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Summary. In this chapter an alternative interpretation of the parameters of a
Bayesian network motivates a new visualization method that allows for an intuitive
insight into the network dependencies. The presented approach is evaluated with arti-
ficial as well as real-world industrial data to justify its applicability.

1 Introduction

The ever-increasing performance of database systems enables today’s business
organizations to collect and store huge amounts of data. However, the larger the
data volumes grow the need to have sophisticated analyzation methods to extract
hidden patterns does alike. The research area of Data Mining addresses these
tasks and comprises intelligent data analysis techniques such as classification,
prediction or concept description, just to name a few.

The latter technique of concept description tries to find common properties
of conspicuous subsets of given samples in the database. For example, an auto-
mobile manufacturer may plan to investigate car failures by identifying common
properties that are exposed by specific subsets of cars.

Good concept descriptions should have a reasonable length, i. e., they must
not be too short in order not to be too general. Then again, long descriptions
are too restrictive since they constrict the database samples heavily, resulting
in only a few covered sample cases. Since we have to assume that the database
entries expose hundreds of attributes, it is essential to employ a feature selection
approach that reduces this number to a handy subset of significant attributes.

In this chapter, we assume the database entries having nominal attributes1

with one distinguished attribute designating the class of each data sample. We
will use probabilistic and possibilistic network induction methods to learn a
dependence network from the database samples. Further, we only draw our at-
tention to the class attribute and its conditioning attributes, which are its direct
parents in the network, i. e., the subset of attributes that have a direct arc con-
necting it with the class attribute. Since most network induction algorithms allow
1 For the treatment of metric attributes, a discretization phase has to precede the

analysis task.
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for the restriction of the number of parent attributes to some upper bound, we
are in a favorable position to control the length of the concept descriptions to
be generated.

We then show that the network structure alone does not necessarily provide
us with a detailed insight into the dependencies between the conditioning at-
tributes and the class attribute. Emphasis is then put on the investigation of the
network’s local structure, that is, the entries of its potential tables. Finally, a
new visualization method for these potential tables is presented and evaluated.

The remainder of this chapter is structured as follows: Section 2 presents a
brief review of the methods of probabilistic and possibilistic networks, mostly
for introducing the nomenclature used in the following sections. In section 3 ar-
guments for the importance of visualizing the network parameters are produced.
This will lead to a concrete application and analysis in section 4. The chapter
concludes with section 5, giving an outlook of intended further investigations.

2 Background

For the formal treatment of sample cases or objects of interest, we identify
each sample case with a tuple t that exposes a fixed number of attributes
{A1, . . . , An}, each of which can assume a value with the finite respective do-
main dom(Ai) = {ai1, . . . , airi}, i = 1, . . . , n. Let Ω denote the set of all possible
tuples, then we can model a database D, which constitutes the starting point of
analysis, as a weight function wD : Ω → IN that assigns to each tuple t ∈ Ω the
number of occurences in the database D. The total number of tuples or sample
cases in D is N =

∑
t∈Ω wD(t). The fact wD(t) = 0 states, that the tuple t is

not contained in D. With this definition, the weight function can be considered
an extended indicator function: The respective indicator function 11D would be
defined as

∀t ∈ Ω : 11D(t) = min{wD(t), 1}.
From wD we can derive the following probability space PD = (Ω, E , P ) with the
components defined as follows:

E = 2Ω,
∀t ∈ Ω : p(t) = wD(t)

N and ∀E ∈ E : P (E) =
∑

t∈E p(t)

In the following, we only have one database at the time, so we drop the in-
dex D and refer simply to w as the source of all information and assume the
space PD to be the implicit probability space underlying all consequent prob-
abilistic propositions. Therefore, a given database of sample cases represents a
joint probability distribution. Even though the number of tuples in the database
is small compared to |Ω|, we have to look for means of further reducing the size
of the joint distribution.

One prominent way are Graphical Models, which can be destinguished further
between Markov Networks [10] and Bayesian Networks [12], the latter of which
is introduced in the next section.
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2.1 Bayesian Networks

From the database oriented point of view, reducing one large, high dimensional
database table can be accomplished by decomposing it into several lower di-
mensional subtables. Under certain conditions one can reconstruct the initial
table using the natural join operation. These certain conditions comprise the
conditional relational independence between the attributes in the initial table.
Attributes A and B are relationally independent given a third attribute C, if
once any value of C is held fixed, the values of A and B are freely combinable.

The probabilistic analog consists of decomposing the high dimensional joint
probability distribution into multiple distributions over (overlapping) subsets of
attributes. If these sets of attributes are conditionally probabilistically indepen-
dent given the instantiations of the attributes contained in the overlap, a lossless
reconstruction of the original joint distribution is possible via the chain rule of
probability:

∀τ ∈ Sn : P (A1, . . . , An) =
n∏

i=1

P (Aτ(i) | Aτ(i−1), . . . , Aτ(1))

Sn denotes the symmetric group of permutations of n objects. The description
which attributes are involved in a conditional independence relation is encoded
in a directed acyclic graph (DAG) in the following way: The nodes of the graph
correspond to the attributes. Let parents(A) denote the set of all those nodes that
have a directed link to node A. Then, given an instantiation of the attributes in
parents(A), attribute A is conditionally independent of the remaining attributes.
Formal: Let X = {A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} denote
three disjoint subsets of attributes, then X and Y are conditionally probabilis-
tically independent given Z, if the following equation holds:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :
∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :
∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :

P (A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)
= P (A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm)
· P (B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

(1)

If a network structure is given, each attribute Ai is assigned a potential table,
i. e., the set of all conditional distributions, one for each distinct instantiation
of the attributes in parents(Ai). The general layout of such a table is shown in
figure 1. Each column (like the one shaded in gray) corresponds to one specific
parent attributes’ instantiation Qij . Each entry θijk is read as

P (Ai = aik | parents(Ai) = Qij) = θijk

The learning of Bayesian Networks consists of identifying a good candidate
graph that encodes the independencies in the database. The goodness of fit is
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Fig. 1. A general potential table

estimated by an evaluation measure. Therefore, usual learning algorithms consist
of two parts: a search method and the mentioned evaluation measure which may
guide the search. Examples for both parts are studied in [4, 9, 3].

2.2 Possibilistic Networks

While probabilistic networks like Bayesian Networks are well-suited to handle un-
certain information, they lack the ability to cope with imprecision. Imprecision in
the application discussed arises when tuples in the database have missing values.

The interpretation of possibility, especially the notion of degrees of possibility
is based on the context model [8] where possibility distributions are induced by
random sets [11]. A random set needs a sample space that it is referencing to.
In the studied case this will be Ω. Further, a random set defines a family of
(neither necessarily disjoint nor nested) subsets C = {c1, . . . , cm} of Ω, called
contexts. These contexts are the sample space of a probability space (C, 2C , PΓ )
and are understood as the physical frame conditions under which the contained
elements, namely the ω ∈ Ω, are considered possible. This family is defined
via γ : C → 2Ω. With these ingredients, the tuple Γ = (γ, P ) constitutes an
imperfect description of an unknown state ω0 ∈ Ω. The degree of possibility is
then defined as the one-point coverage [11] of Γ , namely:

πΓ : Ω → [0, 1] with πΓ (ω) = PΓ ({c ∈ C | ω ∈ γ(c)})
The imperfection named above now incorporates imprecision as well as uncer-
tainty: imprecision enters via the set-valued context definitions while uncertainty
is modeled by the probability space over the contexts. Relations and probability
distributions can be seen as the two extremes of a possibility distribution: if
there is no imprecision, i. e., all contexts contain only one element, a possibility
distribution becomes a probability distribution. In contrast to this, when there
is only one context c� with γ(c�) = R ⊆ Ω then for each ω ∈ Ω we have

πΓ (ω) =

{
1 if ω ∈ R

0 otherwise

and thus the uncertainty disappears.
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In the interpretation from [2] we can derive a possibility measure Π from the
distribution πΓ in the following way:

Π : 2Ω → [0, 1] with Π(E) = max
ω∈E

PΓ ({c ∈ C | ω ∈ γ(c)})

A possibilistic analog for the conditional probabilistic independence consti-
tutes the possibilistic non-interactivity[5], which is defined as follows: Let X =
{A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} denote three disjoint
subsets of attributes, then X and Y are conditionally possibilistically indepen-
dent given Z, if the following equation holds:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :
∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :
∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :

Π(A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)
= min{Π(A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm),

Π(B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)}
(2)

where Π(· | ·) denotes the conditional possibility measure defined as follows:

Π(A1 = a1, . . . , Ak = ak | B1 = b1, . . . , Bl = bl)

= max{πΓ (ω) | ω ∈ Ω ∧
k∧

i=1

Ai(ω) = ai ∧
l∧

i=1

Bi(ω) = bi}
(3)

With these prerequisites a possibilistic network is a decomposition of a multi-
variate possibility distribution:

∀τ ∈ Sn : Π(A1, . . . , An) =
n

min
i=1

Π(Xτ(i) | Xτ(i−1), . . . , Xτ(1))

Learning possibilistic networks follows the same guidelines as the induction of
probabilistic networks. Again, a usual learning task consists of two components:
a search heuristic and an evaluation measure. Examples for the former are the
same as for Bayesian Networks, examples for the latter can be found in [6].

3 The Quantitative Component: Visualization

The result of the network learning task consists of a directed acyclic graph
(DAG) representing the observed probabilistic or possibilistic (in)dependencies
between the attributes exposed by the database samples. An example is depicted
in figure 2.

This graph can be interpreted as the structural or qualitative or global compo-
nent of such a network. This view is justified since the graph structure describes
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Fig. 2. An example of a probabilistic network

the identified (in)dependencies between the entirety of attributes. The graph
allows us to deduce statements like the following:

• Attributes Country and Aircondition have some (statistical) influence on the
Class attribute.

• Engine does not seem to have a reasonable impact on the Class attribute. It
is merely governed by attribute Country.2

Although these statements certainly convey valuable information about the
domain under consideration, some questions remain unanswered. Combined into
one question, it is desirable to know which combinations of the conditioning
attributes’ values have what kind of impact on which class values? The empha-
sized words denote the entities that carry much more information about the
data volume under analysis. Fortunately, this information is already present in
form of the quantitative or local component of the induced networks, namely the
potential tables of the nodes.

Since the goal stated in section 1 was to find concept descriptions based on
concepts designated by the class attribute, we only need to consider the class
attribute’s potential table. Therefore, the actual problem to solve is: How can a
potential table (containing either probabilistic or possibilistic values) be repre-
sented graphically, incorporating the entities mentioned above?

The remainder of this section will deal with the didactical introduction of a
visualization method for probabilistic potential tables. Then, this method will
be transferred to the possibilistic case.

Figure 1 shows a general potential table. In the case studied here, the at-
tribute Ai corresponds to the class attribute C. However, we will continue to
refer to it as Ai, since we can use the visualization for presenting any attribute’s
potential table. Each of the qi columns of the table corresponds to a distinct
instantiation of the conditioning attributes. Therefore, the database can be
partitioned into qi disjoint subsets according to these conditioning attributes
instantiations. Every fragment, again, is then split according the ri values of
2 Since these networks are computationally induced, we refrain from using the notion

causality here. It is for an expert to decide whether the extracted dependencies carry
any causal relationships.
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attribute Ai. The relative frequencies of the cardinalities of these resulting sets
comprise the entries of the potential table, namely the θijk.

We can assign to each table entry θijk a set of database samples σijk ⊆ Ω
which corresponds to all samples having attribute Ai set to ak and the par-
ent attributes set to the j-th instantiation (out of qi many). Since we know
the entire potential table, we can compute probabilities such as P (Ai = aik)
and P (parents(Ai) = Qij). With these ingredients each table entry θijk can be
considered an association rule [1]:

If parents(Ai) = Qij then Ai = aik with confidence θijk.

Therefore, all association rule measures like recall, confidence, lift,3 etc. can
be evaluated on each potential table’s entry.

With these prerequisites, we are able to depict each table entry as a circle,
the color of which depends on the class variable. As an example we consider
the class attribute C to have two parent attributes A and B. All three at-
tributes are binary. The domain of the class attribute will be assigned the fol-
lowing colors: {c1, c2} = {◦, •}. The (intermediate) result is shown in figure 3(a).
In the next step (figure 3(b)) we enlarge the datapoints to occupy an area
that corresponds to the absolute number of database samples represented, i. e.,
|σijk |.

Finally, each datapoint has to be located at some coordinate (x, y). For this
example we choose

x = recall(σijk) and y = lift(σijk)

The result is shown in figure 3(c). A data analysis expert can now examine the
chart and extract valuable information easily in the following ways: At first,
since he is likely to be interested only in sample descriptions belonging to one
specific class (e.g. class=failure), his focus is put on the black (filled) circles in
the diagram. If he is interested in highly conspicuous subsets of sample cases,
the circles at the very top are auspicious candidates since they possess a high
lift. Put briefly, the rule of thumb for an expert may read:

“Large circles in the upper right corner are promising candidate subsets of
samples that could most likely yield a good concept description.”

An example with meaningful attributes is postponed to section 4. For the
remainder of this section, we will discuss the applicability of the presented visu-
alization that was based on probabilistic values and measures to the possibilistic
domain.
3 These measures are defined as follows: ∀θijk :

recall(σijk) = P (parents(Ai) = Qij | Ai = aik)

conf(σijk) = P (Ai = aik | parents(Ai) = Qij) = θijk

lift(σijk) =
conf(σijk)

P (Ai = aik)
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(a) Each entry is assigned a data-
point σ, the color designating the class
value.

(b) The size (area) of each datapoint
corresponds to the absolute number of
samples described by the corresponding
table entry.

(c) The location of the center of each datapoint σ is set to the coor-
dinates (x, y) = (recall(σ), lift(σ)).

Fig. 3. We assume the class attribute C to have the two parent (conditioning) at-
tributes A and B. All three attributes are binary with the respective domains {a1, a2},
{b1, b2} and {c1 = ◦, c2 = •}.

3.1 The Possibilistic Case

The above-mentioned circles are serving as visual clues for subsets of samples
and were located at coordinates which are computed by probabilistic (association
rule) measures. Of course, these measures can be mathematically carried over
to the possibilistic setting. However, we have to check whether the semantics
behind these measures remain the same. For the following considerations, we
assume the following abbreviations for the sake of brevity: A subset of sample
cases σ is defined by the class value aik and the instantiation of the parent
attributes Qij :

σ = (Qij , aik) Abbrev= (A, c)

Since the definition of the conditional possibility is symmetric, i. e., ∀A, B :
Π(A | B) = Π(B | A) = Π(A, B), the definitions for recall, confidence and
support would coincide. Therefore, we define them as follows:
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suppposs(σ) = Π(A, c) recallposs(σ) = Π(A, c)
Π(c)

confposs(σ) = Π(A, c)
Π(A) liftposs(σ) = Π(A, c)

Π(A)Π(c)

The justification for this type of definition is as follows: As the degree of
possibility for any tuple t, we assign the total probability mass of all contexts
that contain t [7]. With this interpretation, the term Π(A = a) refers to the
maximum degree of possibility of all sets of tuples, for which A(t) = a holds,
i. e., Π(A = a) = max{p(t) = w(t)

N | t ∈ Ω ∧ A(t) = a}. This probabilistic origin
allows us to look at the possibility of an event E (i. e., a set of tuples) as an
upper bound of elementary events’ probablitities contained in E [2].

4 Application and Results

For testing purposes, we firstly created an artificial dataset where some conspicu-
ity was manually put into the data in order to verify whether these dependencies
were found and, most importantly, whether these peculiarties become obvious
in the visualization. Then, of course, the presented technique was evaluated on
real-life data the (anonymized) results of which we will present as well.

4.1 Manually-Crafted Dataset

The artificial dataset was generated by a fictitious probabilistic model the qual-
itative structure of which is shown in figure 2. The conspicuity to be found was
that a single aircondition type had a higher failure rate in two specific counties,
whereas this type of aircondition accounted for the smallest proportion of all
airconditions.

As learning algorithm we used the well-known K2 algorithm [4] with the
K2 metric as evaluation measure. Note that this example visualizes the potential
tables of a Bayesian Network (the one shown in figure 2), i. e., it represents
probabilistic values.

Figure 4 shows all sets of sample cases that are marked defective by the class
attribute. Since in this artificial model both attributes Aircondition and Country
have a domain of five values each, there are 25 different parent instantiations
and thus 25 circles in the chart. As one can cleary see, there are two circles
standing out significantly. Because we chose the lift to be plotted against the
y-axis, these two sets of sample cases expose a high lift value, stating that the
respective parent instantiations (here: combination of Country and Aircondition)
make the failure much more probable. Since both circles account for only a small
portion of all tuples in the database, they have small recall, indicated by being
located at the left side of the chart.

4.2 Real-Life Dataset

The real-life application which produced empirical evidence that the presented
visualization method greatly enhances the data analysis process took place dur-
ing a cooperative project at the DaimlerChrysler Research Center. As a
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Fig. 4. The two outstanding circles at the top of the chart indicate two distinct sets
of samples having a much higher failing rate than the others. They reveal the two
intentionally incorporated dependencies, i. e., one specific type of arcondition is failing
more often in two specific countries.

leading manufacturer of high-quality automobiles, one of the company’s crucial
concerns is to maintain the high level of quality and reliability of their products.
This is accomplished by collecting extensively detailed information about every
car sold and to analyze complaints in order to track down the fault promptly.
Since these data volumes are highly confidential, we are not allowed to present
specific attribute names and background information. Nonetheless, the charts
generated by visualizing the induced possibilistic networks will provide a fairly
good insight into the everyday usage of the presented visualization method.

Figure 5 shows a possibilistic chart of the binary class variable. In this case,
the non-faulty datasets are depicted as well (unfilled circles). As one can easily
see, we find a relatively large circle in the upper right corner. The size of this
circle tells that it represents a reasonable number of affected cars, while the high
lift states, that the selected parent instantiation should be subject of a precise
investigation. In fact, the consultation of a production process expert indeed
revealed a causal relationship.
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Fig. 5. The large circle in the top right corner indicates a set of vehicles whose specific
parents attributes’ values lead to a higher failure rate. An investigation by experts
revealed a real causal relationship.

4.3 Practical Issues on the Visualization

As it can be seen from figure 5 and 4, the circles show a fairly large overlap
which may lead to large circles covering and thus hiding smaller ones. In the
real-world application — from which the figures are taken — there are several
means of increasing the readability of the charts. On the one hand, all circles can
be scaled to occupy less space while the user can zoom into a smaller range of
the plot. Further, the circles can be made transparent which reveals accidentally
hidden circles.

5 Conclusion and Future Work

In this chapter, we presented a brief introduction to both probabilistic and pos-
sibilistic networks, the latter due to its natural ability of handling imprecise data
becoming increasingly interesting for industrial applications since real-world data
often contains missing data. We argued further that the learning of such a net-
work only reveals the qualitative part of the contained dependencies, yet the
more meaningful information being contained inside the potential tables, i. e.,
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the quantitative part of the network. Then, a new visualization technique was
presented that is capable of displaying high-dimensional, nominal potential ta-
bles containing probabilistic as well as possibilistic parameters. This plotting
method was evaluated in an industrial setting enabling production experts to
easier identify extreme data samples.

Since the presented technique only dealt with datasets that represented the
current state of the database at a specific (but fixed) moment in time, it would
be interesting to extend the visualization to temporal aspects, that is, time
series. Then, it would be possible not only to use the mentioned association rule
measures but also their derivatives in time to make trends visible.
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