A high predictive value of this feature was observed in the retrospective

analysis (see section 3.6.3): a significantly higher Residual Function (1
3
) was

observed in restored spots in comparison to not restored spots where the

Residual Function was mostly 0. It was hypothesized that such residual
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areas are the preferred location for restoration because subjects with hemi-

anopia normally focus their attention on intact visual field regions and tend

to neglect small and confusing, imprecise perceptions which originate from

residual areas [Kasten et al., 2000]. During the treatment, residual spots

could become intact whereas blind spots tend not to improve. This feature

has probably the highest predictive weight among all other features.

3.3.2 Neighborhood Activity

The spatial neighborhood around a hot or cold spot includes all spots within

a 5 ◦ radius of visual viewing angle centered around the target spot. This

limit of 5 ◦ (see Fig. 3.3) was chosen for technical reasons: firstly, larger

values would possibly average out local effects and secondly, much smaller

values are below the spatial resolution of the diagnostic test grid. Neighbor-

hood Activity is a measure of how much Residual Function is present in the

entire neighborhood. This parameter is the average Residual Function of all

stimulus positions in the entire 5 ◦ radius, i.e., the functional state of the

entire neighborhood. Therefore, a value of ’1’ is assigned to a neighborhood

where all spots are intact and ’0’ is assigned if all spots in the neighborhood

are absolute-defect. The calculation include neither the Residual Function

of the spot in the neighborhood center, which was addressed above, nor does

it include spots of the opposite (contralateral) hemifield.

According to the retrospective analysis in section 3.6.3, improved spots

had significantly greater Neighborhood Activity in their surround (radius 5 ◦)

than non-improved spots. On average, more than one third of all spots within

the baseline-chart neighborhood around hot spots were found to be healthy

in comparison to only 1/10 in the neighborhood around cold spots (for details

see chapter 3.6). In other words, if the surround is more intact and therefore

active, restoration is more likely. Lateral horizontal connections in visual

cortex could explain such a center-surround relationship between neurons in

the primary visual cortex (see Fig. 3.4, right). Referring to the literature,

the reorganization of cortical tissue was simulated in a theoretical study, and

practical results also suggest that perilesion excitability is a critical factor for
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reorganization after cortical stroke [Goodall et al., 1997, Pettet and Gilbert,

1992].

3.3.3 Neighborhood Homogeneity

The homogeneity is the standard deviation obtained when calculating Neigh-

borhood Activity scores. By using this feature together with Neighborhood

Activity, neighborhoods which are originally composed of more than 20 sin-

gle values (their respective Residual Function) are adequately represented by

only 2 values. Furthermore, the defect, residual and intact neighborhoods are

well separated from each other by using Neighborhood Activity and Neigh-

borhood Homogeneity together; Assuming the neighborhood has a medium

Neighborhood Activity with an average of 0.5, a high standard deviation would

result if 50 % of all visual field positions are defective and 50 % are intact (for

examples see Fig. 3.5). Another example of a possible neighborhood could

have the same Neighborhood Activity of 0.5, but a low standard deviation

would result, if all positions in the neighborhood are residual, in a rather

homogeneous manner.

3.3.4 Visual Field Position

Hot and cold spots are not uniformly distributed in the visual field but are

a function of the location of the visual scotoma (see Fig. 3.6) and there-

fore considered in the TOPM. The VRT literature showed that the vertical

eccentricity was positively correlated with the amount of the defect border

shift (which is comparable to the definition of the treatment outcome used in

the Thesis) [Mueller et al., 2002, Poggel, 2002, Poggel et al., subm.]. Addi-

tionally, it was hypothesized that the recovery follows the cortical magnifica-

tion, hence that improvement occurs more frequently in higher eccentricities

[Poggel et al., 2004].
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<5°<5°

0.43°

1.
68
°

Figure 3.3: This graph illustrates the extraction of three spatial neighbor-
hoods from the baseline diagnostic chart (left). The spatial neighborhood
(right) has a radius of 5 ◦ in visual field coordinates (stimulus size: 0.43 ◦,
inter-stimulus space: 1.68 ◦).

Neighborhood Homogeneity

Neighborhood Activity

Figure 3.4: This graph shows examples of different neighborhoods and de-
scribes them in terms of Neighborhood-Activity (top row) and Neighborhood-
Homogeneity (bottom row). They are ordered from low to high activity
and from homogeneous to inhomogeneous. The activity and its standard
deviation are based on the concept of the local spatial neighborhood (see
also Fig. 3.3) which is inspired by the connectivity between neurons (right)
where intrinsic horizontal connections (indicated by branches) exist between
neurons. These horizontal connections are anatomically and physiologically
well described [Stettler et al., 2002] and their function is to integrate visual
information over some cortical distance.



CHAPTER 3. VISION RESTORATION FEATURES 51

 Neighborhood Activity

N
ei

gh
bo

rh
oo

d 
H

om
og

en
ei

ty
ho
m
o-

ge
ne
ou
s

in
ho
m
o-

ge
ne
ou
s

highlow

Figure 3.5: By using both, the features Neighborhood Activity and Neighbor-
hood Homogeneity, the information of the spatial neighborhood is compactly
represented. Neighborhood examples and their respective position in the
chart are shown in the insets.
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Figure 3.6: The spatial distribution of hot (left) and cold (middle) spots
based on 52 subjects with post-genicular damage (black represents highest
frequency and white represents no occurrence of hot or cold spots at the
respective position). If both charts are combined (right), the effect of the
lesion location is eliminated (right, black color: the relative occurrence of
hot spots is higher than of cold spots, dark gray: 33 % hot spots and 66 %
cold spots, light gray: 20 % hot spots and 80 % cold spots, white: less than
20 % hot spots).
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3.3.5 Distance to Scotoma

The distance between a spot and the scotoma border (see Fig. 3.7) is esti-

mated in cortical coordinates after transformation of visual field coordinates

(see section 3.4). Cortical coordinates were preferred to visual field coordi-

nates because functionally relevant distances are linear in the visual cortex

but non-linear in the visual field due to cortical magnification (see Fig. 1.2).

The Euclidean distance was measured in cortical coordinates between the

spot and its next proximal border position and the analysis was restricted

to only one hemifield. Possible inter-hemispheric interactions in the visual

system [Marks and Hellige, 1999] were not considered in the analysis.

e

Visual Field Visual Cortex

dCortex

Figure 3.7: The feature Distance to Scotoma measures the distance in cortical
coordinates (dCortex) between a spot (in gray) and the nearest position of
the defect-intact border (shown by a black arrow) after the visual field is
projected onto the visual cortex by using a projection model (see chapter
3.4). The cortical distance depends at most on the eccentricity e at which
the spot is located in the visual field.

According to the feature evaluation study (see section 3.6.3) it was ob-

served that Distance to Scotoma is significantly (negatively) correlated with

the treatment outcome, (i.e. restoration of vision is greatest in spots close

to the visual field border). This finding is compatible with observations in

animal studies where reorganization was observed to be restricted to the

immediate perilesion area [Schweigart and Eysel, 2002]. A spatially limited

amount of information integration was also observed in experiments which

examined the size of perceptive fields [Levitt and Lund, 2002].

The spatial limitation of vision restoration is probably attributed to the

architecture of interactions (see also Fig. 1.2) in the cortical neuronal net-
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work which change their connection weights to control the activity that is

transfered to other neurons [Das and Gilbert, 1995]. Cortical correlates for

spatial propagation of cortical activation are well-known. They include in-

trinsic horizontal connections in the visual cortex which connect neurons

with overlapping receptive fields and neurons with non-overlapping receptive

fields of the same preference [Sincich and Blasdel, 2001]; such as columns

of similar ocular dominance [Malach et al., 1993] or preferred orientation

[Gilbert and Wiesel, 1989]. Another possible mediator of residual activa-

tion are connections [Shmuel et al., 2005] which provide feedback loops from

higher (extrastriate) cortical areas. It was further proposed that these kinds

of cortical interconnections which are under permanent reorganization [Stet-

tler et al., 2006] play a fundamental role not only in normal visual perception,

but also in cortical plasticity during perceptual learning [Gilbert et al., 2000]

and after cortical damage [Das and Gilbert, 1995].

An interface to the cortical transformation function was developed such

that cortical interactions between different areas of the visual field can be

estimated.

3.4 Visuo-cortical Coordinate Transformation

The size or position of damaged areas in the visual cortex is of interest to

several applications of visual research, such as calibration of diagnostic sys-

tems, correlation analysis or, in this case, data mining of visual field charts.

By using a coordinate projection model [Balasubramanian et al., 2002] the

size and position of the cortical scotoma is estimated and cortical distances

between points in the visual space are computed. The visual field charts are

projected onto the primary visual cortex which is located in the occipital

cortex (see Fig 3.8).

Such a model shows which cortical position PC is active if an appropriate

stimulus is presented in visual space coordinates at position PV S. The pro-

jection function f : PV S −→ PC is non-linear and incorporates the cortical

magnification factor in which foveal eccentricities are overrepresented in the

visual cortex (see also Fig. 1.2). The projection of the high dimensional
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 16

In HRP, adjacent visual field chart positions are equidistant (1.68°) to each other in 

visual space coordinates (see Fig. 1). Following the transformation to cortical coordinates, the 

minimal distance of adjacent baseline stimulus positions in visual cortex coordinates is 0.63 

mm for peripheral eccentricity positions and as large as 18.8 mm in the fovea.  
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Figure 4  (Part A) Saggital view of the left cortex. The primary visual cortex (circle in inset) is inflated and 

borders between the different visual areas (V1-V4) are shown (Adapted figure with kind permission from 

(Tootell et al, 1998)). Iso-polar coordinate lines of the projection model are superimposed. They originate 

from the foveal confluent (marked with a star). Part B: Positions of HRP stimuli as used in baseline 

assessments projected onto the primary visual cortex following transformation of the visual field 

coordinates according to the cortical magnification factor. Part C: This graph shows the  visual field map 

of subject 8.  Four landmarks are shown (1 fixation point at fovea, 2 the maximum horizontal distance of 

the hemianopic field to the outer limit of the test, 3 the maximum vertical distance to the lower testing 

limit, 4 the position with greatest eccentricity). Part D: The right hemianopic field of subject 8 is projected 

here onto the left cortical hemisphere in V1. To follow the results of the coordinate transformation, 

Figure 3.8: Medial view of the visual cortex (in circle). Borders between
the different visual processing areas (V1, V2, V3) are shown in the inflated
cortex (enlarged). Iso-polar coordinate lines of the projection model are
superimposed and originate from the foveal confluent (marked with a star).
Adapted figure with kind permission from [Tootell et al., 1998].

visual feature space (color, size, orientation, texture, velocity, position of vis-

ual stimuli) onto the two-dimensional visual cortex layer is mathematically

equivalent to a compression with loss of accuracy. Due to this dimension

reduction, the cortical projection is not homogeneous [Gilbert and Wiesel,

1989, Malach et al., 1993].

The interface is written in Matlab and computes cortical coordinates

based on the horizontal and vertical degree of the visual field position and -

if available - the size of the individual primary visual cortex.

The coordinate-transformation function f : PV S −→ PC transforms

(Cartesian or polar) visual space coordinates into cortical coordinates (see

Fig. 3.9).

All positions of the visual field are completely but non-uniformly repre-

sented in different parts of the primary visual cortex. The transformation

considers the eccentricity e taking the cortical magnification factor into ac-

count. Cortical magnification is defined as the size of the cortical area which

is activated when a visual stimulus of size 1 ◦ is presented in the visual

space at eccentricity e [Dougherty et al., 2003]. The cortical magnification

function overrepresents foveal eccentricities reflecting the density of foveal

receptors which is higher in the central retina than in the periphery [Duncan
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Figure 3.9: A: The visual space in polar coordinates. The space is divided
into rings of increasing eccentricity and wedges of increasing polar angles
representing any point in the visual space. Three different types of visual
stimuli are shown: A ring-shaped stimulus (2 ◦ extent in eccentricity). A
wedge-shaped stimulus (15 ◦ extent in polar angle). Three point-like stim-
uli of equal size (1 ◦) at different eccentricities (1-3). B: The inflated pri-
mary visual cortex. The visual space (in eccentricity and polar angle) is
transformed into cortical space by the complex logarithm. The cortical over-
representation of the parafoveal circular stimulus (labeled with 1) is clearly
visible in comparison to the peripheral stimulus (labeled with 3). The com-
plex logarithm maps ring-shaped stimuli into vertical lines, and wedge-shaped
stimuli into horizontal lines.
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Figure 3.10: A: Diagnostic chart with 474 stimuli. A large scotoma is vis-
ible (black) in the right hemifield. The left hemifield is almost completely
intact (white). Four landmarks are highlighted (1: foveal vision, 2: the
most horizontal extent, 3: the most vertical extent, 4: position with highest
eccentricity). B: Cortical projection of the visual field chart from (a). To
demonstrate the coordinate transformation, landmarks from (a) are shown
at correspondent positions. The para-foveal area (eccentricities ≤ 10 ◦) is
represented in the left part of the figure around the origin of all iso-polar
coordinate lines.



CHAPTER 3. VISION RESTORATION FEATURES 57

and Boynton, 2003] (see also the projection of equally sized circular stimuli

in Fig. 3.9).

By considering the polar angle ϕ, the transformation incorporates pro-

jection differences between the horizontal and vertical meridian [Van Essen

et al., 1984]. Results from retinotopic measurements [Schwartz, 1977] suggest

that the complex logarithm describes sufficiently the transformation from vi-

sual space coordinates (eccentricity and polar angle in degree) into visual

cortex coordinates (longitudinal and anteroposterior axis in cortical millime-

ter). The coordinate transformation is based on a ’wedge-dipol model’ of

the primate visual cortex topography of the owl monkey [Balasubramanian

et al., 2002] and represents any point of the visual hemifield by a complex

variable:

z = e · exp(ϕi) (3.8)

where e represents eccentricity and ϕ the polar angle of the visual field po-

sition PV S.

To obtain the ’wedge-dipole model’ for the primary visual cortex, the

complex variable is included into a dipole model (the constants a = 1.5 and

b = 170 determine the positions of two monopoles):

w = log((z + a)/(z + b)) (3.9)

The original model [Balasubramanian et al., 2002] incorporates the V1,

V2, and V3 cortical area but here, only the V1 area is considered. The

visual cortex coordinates are obtained from the real and imaginary parts of

the complex variable w. The horizontal axis is shifted by k1 = 4.73 mm so

that foveal eccentricities are identical with the origin and absolute cortical

coordinates were obtained by scaling the model with k2 to the desired total

V1 surface area:

PCX = k2 · (real(w) + k1) (3.10)

PCY = k2 · imag(w) (3.11)
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The transformation is isotropic (locally invariant to the direction in the

visual space) and conformal (visual space angles are preserved in the visual

cortex). Because no individual cortex sizes were available for the subjects

in the evaluation study, the cortex size was set to the average V1 size of

2399 mm2 from 29 examined cortices [Andrews et al., 1997].

Visual field charts, which are transformed into visual cortex charts by

using the transformation model as described here (see Fig. 3.10), contain

a model error caused by the differences in size and shape of the individual

cortices. Whereas the error, which is introduced by differences of the corti-

cal shape is relatively small, a substantial error is introduced by the inter-

individual size variations (standard deviation: 494 mm2, n = 29 in [Andrews

et al., 1997]) of the cortical lobe. The individual minimal and maximal size

of the visual cortex may vary by a factor of 2.5 [Dougherty et al., 2003].

3.5 Inappropriate Features

The following features were derived from the VRT literature but were not

considered for the TOPM because the association between the observed fea-

tures and the treatment outcome is ambivalent, contradictory, not applicable

or not existent. However, those features are briefly described.

3.5.1 Subject Age

The VRT literature does not agree on a clear association between Subject Age

and treatment outcome if different subject samples are examined: one study

reported only small non-significant influences of Subject Age with the treat-

ment outcome [Mueller et al., 2003] whereas another study reported that the

group with age < 50 years showed a better outcome than the subject group

with age > 50 years [Kasten and Sabel, 1995]. The opposite was reported

elsewhere where subject age was positively correlated with the treatment

outcome [Poggel et al., subm.].
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3.5.2 Lesion Location and Lesion Age

Lesion Age is not associated with the treatment outcome [Poggel et al.,

subm., Sabel et al., 2004]. A group of subjects who began the treatment

within the first year after their lesion showed no different outcome to the

group of subjects who started later than one year after their lesion [Kasten

and Sabel, 1995]. Considering the anatomical location and type of visual

system damage, the group with damage to the early visual system (optic

nerve damage) achieved stronger improvements than the group with post-

chiasmatic damage [Kasten et al., 2000]. No difference was found among

subjects with post-chiasmatic damage between stroke patients and patients

with tumor surgery, skull fracture from accident, hemorrhage [Kasten and

Sabel, 1995] or between stroke patients and patients with vascular malfor-

mations/aneurysm surgery or between the affected hemisphere [Poggel et al.,

subm.]. Because all subjects in the database have similar parameters (post-

chiasmatic damage, location of treatment, time since lesion), the type of

lesion, location and time is not considered in the TOPM.

3.5.3 Treatment Schedule and Location of Treatment

The TOPM training set was derived with all subject’s treatment duration be-

ing similar (about 180 hours) and the treatment location was selected equally

according to standard operating procedures. Therefore, Treatment Schedule

and Location of Treatment were not considered in the TOPM. According to

the VRT literature, treatment results were not stable if the treatment lasted

for less than 30 hours [Kasten and Sabel, 1995]. Another study showed that

neither total duration nor total number of treatment session did influence

the treatment outcome significantly [Poggel et al., subm.].

However, the treatment outcome is specific to the location of stimulation.

No improvement was observed in the untreated visual field sectors in contrast

to the treated sectors [Kasten et al., 1998a]. Likewise, more pronounced

improvement was observed in the quadrant where an attentional cuing was

used during treatment in comparison to the quadrant without attentional

cuing [Poggel et al., 2004].
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3.5.4 Diagnostic Quality Parameters

The subject groups are pre-selected to include only subjects with low fixation

instability. Therefore, the parameter Fixation Stability is not considered in

the TOPM. The criteria of sufficient fixation stability is examined in chapter

5 because eye movements can severely affect the validity of the visual field

diagnostics. In the pre-selected group of subjects, Fixation Stability was

not correlated significantly with the treatment outcome (see also Table 3.1).

These findings are similar to those reported elsewhere [Kasten et al., 2006].

Furthermore, neither alertness nor vigilance showed any value for predicting

the treatment outcome [Poggel et al., subm.].

3.6 Retrospective Feature Evaluation

In this section, the results of an evaluation study are presented. Methods

are described to evaluate the local features Residual Function, Neighborhood

Activity and Distance to Scotoma with respect to their predictive value. The

evaluation is necessary because the features were created recently and have

never been tested.

A hemianopic subject sample (n = 23) was selected from the archives for

this retrospective evaluation. By comparing the diagnostic charts before vs.

after treatment, two groups of visual field spots with improvement (hot spots)

and without improvement (cold spots) were identified at first. Then, feature

averages were computed separately for the groups of hot and cold spots. If

the new features are useful in prediction, the respective group averages µhot

and µcold which are derived from the baseline diagnostic charts should differ

significantly between the group of hot and cold spots.

All three features are motivated by a priori knowledge derived from the

neuro-scientific literature:

• Distance to Scotoma is derived from observed restoration patterns af-

ter retinal lesions [Das and Gilbert, 1995, Giannikopoulos and Eysel,

2006], deprivation [Gilbert and Wiesel, 1992] and after nerve segrega-

tion [Buonomano and Merzenich, 1998].
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• Residual Function is based on the observation that restoration is most

pronounced if cortical damage is diffuse rather than absolute [Steward,

2006].

• Neighborhood Activity is derived from the observed perilesion activ-

ity which was identified as a critical factor in cortical reorganization

[Goodall et al., 1997, Sober et al., 1997].

3.6.1 The Subject Sample

The subject sample which was used for feature evaluation and for building the

TOPM determines the group of subjects whose treatment can be predicted

by the TOPM. Because the prediction error may increase significantly if the

TOPM is applied to subjects which are different from the subject sample in

the evaluation and building phase, a detailed description of the appropriate

subject sample and the methods of feature extraction is necessary.

The visual field of hemianopic subjects (n = 23, 16 male, 7 female) was

assessed by HRP before and after carrying out VRT for 6 months. The data

was retrospectively selected from a pool of subjects which have previously

been treated in Magdeburg in the course of two independent studies: Study

1: [Mueller et al., 2003], Study 2: [Mast et al., 2006]. Although the diagnostic

parameters differ between both studies from which the subjects were taken,

no significant differences (two-tailored T-test) were found between the re-

sponse times in the baseline (µ1 = 450 ms ± 16.5 ms, µ2 = 448 ± 12.8 ms)

or in the post-treatment diagnostic charts (µ1 = 427 ms ± 11.0 ms,

µ2 = 415 ± 10.0 ms) and therefore all subjects were pooled into one group.

The subjects had an average age at start of training of 52±13 (mean ± S.D.)

years and their visual field defects were caused by post-chiasmatic damage

of the visual system (age of lesion: 1.2 ± 1.3 years in Study 1 and 3.8 ± 1.1

years in Study 2). To be included in the present study the following in-

clusion criteria had to be met: Stroke or ischemia in the occipital cortex

(A. cerebri posterior or A. media) as evidenced by medical documentation,

and the availability of at least 3 independent visual field diagnostic tests at

baseline and post-treatment, respectively. These three visual field tests were



CHAPTER 3. VISION RESTORATION FEATURES 62

then superimposed to generate a visual field chart. Exclusion criteria were

(i) confounding eye disease, such as nystagmus or strabismus, (ii) more than

4 % false positive positions at baseline or post-training examination in HRP,

and (iii) less then 90 % of detected fixation catch trials in HRP. On the basis

of the visual field charts at baseline (see also the appendix), the visual field

defects (22 homonymous, 1 heteronymous) were classified as follows: Hemi-

anopia to the left (n = 10) or to the right side (n = 4), quadrantanopia in

the upper (n = 2) or lower left quadrant (n = 1), quadrantanopia in the

upper right quadrant (n = 2), quadrantanopia with partial defect in multiple

quadrants (n = 3) and local scotoma (n = 1).

3.6.2 Measuring the Association between Features and

Treatment Outcome

Several association measures were calculated to quantify the statistical rela-

tionship between the local features and the treatment outcome. Furthermore,

feature inter-dependencies were examined.

Testing Significant Differences between Hot and Cold Spots

The mean value of all features was calculated for hot (µhot) and cold spots

(µcold) separately in order to examine the group differences. In order to

exclude the influence of the individual subject’s performance on the averages

for cold and hot spots, the average was determined at first for each subject

regarding the two groups of hot and cold spots. Next, the average among

all subjects was calculated for the respective group of hot and cold spots.

This difference was tested for statistical significance with the 2-tailed Mann-

Whitney-U-Test.

Testing the Correlation between Feature and Treatment Outcome

The first correlation (Pearson’s Rho) was subject-based and establishes the

relationship between topographic features and the number of observed hot

spots per subject (a chart related measure). This correlation required the
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replacement of the original features by dummy variables because the three

features are spot-related (local), whereas the number of observed hot spots

per subject is chart-related (global). Each feature was divided into two inter-

vals (the lower and the upper interval) by using the median of the respective

feature from all spots (the complete set of spots was collapsed among all

subjects). A subject related dummy variable was obtained by counting the

number of spots in each subject’s chart contained in the upper interval (in

the case of Residual Function and Neighborhood Activity) or contained in

the lower interval (in the case of Distance to Scotoma). The second correla-

tion measure was based on the level of spots, directly. In order to examine

whether a location with high or low values (with respect to the pre-treatment

features) showed post-treatment restoration or not, an association measure

(ranking based non-parametric Spearman’s Rho) correlates each spot’s fea-

ture value with its binary post-treatment classification (cold or hot spot). In

order to perform this correlation independent of subject specific properties,

the following modified bootstrap resampling method was used:

1. Prepare 23 sets Π1 to Π23 such that Πi contains all feature-outcome

tuples of all spots of the i-th subject; all Πi together form the set

Σ = {Π1, .., Π23}.

2. Draw only one sample π from each Πi with replacement resulting in a

sample set of spots Σ∗ = {π1, .., π23}.

3. Compute the Spearman correlation coefficient ρ on the basis of each

spot’s feature value and its binary treatment outcome (cold or hot spot)

of Σ∗.

4. Perform the second and third step for 1000 iterations resulting in the

correlation coefficients ρ1 to ρ1000.

5. Compute the median among all ρi.

As the result of these steps, a subject-independent correlation measure was

obtained for the spot’s restoration response (hot or cold). On the basis of

the distribution of the ρi, 95 % confidence intervals were computed to test

for statistical significance.
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3.6.3 Differences between Hot and Cold Spots

In order to compare the restoration of the subject sample with prior studies,

the differences of detected stimuli between baseline charts and post-treatment

charts were calculated. On average, the subject sample improved from

293.6 ± 12.4 detected stimuli before to 322.5 ± 12.7 after VRT (of a total of

474 test stimuli). The average absolute improvement was thus 6 % ± 2.7 %

(mean ± S.E., p = 0.01, paired T-test) which is in the range of prior studies

[Kasten et al., 1998a, Mueller et al., 2003, subm., Poggel et al., 2004, Sabel

et al., 2004]. Twenty three subjects were studied with 474 testing positions

each. A total sample of 10,902 baseline visual field spots was collected from

all of the subjects, collectively. This included 688 hot spots and 3,426 cold

spots. Figure 3.11 shows the distribution of hot spots among all 23 subjects.
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Figure 3.11: Number of hot spots after VRT for each of the 23 subjects. The
charts of all subjects are shown in the appendix.

Residual Function

Hot spots (µhot = 0.16 ± 0.01) have a significantly higher (p < 0.01)

Residual Function at baseline than cold spots (µcold = 0.04 ± 0.01).

At baseline, hot spots consist of absolute-defect (black color in Fig. 2.4)

and residual (moderate-defect, dark gray color in Fig. 2.4) spots in similar
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proportion (46 % were moderate-defect, 54 % were absolute-defect). Con-

trasting this, 93 % of cold spots were absolute-defect at baseline and only

7 % were moderate-defect. Thus, a spot with a detection probability of 33 %

(moderate-defect) at baseline is likely to become a hot spot after treatment.

Neighborhood Activity

The feature Neighborhood Activity measures the average probability of stimu-

lus detection (at baseline) in the local spatial neighborhood of a 5 ◦ radius

around cold and hot spots. It was found that hot spots have a significantly

(p < 0.01) higher Neighborhood Activity (µhot = 0.37 ± 0.03) than cold

spots (µcold = 0.10 ± 0.03) in their respective spatial neighborhood. This

demonstrates that hot spots are surrounded by significantly more intact areas

or areas of residual vision than cold spots.

For controlling the robustness of the obtained results, it was tested as

to whether any difference in the Neighborhood Activity between hot and

cold spot exists only locally or in the complete hemifield. The feature

Hemifield Neighborhood Activity averages all stimulus positions in the ip-

silateral hemifield (where the testing spot is located) but excluded the di-

rectly adjacent spatial neighborhood of 5 ◦ (see Fig. 3.12 bottom left). The

Hemifield Neighborhood Activity was not statistically different between cold

(µcold = 0.32 ± 0.05) and hot spots (µhot = 0.34 ± 0.05). Thus, the

complete hemifield did not contain more intact areas around hot spots than

around cold spots. This indicates that the influence of residual function on

restoration is probably limited to the immediate neighborhood.

Another robustness test examines the differences in the neighborhood be-

tween cold and hot spots at higher spatial resolution using cortical distances.

The Neighborhood Activity was measured in a thin ’corridor’ as a function of

cortical distance to the respective hot or cold spot (see Fig. 3.12, right).
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Figure 3.12: Left: The Neighborhood Activity (top left) is computed on the
basis of the spot’s spatial neighborhood (area with hatching) whereas Hemi-
field Neighborhood Activity (bottom left) is computed on the basis of the
spot’s hemifield minus the spot’s spatial neighborhood (area with hatching).
Right: The spatial neighborhood was examined one-dimensionally but with
high spatial resolution in a thin corridor (area with hatching between the 2
dashed lines) which is defined by any selected spot (white circle) and runs
orthogonal to the scotoma border. Positive distances are assigned to the
part of the corridor in direction to the intact area and negative distances are
assigned to the part of the corridor in opposite direction to the intact area.

This analysis is restricted 3-fold:

• to moderate-defect spots

• to the orthogonal orientation of the scotoma border

• to the ipsilateral hemifield.

Only moderate-defect spots are considered because the moderate-defect spots

are typically located around the scotoma border and are almost equally dis-

tributed among cold and hot spots (45 % of moderate-defect spots are cold

spots and 55 % are hot spots). This contrasts with absolute-defect spots

which usually form huge homogeneous areas of cold spots. The second re-

striction is necessary to reduce the artefact which results from the high dis-

tances to the spots from the often coast-like form of the scotoma border.

Therefore, the examined neighborhood is only one dimensional and consid-

ers spots which are located on a virtual line connecting the spot and the
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border position of minimal distance to the spot; hence the orientation is

orthogonal to the border (see Fig. 3.12, right). Thirdly, the analysis is re-

stricted to the ipsilateral hemifield because the contralateral hemifield (which

is typically intact) would otherwise interfere with this analysis. This analy-

sis of Neighborhood Activity as a function of cortical distance requires the

transformation of diagnostic charts into cortical charts which was described

above (see chapter 3.4).

The results show that the activity around hot and cold spots differs maxi-

mally (> 1/5 of the complete scale) in the close neighborhood (see Fig. 3.13).

Hence, the residual activity around hot spots is spatially limited and does

not generalize to areas at greater distances.
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Figure 3.13: Left panel: Neighborhood Activity of cold and hot spots (col-
lapsed into one set from all subjects) as a function of distance measured
from hot and cold spots. Only moderate-defect spots which are typically
found near the intact defect border are considered. The examined spatial
neighborhood is one dimensional and restricted to a thin corridor located on
a virtual line which runs orthogonal to the scotoma border (see Fig. 3.12).
The corridor itself is limited to the damaged hemifield. Positive distances
are assigned to the part of the corridor oriented towards the direction of the
intact area and negative distances represent the opposite direction. Right
panel: The difference of both functions (hot minus cold) shows that the
maximal difference (which is equal to more than 1/5 of the complete scale)
is found < 4 mm from the neighborhood center.
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Distance to Scotoma

Hot spots (µhot = 3.2 ± 0.67 mm) were found significantly closer (p < 0.01)

to the scotoma border than cold spots (µcold = 5.9 ± 0.65 mm). As Fig.

3.14 shows, the majority of hot spots (75 %) were located within 4 mm

from the scotoma border. This analysis was carried out using visual cortex

coordinates to consider cortical magnification.
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Figure 3.14: The cumulative distribution for Distance to Scotoma in cortical
coordinates (spots with Distance to Scotoma = 0 are not considered in the
graph). Hot (black) and cold spots (gray) of all subjects are pooled into one
set.

Correlation of Features and Treatment Outcome

Significant correlations (see Table 3.1) were found between the treatment

outcome and the topographic features. The number of detected fixation

catch trials in baseline and post-training charts (an indirect measure of eye

movements) did not correlate significantly with the number of hot spots.

Feature Interdependencies

To study how Residual Function and Neighborhood Activity interact, the

number of cold and hot spots was plotted as cumulative function (Fig. 3.15

left). Generally, the neighborhood was found to be more active around
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Table 3.1: Correlation coefficients between features and treatment outcome
in a resampling design at the local level of spots (second column, Spearman’s
Rho) and at the global level of individual subject charts (third column, Pear-
son’s Rho). For the latter, the occurrences of spots per subject which satisfy
(i) Residual Function identical to the median of 0, (ii) Neighborhood Activity
above the median of 0.03 and (iii) Distance to Scotoma below the median of
4.93 mm were counted.

Feature Spearman Cor-
relation with
type of spot
(cold,hot)

Pearson Cor-
relation with
number of
hot spots per
subject

Residual Function 0.73** 0.70**
Neighborhood Activity 0.59** 0.56**
Distance to Scotoma -0.19 0.44*
Baseline fixation N.A.1 0.17
Post-treatment fix. N.A.1 0.07

Abbreviations: ** = correlation significant at the 0.01 level, * = correlation
significant at the 0.05 level, 1=the fixation measures are chart-related, a
correlation with individual spots is not applicable.
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moderate-defect spots than around absolute-defect spots (independent of the

classification of cold or hot spots). Another interdependent relationship of

Neighborhood Activity was found with the feature Distance to Scotoma. As

Fig. 3.15 (right) shows, the neighborhood does not differ between hot and

cold spots as long as they are located on the scotoma border. In contrast, if

hot and cold spots are located at some distance from the visual field border,

the neighborhood around hot spots was found to be significantly more active

than around cold spots.

The mutual distribution of hot and cold spots with respect to Distance

to Scotoma and Neighborhood Activity is shown in Fig. 3.16. In areas where

the distribution of hot and cold spots is similar (close to the scotoma border)

the TOPM would have potentially higher prediction errors.

The topographic features are statistically dependent among each other

because a significant correlation (Person’s Rho) on the individual level was

found among all dummy variables of the three feature combinations: 1 with

2 = 0.85, 1 with 3 = 0.58, 2 with 3 = 0.66 (1 = Residual Function, 2 = Neigh-

borhood Activity, 3 = Distance to Scotoma).

3.7 Conclusion

Global features were identified from the VRT literature and were considered

only if their association with the treatment outcome was evidently described.

Local features were constructed on the basis of the vision plasticity litera-

ture and their predictive value was examined in an evaluation study. The

results of the study should be interpreted with caution because the scotoma

border was only defined by a behavioral perimetric task and was not directly

visualized anatomically in the cortex. Furthermore, the Residual Function

of sensory areas is assessed only indirectly by the ability to detect above-

threshold stimuli. This includes both, the perception of the stimulus and

the execution of the motor response. It is furthermore possible that eye

movement artefacts might contribute to the findings but efforts were made

to reduce their influence (see chapter 5). In conclusion, the evaluation study

found that all three features (Residual Function, Neighborhood Activity and
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Figure 3.15: Hot (black) and cold spots (gray) of all subjects are collapsed
into one graph. Left: The cumulative distribution of Neighborhood Activity
is shown separately for moderate-defect (dashed) and absolute-defect (solid)
spots. Right: The cumulative distribution of Neighborhood Activity is shown
separately for spots located on the scotoma border (dashed, Distance to
Scotoma = 0) vs. beyond the scotoma border (solid, Distance to Sco-
toma > 0).
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Figure 3.16: The scatter plots of cold (left) and hot spots (right) with respect
to Neighborhood Activity and Distance to Scotoma.
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Distance to Scotoma) have a higher predictive value which shows that these

features can be used for building a TOPM. However, a prediction model

should be used which is robust to shared variance among all three features.

The results which were presented in this chapter were derived from a well

selected and largely homogeneous subject group. Furthermore, algorithms

were presented which consider subject related dependencies between spots.

Descriptive statistic results from a larger and more inhomogeneous set of

subjects are shown in appendix B. These statistical measures were computed

from spots of all 52 subjects pooled into one set and therefore neglecting

subject related dependencies between spots.



Chapter 4

Treatment Outcome Prediction

Model

4.1 Introduction

A prediction model for the field of visual system plasticity was developed

using Self-Organizing-Maps (SOM) as the core of the TOPM. Besides the

generally accepted recommendation to favor simple algorithms rather than

complex algorithms [Sajda, 2006], no consensus is available which favors a

specific algorithm for a specific problem. The SOM is a relatively ’lightweight’

algorithm which offers excellent data visualization methods and can also be

used for classification and prediction. It is applied to data obtained from

patients with visual field defects caused from brain damage after stroke,

brain trauma or other etiologies. Because neither all patients nor all areas of

the visual field necessarily profit from VRT, it is desirable to find methods

that efficiently predict vision restoration. The following is a useful definition

of medical prognosis [Abu-Hanna and Lucas, 2001]:

’Medical prognosis is the prediction of the future course and

outcome of disease processes, which may either concern their nat-

ural course or their outcome after treatment.’

The TOPM described here, predicts the outcome of intrasubject visual field

areas. The local prediction is spot-based (a spot is a point in the visual field)

73
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and the treatment outcome of a specific spot is either improvement (termed

’hot spot’) or no improvement (termed ’cold spot’). Spots showing functional

deterioration are not considered here because they are very rare and within

the expected normal variability. The TOPM methodology is comprised of

the following three steps (see Fig. 4.1):

1. Building a TOPM which can predict the treatment outcome based on

the baseline diagnosis by using diagnostic charts from patients who

completed VRT.

2. Extracting predetermined features (see Table 4.1) from baseline di-

agnostic charts. In these baseline performance charts, the spots are

classified as being either ’impaired’ (spots with 0 or 1 out of 3 possible

detections) or ’intact’ (spots with 2 or 3 out of 3 detections).

3. Predicting the treatment outcome for all impaired spots by using the

TOPM derived in step 1 based on the features from step 2.

Table 4.1: Specifications of Features which are used for the TOPM.
Feature Minimal

value
Maximal
value

Scale Type

Residual Area 18 117 Ordinal global
Defect Area 54 219 Ordinal global
Border Diffuseness 0.1 0.7 Continuous global
Reaction Time [ms] 380 540 Continuous global
Hemianopia 0 0.8 Continuous global
Quadrantanopia 0 0.8 Continuous global
Horizontal Position [◦] -24 18 Continuous local
Vertical Position [◦] -12 16 Continuous local
Neighborhood Activity 0 0.6 Continuous local
Neighborh. Homogeneity 0 0.4 Continuous local
Dist. to Scotoma [mm] 0 15.2 Continuous local
Residual Function 0 0.33 Binary local

A supervised database was designed to support SOM learning and cross

validation which contained pairs of baseline and post-treatment diagnostic

charts from 52 selected patients. Charts from another three patients that
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Figure 4.1: The flow chart for prediction of the treatment outcome. The base-
line diagnosis (left) assesses the visual field of the patient before treatment
(the cross represents the center of vision). From this diagnostic chart, sev-
eral features are extracted directly or were computed incorporating a priori
knowledge. The TOPM calculates the predicted treatment outcome (right)
of impaired spots based on cases in the training set. The prediction result
shows prognosed improvements (hatching) and lack of improvement (black
area) after VRT.

were not part of the learning or test set were used to show the prediction

for those three cases. All patients had homonymous visual damage except

for one case with some heteronymous elements on top of a homonymous de-

fect. Diagnostic data were retrospectively selected from a patient pool of

two different prior studies [Mast et al., 2006, Mueller et al., 2003] in which

the patients participated. Inclusion criteria were (i) post-chiasmatic dam-

age, (ii) availability of at least three binocular diagnostic tests in pre- and

post-treatment diagnosis and (iii) that the patient participation in the experi-

mental group, not in the control group. In order to reduce any potential error

source caused by eye movements, patients were excluded from the analysis

who showed poor fixation performance (only < 90 % of color based fixation

catch trials were detected). Both studies were carried out in concordance

with the declaration of Helsinki.
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4.2 The Kohonen Self-Organizing-Map

In addition to selecting appropriate features, the development of a TOPM

requires the selection of an appropriate classification algorithm. No gener-

ally accepted recommendation exists for choosing the optimal classifier for

data analysis and classification. Rather, the choice is determined by expe-

rience, knowledge and personal preference of the user. SOM’s, introduced

by Teuvo Kohonen [Kohonen, 1990], are based on relatively ’simple’ math-

ematical operations. The most complex operation in SOM learning is the

calculation of the Euclidian distance in multidimensional space. SOM’s have

therefore convinced experts of their usability in the medical domain [Wyatt

and Altman, 1995]. They are a preferred tool for exploratory data analysis.

Besides their data visualization capabilities, SOMs are used for correlation

hunting, unsupervised and supervised cluster analysis, multivariate feature

analysis as well as for novelty detection and classification [Vesanto, 1999]. In

practice, SOMs reduce the high dimensional feature space to low dimensions.

The SOM surface is usually two-dimensional and consists of map units which

enable the data to be visualized while preserving the topography of the origi-

nal feature space. The learning procedure incorporates a competition scheme

(every map unit competes with each other to best match the data samples)

and a cooperation scheme (the best matched map unit and its local neigh-

borhood on the map participates in learning) [Kohonen, 1990]. Each map

unit represents a specific position in the input data space and becomes a

highly sensitive feature detector during the learning process [Vesanto, 1999].

In supervised learning, the SOM units are labeled according to the data la-

bels of the samples which are located close to the SOM units in the feature

space. After the map units are labeled, novel data samples are classified by

using k-nearest prototype classification (k-Nearest-Neighbor with k equal to

1). The classification depends in turn on the label of the SOM unit with

the smallest Euclidian distance to the novel sample. Preprocessing prior

to learning should include (i) removal of weak features from the learning

database which are clearly not associated with the target feature and (ii)

normalization of all features to equal variance. The latter point is required
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as the evaluation of the best matching map unit is based on the Euclidian

distance which overweights features with higher variance to the disadvantage

of features with lower variance [Vesanto, 1999]. For further improvement of

the classification accuracy, the learning vector quantization is recommended

to be used after SOM-learning. This tunes the SOM units to maximize the

margins between map units of different classes [Vesanto, 1999]. This tuning

function was not used here due to the high computational costs in combi-

nation with k-fold cross-validation. In classification, the SOM architecture

supports the evaluation of the degree of matching, between novel samples

which were used in the learning phase. The degree of matching can influence

the prediction accuracy. Whereas novel cases that lay within the training

range are interpolated without concern, extrapolating samples outside the

training range is problematic [Veropoulos, 2001]. The SOM allows the detec-

tion of outliers and measures the degree of concordance between the sample

and the training data set by considering the distance between the sample

and its nearest map unit or, by measuring the distance to all map units such

that an overall response map is created [Vesanto, 1999]. In practice, SOMs

conveniently combine both, data exploration and prediction.

4.2.1 A SOM Learning Example

During SOM learning, the SOM approximates the data distribution of the

training set Λ. As an example, a set of training samples (2-dimensional) is

shown in Fig. 4.2. The feature space Φ is therefore spanned by two features.

For illustrative purposes, graphical attributes are used to locate a specific

point in the two-dimensional feature space. Value ranges of the first feature

are represented by different patterns of hatching and values of the second

feature are represented by a brightness distribution. Hatching patterns or

color distributions are less precise than explicit numbers but allow a better

understanding of the data distribution by using visual aids.

A SOM with 4 map units and their connection structure is shown in Fig.

4.3 (top right). Each map unit has a storage capacity of two numbers (asso-

ciated with the two features) representing a specific location in the feature
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Figure 4.2: The distribution of training samples in a two dimensional feature
space.

space. Assuming that the SOM units are initially located in the ’corners’ of

the feature space (indicated by white crosses in Fig. 4.3, left) the feature

values for the respective SOM unit are indicated by the respective bright-

ness and hatching pattern (Fig. 4.3, bottom right). A SOM structure which

shows the respective feature values by e.g. a brightness distribution is termed

’component plane’.

Both, training samples and initialized location of the SOM units are

shown together in Fig. 4.4, left. During learning, the SOM units are moving

towards the training samples according to the following algorithm:

For a training sample λ in the training set Λ do

1. Find the map unit m (also termed ’winner’) among the set of

all SOM units M with least Euclidian distance d such that

m = argminM {d(λ, m)}

2. For building the set N , add to m all units in M which are in the
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Figure 4.3: The SOM structure with 4 units (top right). Each map unit
represents a location in the feature space (marked with white crosses, left).
The SOM component plane (bottom right) shows the feature value for the
respective map unit.

neighborhood of m. The neighborhood is defined by connecting

arcs between the SOM units.

3. For all units n in N compute the new location pośn in the

feature space with respect to the old location posn, the location

of the training sample posλ and a step size γ according to:

pośn = posn + γ · (posλ − posn)

An example is presented in Fig. 4.4 (middle). The first training sample

(marked with a triangle in the feature space) is selected at the beginning of

the first iteration. At first, the nearest SOM unit is determined (the unit 2

at the bottom left of the SOM), then its neighbors are found by following

the connecting arcs (units 1 and 4). The winner unit and all neighbors in

the set N (marked with the rectangle on the SOM plane) participate in the

location update and move ’towards’ the training sample (indicated by arrows

in the feature space). After one complete iteration through all data samples,

all map units which were either the winner unit itself or in the neighborhood
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of a winner unit, have updated their location. Usually, the learning phase

consists of hundreds of iterations. After learning, the data distribution is

approximated by the map units (see Fig. 4.4, right) as the map units are

now located in regions with a high density of data samples.

After initialization After step 1 After learning
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e

Figure 4.4: The SOM learning phase. The winner unit is determined for the
training sample (the sample is marked with the triangle) in a competition
such that the unit with the least distance to the training sample wins. In a
cooperative way the winner unit and all units in the winner’s neighborhood
(marked with rectangles) move toward the actual training sample (middle,
the movement is indicated by arrows). After learning, the SOM units have
approximated the training samples (right).

The learning procedure results in a SOM which can be used for data

visualization. The component plane shows the location of SOM units in

the feature space for the first (illustrated by hatching) and second feature

(illustrated by brightness). Usually, in order to enhance the visibility, the

component planes are shown separately for each feature. Each SOM unit

is regarded as a cluster and represents all training samples within the clus-

ter. By visual inspection of the component planes, it is possible to derive

a hypothesis about the data distribution or about correlations between the

features. Therefore it could be concluded from the SOM component plane

in Fig. 4.4, bottom right, that no or only few samples exists with values of
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feature 1 corresponding to the vertical-horizontal crossed hatching and with

values of feature 2 corresponding to dark gray or black brightness.

Labeled samples Labeled SOM Clusters

Figure 4.5: The training samples are labeled as of positive (white circles)
and of negative (black circles) class (left). After unsupervised learning has
finished (shown in Fig. 4.4, right), the SOM units are labeled according to the
labels of training samples in their surround (middle). The class information
of the SOM units is then used to separate the feature space into positive and
negative clusters (right). A novel sample (open circle) is located within the
negative cluster. The predicted class is therefore ’negative’.

The algorithm described above belongs to unsupervised learning. No

class information is used that separates the data samples (e.g. represent-

ing patients) from e.g. the two classes of patients with poor treatment and

good treatment outcome. However, to use the SOM for prediction, the class

information is necessary (hence supervised learning is required). Therefore,

the class information is added to the samples presented above (see Fig. 4.5,

left). The class variable is dichotomous and the training samples are there-

fore either positive (white circles) or of negative (black circles) class. After

unsupervised learning has finished, the class information of the data samples

is used to determine the class label of the map units. The map unit label

(black or white) is determined by finding the most frequent class label of the

data samples in the surround of the map units (the labeling is shown in Fig.

4.5, middle).
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The labeled SOM is ready to be used for the prediction of novel samples.

The class information of the SOM units determine the separation of the

feature space Φ into clusters with different class labels (see Fig. 4.5, right).

The classification of a novel sample which is located in the bottom right

corner of the feature space is therefore classified as belonging to the ’negative’

class.

4.3 Data Visualization

SOM-based data exploration is usually carried out on two dimensional com-

ponent planes. These planes exist for each feature and are compromised of

the map units (the horizontal and vertical axis of the component planes have

no specific name or meaningful interpretation). These planes are feature-

specific projections onto the SOM surface after learning has finished. Each

map unit represents a specific point in the n-dimensional feature space Φ

(where n is the number of features). Importantly, due to the cooperative

concept in SOM learning, adjacent map units (neighboring units in the SOM

map) have similar feature values resulting in a smooth brightness distribu-

tion. The component planes and map units are shown for all 12 features in

Fig. 4.6.

Each map unit always has the same position in each of the 12 component

planes. Map units are labeled as hot (’+’) and cold spots (’0’) and separate

the feature space into regions of these two classes. The labels are not shown

for each map unit because the map is separated compactly between hot

and cold spot map units. Each data sample in the training data base is

assigned to exactly one map unit (minimizing the distance between map unit

and data sample). The topography of hot and cold spots in the component

planes after learning (shown in Fig. 4.6) is relatively robust if the process of

SOM learning is repeated from the same initialization state. Preferably, the

distance between the closest cold and hot spot map units in Euclidian space

should be relatively broad in comparison to the distance between map units

belonging to the same class (see Fig. 4.7).

This would indicate that there is a ’natural’ difference between cold and
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Figure 4.6: Component planes of global (top row) and local (bottom row)
features extracted from the baseline diagnostic. The distribution of values of
the respective feature is shown for hot (’+’) and cold (’0’) spots. The SOM
is comprised of 16 x 29 map units in a hexagonal grid such that each map
units is connected with its 6 neighbors.

hot spots in the sample distribution which allows a more robust discrimina-

tion between both classes in prediction.

By visual inspection of the component planes, hypotheses about the re-

lationship between the treatment outcome and the various features as well

as interdependencies are formulated. For example, visual inspection shows

that high values in the size of the feature Residual Area tend to be associated

with hot spots whereas most cold spots are not (low values of this feature in

the cold spot region). This example shows a more pronounced separation be-

tween hot and cold spots in contrast to Reaction Time where the component
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Figure 4.7: The distance matrix shows the distances (white indicates high
distances, black indicates small distances) between neighboring map units in
the grid (labeled either as hot (’+’) or cold (’0’) spot) in the input feature
space Φ. A region of the map (rectangle in the left figure) contains map units
labeled as hot spots. These units are enlarged in the right panel showing a
region at the top border (white hatching) where the map units of both classes
(hot and cold spots) are not well separated. This makes classification more
difficult. According to the component planes (see Fig. 4.6) this region refers
to spots of low Residual Function in charts with small numbers of Defect
Area.

chart appears more uniform (gray). The following hypotheses are proposed

as a result of the visual analysis indicating areas for further analysis by sta-

tistical and experimental means: (i) almost no restoration (cold spots) is

observed in charts with small Residual Area (black color), with low Border

Diffuseness (black color) or without any affinity to Quadrantanopia (black

color), (ii) a univariate model with Hemianopia or Reaction Time alone is

not appropriate as separator between hot and cold spots and (iii) Residual

Area and Border Diffuseness are strongly positively correlated, Hemianopia

and Quadrantanopia are strongly negatively correlated considering the color

distribution of the respective features in the component planes.

Again, hypotheses were formulated for the component planes of local

features (see Fig. 4.6, bottom row): (i) Residual Function is the best dis-
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criminator between hot and cold spots; only few map units in the hot spot

region have a low value of Residual Function, (ii) all map units which are

labeled ’hot spot’ represent data samples which have a Neighborhood Activity

and Neighborhood Homogeneity well above zero (white and gray color), (iii)

a univariate model with Horizontal or Vertical Position alone is not appro-

priate to discriminate between cold and hot spots because map units of both

classes represent data samples of middle values (gray), (iv) most data samples

with high Distance to Scotoma (white color) are cold spots but not all hot

spots are close to the scotoma border (Distance to Scotoma ≈ 0, black color)

and (v) the features Neighborhood Homogeneity and Neighborhood Activity

are strongly correlated (the color formation looks familiar in both component

planes). In general, the component charts indicated that global features of

the visual charts as a whole are less appropriate for classification than local

features. The colors in the later group of features (Fig. 4.6, bottom row)

show a better association with the map unit labeling of hot and cold spots

in comparison to the color distribution of the global features (Fig. 4.6, top

row).

4.4 Treatment Outcome Prediction

Forecasts predicted by the TOPM are shown for three patients (see Fig. 4.8,

left column). Those patients were selected randomly and their charts were

not used in SOM training. The predicted charts are obtained by using the

developed TOPM according to the schema shown in Fig. 4.1. Values of

the global and local features are initially extracted for each spot such that

the location of each spot in the 12 dimensional input feature space Φ is

located. Secondly, by using the k-nearest prototype algorithm (identical to

the k-nearest neighbor algorithm with k = 1), the best matching SOM

unit is determined for each spot which determines thereafter the predicted

class (hot or cold) of the respective spot. The actual as well as the predicted

treatment outcome is shown in Fig. 4.8 (second and third column). The

actual treatment outcome is computed as follows:
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Actual outcome(x, y) =



’hot spot’ iff chartBaseline
Detection(x, y) <= 1

3
∩

chartPost
Detection(x, y) >= 2

3

’cold spot’ iff chartBaseline
Detection(x, y) <= 1

3
∩

chartPost
Detection(x, y) <= 1

3

(4.1)

To localize the best matching SOM unit for spots of a specific diagnostic

chart, the spot’s representation in the feature space Φ is projected onto the

SOM in Fig. 4.8 (right column). Almost all samples of the first chart (Fig.

4.8, top row) are located at the top right position in the SOM. According to

the component planes, this area is more strongly related to quadrantanopia,

with small Residual Area and low Residual Function. Spots of the second

diagnostic chart (Fig. 4.8, middle row) are widely spread on the SOM. The

top left corner in the SOM chart is related to maximal Neighborhood Activity

and the aggregation in the SOM chart center is related to negative horizon-

tal coordinates covering positive and negative vertical coordinates with low

Neighborhood Activity. This describes the left defect hemifield. In the third

diagnostic chart, the strongest aggregation of spots is closely located to the

hot spot border within the region of cold spots (Fig. 4.8, bottom row). This

region is related to negative vertical coordinates with a similarity to both,

quadrantanopia and hemianopia with sharp borders. These spots belong to

the lower left part of the semi-quadrantanopic diagnostic chart which has

also many defects in the upper quadrant of the left hemifield.

4.5 Model Evaluation

A k-fold-cross validation design was selected to evaluate the performance

of the TOPM [Veropoulos, 2001]. Cross validation is a resampling method

where the test data set is first divided into k disjunctive sets. Instead of

calculating only one evaluation measure, k-fold-cross validation offers a more

robust evaluation [Fawcett, 2004]. Therefore, the performance measurement

procedure is repeated k times. In each iteration, all except one set are pooled
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Figure 4.8: Diagnostic charts of three patients which were not part of the
training data set (first column, left). The actual treatment outcome is shown
in the second column (hot ’+’ or cold ’.’ spot). The third column shows the
predicted treatment outcome for each impaired spot at baseline. The location
of spots from individual baseline charts projected onto the SOM is shown in
the fourth column (right). The respective SOM location differs widely among
the three patients (higher frequencies are indicated by a larger circle size) and
reflects the respective projection of global and local features onto the SOM
surface.
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to build the learning set Λ which is used to train the SOM model. The re-

maining set (Γ) is used as test set. The whole training database is therefore

used for training and evaluation as well. The result is the average among the

k evaluation measurements. In comparison to other methods, cross validation

is an unbiased, robust estimation of the generalization error, but with higher

standard deviation of the obtained measures [Green and Ohlsson, 2007].

With 10-fold cross validation, 10 classifiers were trained and then evaluated

with the test samples. Standard evaluation measures were used [Green and

Ohlsson, 2007] and the average True-Positive-Rate (TPR = 44 % ± 4.7 %,

how many hot spots were classified correctly) and the False-Positive-Rate

(FPR = 6 % ± 1.9 %, how many cold spots were classified as hot spots)

was calculated among all 10 classifiers according to:

TPR =
TP

P
(4.2)

FPR =
FP

N
(4.3)

which is based on the number of positive samples (P, hot spots) and

negative samples (N, cold spots) in Γ, as well as the number of correctly

classified positive samples (TP) and incorrectly classified negative samples

(FP).

The average accuracy (ACC = 84.2 % ± 1.4 %) measures the amount

of correctly classified samples and was found to be slightly better than the

average baseline accuracy (ACCbaseline = 81 % ± 1.3 %) which is the ratio of

samples labeled with the most frequent class. Both measures are computed as

follows (the former uses the number of correctly classified negative samples,

TN):

ACC =
TP + TN

P + N
(4.4)

ACCbaseline =
max(P, N)

P + N
(4.5)

The small difference between accuracy and baseline accuracy is a result of
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the strong skewness of the class distribution; because the training database

contained 7026 cold spots but only 1689 hot spots. Interestingly, in some

’unfortunate’ classification problems the accuracy of established classifiers is

even below the baseline accuracy [Holte, 1993]. This is acceptable in the

case of unequal misclassification costs where the prediction performance of

the preferred class is of higher interest than the prediction performance of

the non-preferred class.

4.5.1 Receiver Operating Curve Analysis

A measure which is robust to skewed class distributions is the Receiver Op-

erating Characteristic (ROC) [Fawcett, 2004] and is therefore used as a stan-

dard in performance evaluation of classifiers in the medical domain [Swets

and Pickett, 1982]. The ROC measure is a combination of the TPR and FPR

measure of the same classifier. Both measures are strongly connected and

are therefore presented together - a high TPR usually leads to a high FPR

and vice versa. All 10 trained classifiers are located close to each other in

the ROC space represented by the value of their respective TPR and FPR

(points in Fig. 4.9).

Classifiers which appear on the left hand side in the ROC space (as it is

the case here) are called conservative because they classify ’only with strong

evidence’ (low FPR but also low TPR) [Fawcett, 2004].

A more robust performance measure is achieved if a continuous ROC

curve and the area under the ROC curve (AUC = 0.81) is computed for

the classifier instead of just a single point in the ROC space [Pepe, 2005].

The position on the curve determines the favored value combinations of FPR

and TPR. Especially in problems where the misclassification costs are not

identical, the ROC curve allows chosing the position on the ROC curve for

which the total costs of both, misclassification of the positive and negative

class are minimal. To obtain a ROC-curve, a score is required which is

interpreted as probability that the sample belongs to the predicted class.

Most classifiers use an internal threshold for determining the class which can

then be used as probability score. The score must at least have an ordinal
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Figure 4.9: The receiver operating characteristic (ROC) for the TOPM in
prognosis of hot and cold spots in 10-fold cross-validation (single points).
The continuous ROC-curve was calculated by using 1-nearest neighbor clas-
sification considering different thresholds α (see text). The performance of
any classifier that appears around the diagonal is equal to random guessing
[Fawcett, 2004].

scale but the range is not limited (between −∞ and +∞). The curve is

obtained by using an increasing threshold α which iterates through the full

range between −∞ and +∞. For each iteration, all samples (i in Γ) are

labeled with respect to their score and α as follows:

labeli =

’hot spot’ iff α ≥ scorei

’cold spot’ iff α < scorei

(4.6)

The respective rate of correctly labeled positive samples (TPR) and in-

correctly labeled negative samples (FPR) determines a point in the ROC

space [Fawcett, 2004] forming a continuous curve (see Fig. 4.9). Because

classification of samples by using the k-NN classifier is not based on a single

score value but on distances to all samples in the training set, an explicit

construction of the score is necessary such as the ratio of map units with

positive class among the k nearest map units as in [Soltanian-Zadeh et al.,

2004]. Another measure is proposed here, and is based on the distance be-
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tween the sample and the nearest map unit with positive class (dhot) and

negative class (dcold). The score of the i-th sample is the relative distance:

scorei =
dcold

dhot + dcold

(4.7)

The relative distance is a value between ’0’ (indicating that the i-th sample

is close to a map unit labeled cold spot and distant to the next hot spot map

unit) and ’1’ (close to hot spot and distant to cold spot). The labeling of

being either hot spot or cold spot is ambiguous when the score is exactly 0.5.

In this case, the sample is equally distant to both, the next ’hot spot’ and

the next ’cold spot’ map unit.

4.5.2 Clinical Evaluation

The appropriateness of the TOPM to several subclasses of patients is of clini-

cal relevance. By separating the samples with respect to patient affiliation,

leave-one-out cross validation showed that the performance is not equal for

each subject resulting in a high range of individual performance measures

(minimal accuracy = 29 %, maximal accuracy = 98 %). A strong correlation

between accuracy and the feature Defect Area (ρ = 0.67) shows (see Fig.

4.10) that the accuracy of diagnostic charts with many defect areas is better

than in charts with only few defect areas (this is in agreement with the

observation that hot and cold spot map units are not well separated in the

region with low Defect Area, see Fig 4.7). This is probably a result of the

overrepresentation of diagnostic charts with large numbers of defect areas

in the training data set (50 % of all patients have a very large Defect Area

covering more than one third of the total diagnostic area).
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Figure 4.10: In comparison to 10-fold cross validation where the training
database was divided into 10 parts, the spots in the database were divided
into 52 parts with respect to patient affiliation. The prediction accuracy
was determined for all individual charts in leave-one-out cross validation and
where plotted against the feature Defect Area. Diagnostic charts with a
large Defect Area have a better prognostic accuracy than charts with only
few defect areas.

4.5.3 Comparison to a Linear Regression Model

The same features and outcome variable were used in combination with a

linear regression model instead of the SOM model. Again, evaluation mea-

sures were obtained using 10-fold cross validation. The performance measures

(AUC = 0.86, ACC = 85 %, ACCbaseline = 81 %, TPR = 52 %, FPR = 8 %)

of the linear regression model are slightly better (see Fig. 4.11) than the per-

formance measures of the SOM model presented above. This might be a hint

that the association between the features and the target variable (treatment

outcome) is linear rather than non-linear. Another possible reason why the

performance of the SOM model is not significantly better than the linear

regression model is probably the high class skewness. If the positive class is

extremely underrepresented in the training set Λ, it is possible that only few

map units are labeled with the positive class. This is because the labeling

is determined by the most frequent class of all samples near the map unit

in the feature space Φ. Therefore, another SOM was trained with 1265 map

units (instead of only 464) which could better represent the positive class
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and could outperform (AUC = 0.89, ACC = 88 %, ACCbaseline = 81 %,

TPR = 62 %, FPR = 6 %) the linear regression model in 10-fold cross val-

idation. Consequently, the learning phase of this extended SOM model is

computationally more expensive. However, overfitting was not yet observed

because the classification performance in cross validation increased together

with the higher number of map units.

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

SOM464

SOM1265

lin.Reg.

Figure 4.11: The ROC curve in 10-fold cross validation for the linear regres-
sion model (dotted) and two SOMs with 464 and 1265 map units (solid).

4.6 Discussion

Care must be taken when prediction models are used in the medical field.

Unlike other classification problems (e.g. in the financial domain) the misclas-

sification of patients could lead to changes in patient’s treatment regimen.

Patients could face serious consequences such as emotional stress (healthy

subjects are misclassified, wrong promises etc.), inappropriate treatment, or

no treatment at all [Pepe, 2005]. It has been suggested that such an analysis

should go beyond the evaluation of statistical measures such as the area un-

der the ROC curve. Therefore, additional evaluations are necessary to assure

clinical usefulness of the prediction model [Abu-Hanna and Lucas, 2001].
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In the case of VRT, misclassifications of treatment areas could result in

longer treatment time or reduced treatment efficiency. It was reported else-

where [Schwarzer et al., 2000] that many published prediction models are not

useful for clinical application, although they apparently perform better than

selected statistical competitors. Reasons attributed to the failure of these

models include weak robustness and low semantic relation with the clini-

cal domain [Abu-Hanna and Lucas, 2001]. There are some guiding principles

which should be observed in assessing the clinical credibility, effectiveness and

evidence of generality and accuracy of prediction models in medicine [Wyatt

and Altman, 1995]. TOPMs should not rely solely on correlation analysis

of features and the treatment outcome [Shillabeer and Roddick, 2006]. To

extent the correlation analysis, statistical tests were used to clarify that the

difference of baseline feature means from cold spots and hot spots is statisti-

cally significant (see chapter 3.6). This ascertains that the prediction model

contains features which are able to separate the set of cold spots sufficiently

from the set of hot spots. Domain experts should verify the appropriate-

ness of the proposed classification principles on the basis of patient samples

[Ruseckaite, 1999]. This was fulfilled as this study was regularly audited by

VRT domain experts. By close examination of the SOM units that deter-

mine the class label (see Fig. 4.8, right) it is possible to analyze the rules on

which the classification is determined as it is suggested elsewhere [Shillabeer

and Roddick, 2006]. Furthermore, it is recommended to use a priori knowl-

edge such that the robustness of the prediction model is enhanced [Lucas and

Abu-Hanna, 1999]; physiological knowledge of visual cortex organization and

reorganization, visual cortex anatomy and the experience of domain experts

was considered to construct appropriate features. Moreover, the associa-

tion between the features and the treatment outcome should be assessed in

another and different population to reduce the risk of spurious association

between feature and class information [Smith and Ebrahim, 2002]. The fea-

ture extraction phase was based on two independent studies done within the

last 10 years. Further work is required to confirm the clinical benefits of the

developed TOPM for VRT because results should be replicated, confirmed

and well documented [Shillabeer and Roddick, 2006]. These requires future
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rigorous testing, ideally in a double blind, randomized and placebo controlled

investigation [Lucas and Abu-Hanna, 1999].

The SOM was chosen as the core of the prediction model. Its non-linearity

and self-organization methodology allows a comprehensive adaptation to the

data distribution. Although other prediction models may perform compara-

bly well, SOMs simplify the process of data mining and the feature selection

phase, as they conveniently combine both prediction and data exploration.



Chapter 5

Assessing the Data Quality

5.1 Introduction

During HRP, subjects are required to maintain a sufficient fixation stability.

Otherwise, the diagnostic chart should be excluded from further analysis.

Eye movements can produce ambiguous results in perimetric assessments.

Today, fixation stability is adequately assessed by using eye trackers. In

the past, no appropriate eye tracking data were available from the charts

which were used in building the TOPM. Instead, a color based fixation catch

trial (FCT) was used for measuring fixation stability. However, no reliable

data is available describing the sensitivity of the FCT to the occurrence

of eye movements. A close examination of fixation stability during HRP

is necessary because the therapy outcome as well as the prediction power

of the TOPM rests on the assumption that the eyes are held steady during

visual field testing. Therefore, this chapter addresses two main points: (i) the

occurrence of eye movements during HRP and (ii) examining the sensitivity

of the FCT to eye movements.

5.1.1 Eye Movements during HRP

Eye movements were observed as a compensation strategy in hemianopic

subjects [Zihl, 1995]. Those subjects learn to scan the visual area by using

the remaining healthy field of vision in combination with eye movements.

96
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However, eye movements can cause ambiguity in perimetric results. For

example, the defect hemifield appears to be less defective [Jamara et al.,

2003], small isolated scotoma tend to vanish or the scotoma edges are blurred

out [Demirel and Vingrys, 1994].

Only few studies examined eye movements for longer than a couple of

minutes. It is therefore not clear how strongly eye movements increase in

tasks which require subjects to fixate properly for more than 10 min as in

HRP. Short recording times are preferred to longer recording times in ex-

perimental studies because of subject discomfort and technical limits. The

eye tracker recording system requires that the head and the eye tracker are

firmly fixed. This makes subjects feel uncomfortable [Eizenman et al., 1992].

A problem in head mounted eye tracker systems is that the error increases

steadily due to decalibration caused by small movements of the eye tracker

relative to the head. In most fixations tasks, the visual environment is not

very ’attractive’ and boredom can lead to uncontrolled eye movements. Fur-

thermore, limits of the statistical software [Kasten et al., 2006] and an ex-

pensive frame by frame analysis of recorded images in camera based systems

can limit the recording time [Mutlukan et al., 1993, Trauzettel-Klosinski and

Reinhard, 1998].

When examining fixation stability of hemianopic subjects compared to

normal subjects, eye movements were measured during a long term fixation

task. This required a stable and steady fixation for at least 17 min. A non-

invasive eye tracker was used which is robust to decalibration and offered

maximal comfort to the subjects during the test.

5.1.2 FCT Sensitivity and their Relation to Eye Move-

ments

The FCT is technically less complex than eye tracking and is never prone to

loose calibration over time. The FCT exploits inhomogeneities in the spatial

distribution of color specific cones in the retina. The density of the cones is

higher in central vision and decreases exponentially with higher eccentricity.

This makes the perception of color a more difficult task in the periphery
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in comparison to central vision. The FCT is based on the discrimination

between two colors of almost equal luminance.

Such a behavior based eye movement assessment is widely used, for ex-

ample, in the Tuebinger Automated Perimeter [Lachenmayr, 1992] as well

as in other perimetric tasks [Kasten et al., 1997]. However, it is not clear

to what extent peripheral color discrimination is appropriate for eye move-

ment detection. It depends on size, color and luminance of the test stimulus

[Abramov et al., 1991]. Therefore, the sensitivity of the color based FCT to

eye movements was examined by presenting single and multiple targets in

the periphery and by correlating the individual FCT detection rate with the

respective eye movement measures obtained with an eyetracking system.

5.2 Methods

5.2.1 Subject Sample

In the first experiment, 13 hemianopic subjects (11 male and 2 female) with

an age of 45.6 ± 10.3 years were examined. All hemianopic subjects par-

ticipated in earlier studies and were familiar with the fixation task. The

homonymous visual field defects were caused by cerebral lesions. The exclu-

sion criteria of the hemianopic group were: known seizures of photosensitive

epilepsy, evidence of spontaneous remission or unstable baseline, total blind-

ness, central scotoma, inability to fixate or nystagmus, neglect, diplopia,

glaucoma or other retinal disorders. For comparison, six normal subjects (4

male and 2 female) with an average age of 40.2 ± 11.0 years were exam-

ined who were age matched with the hemianopic subjects (exclusion criteria:

visual acuity < 0.3). Normal subjects were inexperienced with the fixation

task and completed a training test to become familiar with the task. Only

the second test was used in the analysis. Hemianopic and normal subjects

declared written consent prior to participation.

For the second part, which assessed the FCT, a larger group of 15 (11

female, 4 male) normal subjects with normal binocular vision and an average

age of 30 ± 8 years was recruited. The inclusion criteria were normal results
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in (i) visus testing, (ii) Ishihara-Tables and (iii) the 100 Hue-Test.

5.2.2 Fixation Task

The testing parameters of HRP are equivalent to those presented in chapter

2. All subjects were aware that eye movements were monitored during the

HRP session.

5.2.3 Eye Movement Recording

A non-invasive eye tracker (Tobii 1750, Tobii Technology AB, Sweden) was

used to record gaze positions from the left and the right eye. The signal was

then averaged among both eyes to obtain maximal accuracy. A chin rest was

used but the head clamp was not. The gaze data of the eye tracker is inde-

pendent of body and head movements. The individual calibration of the eye

tracker was completed in about 20 s. Manufacturer’s specifications show that

the long-term error is 1 ◦ with an accuracy of 0.5 ◦ and a spatial resolution

of 0.25 ◦ at a recording frequency of 50 Hz [Tobii, 2004]. Additionally, the

eye recognition rate (ERR, ratio of samples were both eyes were detected by

the eye tracker) was recorded for each subject describing quantitatively how

well the eye tracker recognized the pupils of the subject.

5.2.4 Measuring Horizontal Saccades

Horizontal saccades were measured during the entire fixation task. Four sub-

jects (out of 13) were not considered in this analysis because their recording

time was interrupted by voluntary breaks. In the remaining subjects, a total

and continuous recording time of 17 min was obtained. The total recording

time was divided into three periods, the first 5 min, the middle period and

the last 5 min. The occurrence of horizontal saccades was than compared

between the first and the last period. Furthermore, saccades are reported in

higher temporal resolution of one minute intervals for the total testing time.

The saccades and their respective amplitudes were extracted from the stream

of gaze positions which was recorded by the eye tracker. A saccade is charac-
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terized by the velocity of gaze positions. The specifications for the minimal

(15 ◦/s) and maximal (1000 ◦/s) velocity limits were derived from measure-

ments in normal and pathologic subjects [Boghen et al., 1974]. The end of

a saccade is determined by: (i) the velocity is equal to 0 ◦/s or (ii) the eye

movement direction is inverted or (iii) the velocity exceeds 1000 ◦/s or (iv)

the saccade duration exceeds 1000 ms (see Fig. 5.1). Saccades are reported

in absolute numbers using four amplitude classes (2 ◦−3 ◦, 3 ◦−4 ◦, 4 ◦−5 ◦

and > 5 ◦). Absolute numbers of saccades are reported instead of relative

numbers because small saccades outnumber large saccades by far and are

possibly a source of sensor noise. If large saccades are expressed in percent

of all observed saccades (including numerous small saccades produced by

sensor noise) the numerical robustness of the analysis is at risk.
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Figure 5.1: Scheme for describing the detection of saccades. The velocity
of eye movements (gray color) is obtained from the gaze trajectory (black
color) by computation of the first derivative. The beginning of a saccade
is characterized by a velocity > 15 ◦/s (tA). The end of the saccade is
determined by a velocity equal to 0 ◦/s or when the movement direction
is inverted (tE). The saccade amplitude is the distance between the gaze
positions measured at time tA and tE.
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5.2.5 Measuring the FCT Sensitivity to Eye Move-

ments

The ratio of detected color changes was measured in three experiments. In the

first experiment, normal FCT detection ratios were collected during HRP (as

described in section 2.2). The color of the fixation spot (size: 0.15 ◦) changed

randomly from yellow (luminance: 138.3 cd/m2) to light green (luminance:

133.5 cd/m2, presentation time: 200 ms). The ratio of detected color changes

was correlated with different eye movement features (mean and standard

deviation of gaze positions). In the second experiment, a rectangular grid of

63 colored targets (interstimulus distance: 0.76 ◦, stimulus size: 0.4 ◦, total

width: 9 ◦, total height: 6 ◦) was presented in eccentricities ≤ 5.4 ◦ (see Fig.

5.2, left). In this multiple target condition (MTC), one of the 63 targets was

randomly selected changing the color from yellow (luminance: 138.3 cd/m2)

to light green (luminance: 133.5 cd/m2, presentation time: 150 ms) with a

difference in brightness < 5 cd/m2. The trial was completed after the color

change was presented in all of the 63 targets. It is of special interest at which

eccentricity the ratio falls below a critical value of 90 % correct detections.

The third experiment was conducted using the single target condition

(STC). The color was alternated from green (luminance: 133.5 cd/m2) to

yellow (luminance: 138.3 cd/m2) at exactly one location (stimulus size: 0.4 ◦,

presentation time: 150 ms, see Fig. 5.2, right). To assess the detection of

color changes as a function of horizontal eccentricity, a fixation cross (lu-

minance: 171.7 cd/m2) was displaced on the horizontal meridian after each

trial. After a total of 10 trials, the color change of the single target was

assessed in horizontal eccentricities from ± 1 ◦ to ± 9 ◦ eccentricity in steps

of 2 ◦. In the STC trials, above-threshold stimuli (size: 0.4 ◦, luminance:

75.6 cd/m2) were presented as distractors for 150 ms at random position as

they would usually appear in a perimetric testing. Subjects were instructed

to respond to all distractors and all color changes. Each individual trial in

the STC and MTC conditions lasted about 4.5 min. Fixational stability was

assessed continuously throughout the trials by the Tobii eyetracking system.

Trials with insufficient fixation (standard deviation of the mean gaze posi-
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Figure 5.2: Assessment of colored based FCT. Left: In the multiple target
condition, a rectangular grid of 7 · 9 = 63 stimuli in yellow color are continu-
ously presented on the presentation screen covering an area of 9 ◦ times 6 ◦.
The color changed from yellow to light green only at one randomly chosen
grid position. The subject was instructed to fixate the center spot (marked
with an open circle, the circle was not shown in the experiment). Right:
In the single target condition the subject was instructed to fixate the cross.
Distracting targets were shown at random positions within an area of ± 21 ◦

eccentricity. After an average of four distractor presentations, the FCT was
presented resulting in a color change of the target from light green to yel-
low. After a total of 10 tests the fixation cross was located in 10 different
horizontal distances d to the target at ± 1 ◦, ± 3 ◦, ± 5 ◦, ± 7 ◦ and ± 9 ◦

eccentricity.

tion > 2 ◦) or with an ERR < 80 % were not considered in the STC or

MTC analysis. Both experiments were performed in a dark room after an

adaptation time of several minutes. The background color of the screen was

dark gray (luminance: 15 cd/m2).

5.3 Results

The occurrence of horizontal saccades was measured during a long-term fix-

ation task of 17 min. Saccades with smaller amplitudes were much more

frequently observed than saccades with larger amplitudes (see Fig. 5.3). In

order to report only robust results which are almost free from sensor noise
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(about 1 ◦) or small eye movements (about 1 ◦), all saccades with amplitudes

< 2 ◦ are omitted in the subsequent analysis.
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Figure 5.3: Total number of horizontal saccades (mean ± S.E.) with left
and right direction during a 17 min recording in hemianopic subjects. Left:
The number of saccades is shown in a logarithmic scale from all hemianopic
subjects pooled into one set. Saccades < 2 ◦ (gray) are omitted in subsequent
analysis because they are possibly confounded by sensor noise (about 1◦) or
are produced from small fixation instabilities (about 1 ◦). Right: The same
data is shown in the left panel for each hemianopic subject.

During the fixation task, the average gaze position of normal and hemi-

anopic subjects (n = 19) was 1.2 ◦ ± 0.6 ◦ horizontally and 0.7 ◦ ± 0.2 ◦

vertically. However, the standard deviation (0.9 ◦ ± 0.1 ◦ horizontally and

1.1 ◦ ± 0.2 ◦ vertically) of the average gaze position indicates that eye move-

ments were made during the 17 min of uninterrupted testing time. Individual

results of all measurements are provided in Table 5.1.

5.3.1 Long-term Measurement of Horizontal Saccades

When comparing the first with the last period of 5 min, an increase of eye

movements was observed in both groups (see Fig. 5.4). Hemianopic subjects

made on average significantly fewer eye movements (µ = 61 ± 20.3) within

the first period than in the last period of measurement (µ = 100 ± 28.3).

This is an increase by a factor of 1.6. In normal subjects, eye movements are
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Table 5.1: Eye movement measurements and other variables from hemianopic
(row 1-13) and normal subjects (row 14-19). The columns ’Saccad. First
Perd.’ and ’Saccad. Last Perd.’ show the number of observed saccades
> 2 ◦ in the first and in the last 5 min of the HRP testing

.
Size
De-
fect

FCT Vertical
Fixation
(mean±std) [◦]

Horizontal
Fixation
(mean±std) [◦]

Saccad.
First
Perd.

Saccad.
Last
Perd.

ERR
[%]

166 96 0.61 ± 1.5 0.21 ± 1.14 83 214 71
235 88 0.92 ± 1.0 0.27 ± 0.6 20 76 66
90 100 0.04 ± 0.6 2.42 ± 0.7 0 44 82
85 100 2.79 ± 0.6 0.47 ± 0.6 0 9 63
99 100 1.45 ± 1.0 1.07 ± 0.9 112 154 81
196 80 0.12 ± 0.9 0.17 ± 0.9 * * 67
157 97 0.28 ± 0.8 0.33 ± 0.5 * * 93
104 81 1.18 ± 0.8 1.18 ± 0.45 13 27 80
219 90 1.04 ± 1.4 4.43 ± 1.8 * * 90
187 99 0.89 ± 0.6 0.05 ± 0.9 171 240 77
377 75 0.14 ± 1.2 10.77 ± 1.8 116 104 89
38 98 0.9 ± 0.8 0.61 ± 0.7 49 31 82
57 95 0.55 ± 0.6 0.61 ± 1.0 * * 82
# 100 0.54 ± 1.0 -0.06 ± 0.9 13 52 86
# 99 0.37 ± 0.5 0.52 ± 0.5 6 12 97
# 100 0.49 ± 0.8 -0.27 ± 0.7 10 17 96
# 100 -0.81± 4.0 1.1 ± 1.4 22 601 31
# 100 1.92 ± 1.3 -1.42 ± 1.4 32 152 78
# 100 0.43 ± 0.6 -0.22 ± 0.4 1 15 88

*: subject was not considered in this part of the analysis
#: not applicable
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less but not significantly less frequent in the first period (µ = 14 ± 4.6)

when compared to the last period (µ = 142 ± 94.4). This is an increase

by a factor of 10.1. The increase of saccades as a function of testing time is

shown in Fig. 5.5.
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Figure 5.4: Number of saccades (mean ± S.E.) comparing the first and last
period of 5 min recording in hemianopic (H) and in normal (N) subjects.
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Figure 5.5: Number of horizontal saccades (mean ± S.E.) as a function of
testing time in the group of hemianopic (left panel) and in normal subjects
(right panel) separated in the amplitudes: 2 ◦-3 ◦ (black), 3 ◦-4 ◦ (dark gray),
4 ◦-5 ◦ (light gray), > 5 ◦ (white). The amplitude is shown irrespective of
saccade direction or fixation position.

5.3.2 Examination of the Color Based FCT

A medium correlation (Pearson) between the number of detected fixation

catch trials and (i) the standard deviation horizontal/vertical (ρ = − 0.36,

n.s.) or (ii) with the occurrence of eye movements (ρ = − 0.24, n.s.)

was observed. Reasonably, the correlation is negative indicating that more

fixation catch trials are detected if less eye movements are made. If the

sensitivity of the color based FCT is assessed as a function of eccentricity,

less FCTs are detected in the periphery (see Fig. 5.6). The criteria of

significant detection loss (> 10 %) is found at about 2 ◦ for the MTC and

about 4 ◦ for the STC.



CHAPTER 5. ASSESSING THE DATA QUALITY 107

Eccentricity [°]

D
et

ec
tio

n 
ra

tio
 [%

]

0 2 4 6 8 10
60

70

80

90

100 Single Target Condition

Multiple Target Condition

Figure 5.6: Ratio (mean ± S.E.) of detected color changes in the single-
(STC) and multiple-target-condition (MTC) as a function of eccentric stim-
ulus presentation. The critical detection loss (dotted line) is observed at an
eccentricity of 2 ◦ (MTC) and 4 ◦ (STC), respectively.

5.4 Discussion

5.4.1 Saccades of Amplitudes > 2 ◦

Most of the time, all subjects made eye movements inside the central area of

2 ◦ around the fixation point. This range was exceeded by the hemianopic

and normal group in 32 % and 20 % of the time, respectively in a continuous

recording time of 17 min. This is in concordance with the observation that

normal subjects made fixations with amplitudes > 2 ◦ in 18 % of the total

testing time of 15 min [Eizenman et al., 1992]. Eye movements at larger

amplitudes were observed to be more frequent in eye movements studies

with longer testing time [Demirel and Vingrys, 1994]. It is not surprising

that eye movements are less often observed if the testing time is 4 min or

less as in [Kasten et al., 2006].

5.4.2 Increase of Eye Movements over Time

It was observed that the number of saccades increased over time in nor-

mal subjects by a factor of 10 and in hemianopic subjects by a factor of
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1.6 (significant increase). The task of detecting above-threshold stimuli was

probably too easy for healthy subjects as they showed fatigue earlier than the

group of hemianopic subjects who were more experienced with the fixation

task. Others have reported similar results: The standard deviation of the

fixation position (a measure of the magnitude of eye movements) increased

every minute by 0.56 ◦, resulting in a standard deviation of 2.55 ◦ after 3

min recording time [Eizenman et al., 1992]. Normal subjects had a steady

fixation instability of > 5 ◦ during the recording time of 30 min [Demirel

and Vingrys, 1994]. Fatigue (which is identified by slow drifts of fixation

followed by fast corrective saccades) is a possible reason for the occurrence

of eye movements [Eizenman et al., 1992]. Further reasons are boredom, in-

creasing distraction of randomly appearing peripheral stimuli and blanking

out (disappearance) of the target due to sensory adaptation [Demirel and

Vingrys, 1994]. Furthermore, subjects reported a ’washing out’ effect of the

background after some minutes, resulting in a ’hypnotizing sensation’ [Wong

et al., 1995].

During fixation tasks, small eye movements were considered as part of

the natural scanning behavior in normal subjects [Trauzettel-Klosinski and

Reinhard, 1998]. Fixation instability of 1 ◦ is assumed to be ’normal’ in

fixation tasks [Jamara et al., 2003]. Accordingly, it was reported that 20 % of

inexperienced normal subjects had significant fixation loss during Humphrey

perimetry (which is a diagnostic system similar to HRP) [Eizenman et al.,

1992]. This suggests that even well trained and motivated normal subjects are

not able to maintain accurate fixation if the testing time exceeds a duration

of 5 min [Demirel and Vingrys, 1994].

5.4.3 Eye Movements in Hemianopic and Normal Sub-

jects

Within the first period of 5 min, hemianopic subjects made on average sig-

nificantly more eye movements (> 2 ◦) than normal subjects (by a factor of

4.4). Hemianopic subjects were quite experienced with the fixation task vs.

the normal subjects had practiced only for 15-20 min prior to the experiment.
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The observation that hemianopic subjects made more eye movements than

normal subjects could be explained by compensatory eye movements which

help hemianopic subjects to increase their field of view. It was observed that

the magnitude of eye movements is higher in subjects with larger scotoma

especially in the absence of macular sparing [Trauzettel-Klosinski and Rein-

hard, 1998]. The fluctuation of perimetric results was more pronounced in

subjects with greater scotoma size which was attributed to eye movements

[Demirel and Vingrys, 1994]. This is in agreement with an observed medium

correlation (ρ = 0.5, n.s.) between the size of the scotoma and the number

of observed saccades during the fixation task in hemianopic subjects.

It was observed elsewhere that compensatory eye movements are more

pronounced if the subject had a longer time to learn a compensation strategy

[Pambakian et al., 2000] and that such a compensatory behavior is even

induced in normal subjects when an artificial hemifield-scotoma is simulated.

Normal subjects needed more time for perception tasks, made more errors

and made more fixations equivalent to the scanning behavior of hemianopic

subjects [Tant et al., 2002].

5.4.4 Color Based Fixation Catch Trial

The color based FCT is a less expensive and technically less complex alterna-

tive to eye tracking in tasks where small fixation instability is tolerated. The

results of the FCT experiment are probably influenced by miss-perceptions

because subjects reported symptoms comparable to the scintillating grid il-

lusion [VanRullen and Dong, 2003]. The criteria for critical detection loss

(> 10 %) was observed at a distance between fixation and catch trial of more

than 2 ◦ in the MTC and 4 ◦ in the less difficult STC. The examined FCT is

based on the inhomogeneity in the spatial distribution of color specific cones.

The number of cones drops below 50 % at an eccentricity > 1.75 ◦ [Curcio

et al., 1991, Osterberg, 1935]. Accordingly, it was shown that the color sen-

sitivity deteriorates in the periphery [Newton and Eskew, 2003]. To achieve

the same color appearance (hue), the stimulus size in the periphery at 10 ◦

eccentricity must increase by a factor of about 27 for the green color and
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by a factor of about 5 for the yellow color [Abramov et al., 1991, Iivanainen

and Rovamo, 1992]. If the size of the peripheral stimulus is < 2 ◦ the color

discrimination thresholds are different between periphery and fovea [Nagy

and Doyal, 1993, Parry et al., 2006] which is exploited by the FCT. The

FCT is obviously not strongly associated with the occurrence of eye move-

ments. Both correlations of individual FCT values with standard deviation

of mean gaze position (ρ = −0.36) and number of saccades (ρ = −0.24) are

only medium and not significant. This suggests that the FCT measure is

probably influenced by perceptual factors such as fatigue and alertness (even

if the subjects fixate properly, they could miss the FCT presentation) or by

motoric aspects (although subjects have perceived the catch trial they were

not able to press the button within the valid time interval of 1000 ms).

5.5 Conclusion

The criteria of sufficient fixation stability was set to 10 % and charts with

a FCT detection loss > 10% were not used for building the TOPM or con-

structing the features. As it was shown, this criteria of sufficient fixation

stability was on average achieved by the normal group in the MTC experi-

ment even if the stimulus was presented at an eccentricity of 2 ◦. Although

the FCT could be more difficult for hemianopic subjects (which were not

tested in the MCT experiment), it is not possible to conclude that all diag-

nostic charts are free of eye movement artefacts of amplitudes ≤ 2 ◦ wheras

the probability is small that steady eye movements > 4 ◦ were not detected

with the FCT paradigm.

If eye tracking equipment is available, it should be used rather than a

behaviorally based methods like the FCT, even though it is more complex

and in some systems prone to decalibration. State of the art eye trackers are

comfortable for the subjects and have a small margin of error. A behavior

based control like the FCT should be used only in tasks where eye movements

with amplitudes (≤ 4 ◦) cannot interfere with the test results. Then, FCT

provides an approximate measure of large eye movements (> 4 ◦).

As it was reported in the introduction, most studies limit the testing time
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to a couple of minutes. According to results from this study, this practice is

strongly recommended because a significant increase of saccades was observed

in hemianopic subjects between the first and last period of testing (first

period: 1-5 min, last period: 12-16 min). For the field of HRP which requires

a testing time of more than 20 min, a combination of HRP and eye tracking

technology is recommended, so that appropriate actions can be undertaken

when the fixation stability begins to deteriorate. Or it is recommended to

split the 20 min testing into sessions with short testing time with pauses in

between.



Chapter 6

Summary and Outlook

A treatment outcome prediction model was presented for patients with dam-

age to the visual system. It allows a prognosis of restoration to be made

regarding the improvement of vision or lack thereof in patients with visual

field damage. As the basis of the prediction model, features were developed

which describe specific properties of the visual field diagnostic charts. The

features incorporate a priori knowledge and address several topics in the

broad field of vision plasticity. As this Thesis shows, the features were found

to be statistically associated with the treatment outcome and are therefore

appropriate to be used in the treatment outcome prediction model (TOPM).

The TOPM core architecture is a Self-Organizing-Map which offers methods

for prediction as well as for data visualization. The model was applied on

pre-treatment diagnostic charts from 52 patients with visual field damage

who have finished the treatment. Only diagnostic charts were used which

were minimally confounded by eye movements as it was assessed by an eye

tracker study. Finally, cross validation was used to derive error measures

showing that the TOPM is able to predict potential areas of improvement

after vision stimulation treatment.

Several applications exist for the presented TOPM. If the TOPM is ap-

plied on pre-treatment diagnostic charts of appropriate patients, a better

therapy may be planned by using the predicted treatment outcome. In case

the prognosis shows only limited improvements, an alternative treatment
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may be suggested. If the prognosis shows improvements of specific areas in

the visual field of the patient, the treatment may be located to areas of great-

est recovery potential, neglecting areas without predicted improvement. The

features were developed by using knowledge from visual system plasticity. If

those features are used to examine diagnostic charts in prospective and retro-

spective studies, hypothesis about the mechanisms of vision restoration can

be examined by comparing the feature values with multiple clinical parame-

ters. The integration of new features into the open architecture is possible

with little effort such that new hypothesis can be evaluated by using the

available diagnostic data.

In summary, the TOPM may be used to enhance the therapy efficiancy

and by supporting the analysis of the mechanisms of vision restoration it

provides a technological platform for improving restoration of visual disorders

caused by brain damage.



Appendix A

Examples of Diagnostic Charts

The following pages show the diagnostic charts (from hemianopic subjects,

n = 23) which were used in the feature evaluation study from chapter 3.6.

Baseline charts (left panel) and post-treatment detection charts (middle

panel) were assessed before and after 6 months of VRT. These charts show in-

tact areas (white), absolute defect areas (black) and residual areas (shades of

gray). The right panel displays the dynamic charts which were calculated by

comparing the post-treatment charts with the baseline charts. These charts

display the occurrence of improvement (hot spots, ’+’) or lack of improve-

ment (cold spots, ’.’). Spots which were healthy at baseline are not shown.

The vertical and horizontal axis is shown in vertical and horizontal visual

degree. The charts are ordered with respect to the number of observed hot

spots. The charts in the first row correspond to the subject with strongest

improvement after VRT.
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Appendix B

Extended Descriptive Statistics

Table B.1: Descriptive statistics of spots from 52 subjects which were pooled
into one set. The statistic results does not consider patient affiliation (see
chapter 3.6 for a subject independent analysis). The Pearson correlation
coefficient (ρ) between features and treatment outcome, the respective group
means (µ) and standard deviations (δ) are shown for hot (n=1689) and cold
spots (n=7026).

Feature ρ cold spot hot spot
µ ± δ µ ± δ

Neigh. Activity +0.49 0.06 ± 0.11 0.25 ± 0.22
Neigh. Homogeneity +0.42 0.09 ± 0.13 0.25 ± 0.14
Residual Function +0.38 0.02 ± 0.08 0.12 ± 0.16
Residual Area +0.26 41.60 ± 29.6 63.05 ± 40.00
Dist. to Scotoma [mm] -0.24 7.31 ± 5.3 4.00 ± 5.60
Defect Area -0.24 181.9 ± 47.8 150.4 ± 65.21
Hemianopia -0.18 0.51 ± 0.31 0.36 ± 0.33
Border Diffuseness +0.17 0.32 ± 0.17 0.39 ± 0.18
Reaction Time +0.05 442.7 ± 47.91 449.0 ± 41.80
Quadrantanopia +0.04 0.29 ± 0.23 0.32 ± 0.21
Horizontal Position [◦] +0.03 -5.00 ± 15.4 -3.74 ± 14.04
Vertical Position [◦] -0.01 0.73 ± 11.11 0.37 ± 11.05
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