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1 Introduction

The production pipeline of present day’s automobile manufacturers consists of a
highly heterogeneous and intricate assembly workflow that is driven by a consid-
erable degree of interdependencies between the participating instances as there
are suppliers, manufacturing engineers, marketing analysts and development re-
searchers. Therefore, it is of paramount importance to enable all production
experts to quickly respond to potential on-time delivery failures, ordering peaks
or other disturbances that may interfere with the ideal assembly process. More-
over, the fast moving evolvement of new vehicle models require well-designed
investigations regarding the collection and analysis of vehicle maintenance data.
It is crucial to track down complicated interactions between car components or
external failure causes in the shortest time possible to meet customer-requested
quality claims.

To summarize these requirements, let us turn to an example which reveals
some of the dependencies mentioned in this chapter. As we will later see, a nor-
mal car model can be described by hundreds of variables each of which represent-
ing a feature or technical property. Since only a small number of combinations
(compared to all possible ones) will represent a valid car configuration, we will
present a means of reducing the model space by imposing restrictions. These
restrictions enter the mathematical treatment in the form of dependencies since
a restriction may cancel out some options, thus rendering two attributes (more)
dependent. This early step produces qualitative dependencies like “engine type
and transmission type are dependent”. To quantify these dependencies some un-
certainty calculus is necessary to establish the dependence strengths. In our cases
probability theory is used to augment the model, e. g. “whenever engine type 1
is ordered, the probability is 56% of having transmission type 2 ordered as well”.
There is a multitude of sources to estimate or extract this information from.
When ordering peaks occur like an increased demand of convertibles during the
Spring, or some supply shortages arise due to a strike in the transport industry,
the model is used to predict vehicle configurations that may run into delivery
delays in order to forestall such a scenario by e. g. acquiring alternative supply
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chains or temporarily shifting production load. Another part of the model may
contain similar information for the aftercare, e. g. “whenever a warranty claim
contained battery type 3, there is a 30% chance of having radio type 1 in the
car”. In this case dependencies are contained in the quality assessment data and
are not known beforehand but are extracted to reveal possible hidden design
flaws.

These examples — both in the realm of planning and subsequent maintenance
measures — call for treatment methods that exploit the dependence structures
embedded inside the application domains. Furthermore, these methods need to
be equipped with dedicated updating, revision and refinement techniques in order
to cope with the above-mentioned possible supply and demand irregularities.
Since every production and planning stage involves highly specialized domain
experts, it is necessary to offer intuitive system interfaces that are less prone to
inter-domain misunderstandings.

The next section will sketch the underlying theoretical frameworks, after which
we will present and discuss successfully applied planning and analysis methods
that have been rolled out to production sites of two large automobile manufac-
turers. Section 3 deals with the handling of production planning at Volkswagen.
The underlying data is sketched in section 3.1 which also covers the description
of the model structure. Section 3.2 introduces three operations that serve the
purpose of modifying the model and answering user queries. Finally, section 3.3
concludes the application report at Volkswagen. The Daimler AG application
is introduced in section 4 which itself is divided to explain the data and model
structure (section 4.1, to propose the visualization technique for data explo-
ration (section 4.2 and finally to present empirical evidence of the usability in
section 4.3.

2 Graphical Models

As motivated in the introduction, there are a lot of dependencies and indepen-
dencies that have to be taken into account when to approach the task of planning
and reasoning in complex domains. Graphical models are appealing since they
provide a framework of modeling independencies between attributes and influ-
ence variables. The term “graphical model” is derived from an analogy between
stochastic independence and node separation in graphs. Let V = {A1, . . . , An}
be a set of random variables. If the underlying probability distribution P (V )
satisfies some criteria (see e. g. [5; 13]), then it is possible to capture some of the
independence relations between the variables in V using a graph G = (V, E),
where E denotes the set of edges. The underlying idea is to decompose the joint
distribution P (V ) into lower-dimensional marginal oder conditional distributions
from which the original distribution can be reconstructed with no or at least as
few errors as possible [12; 14]. The named independence relations allow for a
simplification of these factor distributions. We claim, that every independence
that can be read from a graph also holds in the corresponding joint distribution.
The graph is then called an independence map (see e. g. [4]).
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2.1 Bayesian Networks

If we are dealing with an acyclic and directed graph structure G, the network
is referred to as a Bayesian network. The decomposition described by the graph
consists of a set of conditional distributions assigned to each node given its
direct predecessors (parents). For each value of the attribute domains (dom),
the original distribution can be reconstructed as follows:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

P (A1 = a1, . . . , An = an) =
∏

Ai∈V

P
(
Ai = ai |

∧

(Aj ,Ai)∈E

Aj = aj

)

2.2 Markov Networks

Markov networks rely on undirected graphs where the lower-dimensional fac-
tor distributions are defined as marginal distributions on the cliques C =
{C1, . . . , Cm} of the graph G. The original joint distribution P (V ) can then
be recombined as follows:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

P (A1 = a1, . . . , An = an) =
∏

Ci∈C

φCi

( ∧

Aj∈Ci

Aj = aj

)

For a detailed discussion on how to choose the functions φCi , see e. g. [4].

3 Production Planning at Volkswagen Group

One goal of the project described here was to develop a system which plans
parts demand for the production sites of the Volkswagen Group [8]. The market
strategy is strongly customer-focused—based on adaptable designs and special
emphasis on variety. Consequently, when ordering an automobile, the customer
is offered several options of how each feature should be realized. The result is a
very large number of possible car variants. Since the particular parts required for
an automobile depend on the variant of the car, the overall parts demand can not
be successfully estimated from total production numbers alone. The modeling of
domains with such a large number of possible states is very complex. Therefore,
decomposition techniques were applied and augmented by a set of operations on
these subspaces that allow for a flexible parts demand planning and also provide a
useful tool to simulate capacity usage in projected market development scenarios.

3.1 Data Description and Model Induction

The first step towards a feasible planning system consists of the identification
of valid vehicle variants. If cars contain components that only work when com-
bined with specific versions of other parts, changes in the predicted rates for one
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Fig. 1. The 3-dimensional space dom(E) ×dom(T )× dom(B) is thinned out by a rule
set, sparing only the depicted value combinations. Further, one can reconstruct the
3-dimensional relation δ from the two projections δET and δBT .

component may have an influence on the demand for other components. Such
relations should be reflected in the design of the planning system.

A typical model of car is described by approximately 200 attributes, each con-
sisting of at least 2, but up to 50 values. This scaffolds a space of possible car
variants with a cardinality of over 1060. Of course, not every combination cor-
responds to a valid specification. To ensure only valid combinations, restrictions
are introduced in form of a rule system. Let us assume we are dealing with three
variables E, T and B representing engine type, transmission type and brake type
with the following respective domains:

dom(E) = {e1, e2, e3}, dom(T ) = {t1, t2, t3, t4}, dom(B) = {b1, b2, b3}

A set of rules could for example contain statements like

If T = t3 then B = b2
or

If E = e2 then T ∈ {t2, t3}
A comprehensive set of rules cancels out invalid combinations and may result

in our example in a relation as depicted in figure 1.
It was decided to employ a probabilistic Markov network to represent the

distribution of the value combinations. Probabilities are thus interpreted in terms
of estimated relative frequencies. Therefore, an appropriate decomposition has to
be found. Starting from a given rule base R and a production history to estimate
relative frequencies from, the graphical component is generated as follows: We
start out with an undirected graph G = (V, E) where two variables Fi and Fj

are connected by an edge (Fi, Fj) ∈ E if there is a rule in R that contains both
variables. To make reasoning efficient, it is desirable that the graph has hypertree
structure. This includes the triangulation of G, as well as the identification of
its cliques. This process is depicted in figure 2. To complete the model, for every
clique a joint distribution for the variables of that clique has to be estimated
from the production history.
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Fig. 2. Transformation of the model into hypertree structure. The initial graph is de-
rived from the rule base. For reasoning, the hypertree cliques have to have the running
intersection property which basically allows for a composition of the original distribu-
tion from the clique distributions. See [5] for details. This property can be asserted by
requiring the initial graph to be triangulated.

3.2 Operations on the Model

A planning model that was generated using the above method, usually does not
reflect the whole potential of available knowledge. For instance, experts are often
aware of differences between the production history and the particular planning
interval the model is meant to be used with. Thus, a mechanism to modify the
represented distribution is required. Planning operators have been developed [10]
to efficiently handle this kind of problem, so modification of the distribution and
restoration of a consistent state can be supported.

Updating

Consider a situation where previously forbidden item combinations become valid.
This can result for example from changes in the rule base. The relation in figure 1
does not allow engine type 2 to be combined with transmission type 1 because
(e2, t1) /∈ E × T . If this option becomes valid probability mass, it has to be
transferred to the respective distribution. Another scenario would be the advent
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of a new engine type, i. e. a change in the domain itself. Then, a multitude of new
probabilities have to be assessed. Another related problem arises when subsets
of cliques are altered while the information of the remaining network is retained.
Both scenarios are addressed with the updating operation.

This operation marks these combinations as valid by assigning a positive near-
zero probability to their respective marginals. Due to this small value, the quality
of the estimation is not affected by this alteration. Now instead of using the same
initialization for all new combinations, the proportion of the values is chosen in
accordance to an existing combination, i. e. the probabilistic interaction structure
is copied from reference item combinations.

Since updating only provides the qualitative aspect of the dependence struc-
ture, it is usually followed by the subsequent application of the revision operation,
which is used to reassign probability mass to the new item combinations.

Revision

The revision operation, while preserving the network structure, serves to modify
quantitative knowledge in such a way that the revised distribution becomes consis-
tent with the new specialized information. There is usually no unique solution to
this task. However, it is desirable to retain as much of the original distribution as
possible so that the principle of minimal change [7] should be applied. Given that,
a successful revision holds a unique result [9]. As an example for a specification,
experts might predict a rise of the popularity of a recently introduced navigation
system and set the relative frequency of this respective item from 20% to 30%.

Focusing

While revision and updating are essential operations for building and maintain-
ing a distribution model, it is much more common activity to apply the model for
the exploration of the represented knowledge and its implications with respect
to user decisions. Typically users would want to concentrate on those aspects
of the represented knowledge that fall into their domain of expertise. Moreover,
when predicting parts demand from the model, one is only interested in esti-
mated rates for particular item combinations. Such activities require a focusing
operation. It is implemented by performing evidence-driven conditioning on a
subset of variables and distributing the information through the network. Apart
from predicting parts demand, focusing is often employed for market analyses
and simulation. By analyzing which items are frequently combined by customers,
experts can tailor special offers for different customer groups. To support plan-
ning of buffer capacities, it is necessary to deal with the eventuality of temporal
logistic restrictions. Such events would entail changes in short-term production
planning so that consumption of the concerned parts is reduced.

3.3 Application

The development of the planning system explained was initiated in 2001 by the
Volkswagen Group. System design and most of the implementation is currently
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done by Corporate IT. The mathematical modeling, theoretical problem solv-
ing, and the development of efficient algorithms have been entirely provided by
Intelligent Systems Consulting (ISC) Gebhardt. Since 2004 the system is be-
ing rolled out to all trademarks of the Volkswagen Group. With this software,
the increasing planning quality, based on the many innovative features and the
appropriateness of the chosen model of knowledge representation, as well as a
considerable reduction of calculation time turned out to be essential prerequi-
sites for advanced item planning and calculation of parts demand in the presence
of structured products with an extreme number of possible variants.

4 Vehicle Data Mining at Daimler AG

While the previous section presented techniques that were applied ahead-of-time,
i. e., prior and during the manufacturing process, we will now turn to the area of
assessing the quality of cars after they left the assembly plant. For every car that
is sold, a variety of data is collected and stored in corporate-wide databases. After
every repair or checkup the respective records are updated to reflect the technical
treatment. The analysis scenario discussed here is the interest of the automobile
manufacturer to investigate car failures by identifying common properties that
are exposed by specific subsets of cars that have a higher failure rate.

4.1 Data Description and Model Induction

As stated above, the source of information consists of a database that contains
for every car a set of up to 300 attributes that describe the configuration of every
car that has been sold.

The decision was made to use Bayesian networks to model the dependence
structure between these attributes to be able to reveal possible interactions of
vehicle components that cause higher failure rates. The induction of a Bayesian
network consists of identifying a good candidate graph that encodes the indepen-
dencies in the database. The goodness of fit is estimated by an evaluation mea-
sure. Therefore, usual learning algorithms consist of two parts: a search method
and the mentioned evaluation measure which may guide the search. Examples
for both parts are studied in [6; 11; 2].

Given a network structure, an expert user will gain first insights into the
corresponding application domain. In figure 3 one could identify the road surface
conditions to have a major (stochastic) impact on the failure rate and type. Of
course, arriving at such a model is not always a straightforward task since the
available database may lack some entries requiring the treatment of missing
values. In this case possibilistic networks [3] may be used. However, with full
information it might still be problematic to extract significant statistics since
there may be value combinations that occur too scarcely. Even if we are in the
favorable position to have sufficient amounts of complete data, the bare network
structure does not reveal information about which which road conditions have
what kind of impact on which type of failure. Fortunately, this information can be
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Fig. 3. An example of a Bayesian network illustrating qualitative linkage of components

retrieved easily in form of conditional probabilities from the underlying dataset,
given the network structure. This becomes clear if the sentence above is re-
stated: Given a specific road surface condition, what is the failure probability of
a randomly picked vehicle?

4.2 Model Visualization

Every attribute with its direct parent attributes encodes a set of conditional
probability distributions. For example, given a database D, the sub-network con-
sisting of Failure, RoadSurface and Temperature in figure 3 defines the following
set of distributions:

PD(Failure | Temperature, RoadSurface)

For every distinct combination of values of the attributes RoadSurface and
Temperature, the conditional probability of the attribute Failure is estimated
(counted) from the database D. We will argue in the next section, that it is
this information that enables the user to gain better insight into the data under
consideration [15].

Given an attribute of interest (in most cases the class variable like Failure in
the example setting) and its conditioning parents, every probability statement
like

P (Failure = Suspension | RoadSurface = rough, Temperature = low) = p∗

can be considered an association rule:1

If RoadSurface = rough ∧ Temperature = low, then there will be a sus-
pension failure in 100 · p∗% of all cases.

1 See [1] for details.
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The value p∗ is then the confidence of the corresponding association rule.
Of course, all known evaluation measures can be applied to assess the rules.
With the help of such measures one can create an intuitive visual representation
according to the following steps:

• For every probabilistic entry (i. e., for every rule) of the considered conditional
distribution P (C | A1, . . . , Am) a circle is generated to be placed inside a two-
dimensional chart.

• The graylevel (or color in the real application) of the circle corresponds the
the value of attribute C.

• The circle’s area corresponds to the value of some rule evaluation measure
selected before displaying. For the remainder of this chapter, we choose this
measure to be the support, i. e., the relative number of vehicles (or whatever
instances) specified by the values of C and A1, . . . , Am. Therefore, the area
of the circle corresponds to the number of vehicles.

• In the last step these circles are positioned. Again, the value of the x- and
y-coordinate are determined by two evaluation measures selected in advance.
We suggest these measures to be recall2 and lift.3 Circles above the darker
horizontal line in every chart mark subsets with a lift greater than 1 and
thus indicate that the failure probability is larger given the instantiation of
A1, . . . , An in contrast to the marginal failure probability P (C = c).

With these prerequisites we can recommend to the user the following heuristic
in order to identify suspicious subsets:

Sets of instances in the upper right hand side of the chart may be good
candidates for a closer inspection.

The greater the y-coordinate (i. e., the lift value) of a rule, the stronger is
the impact of the conditioning attributes’ values on the class variable. Larger
x-coordinates correspond to higher recall values.

4.3 Application

This section illustrates the proposed visualization method by means of three
real-world datasets that were analyzed during a cooperate research project with
a automobile manufacturer. We used the K2 algorithm4 [6] to induce the network
structure and visualized the class variable according to the given procedure.
2 The recall is definded as P (A1 = a1, . . . , Ak = ak | C = c).
3 The lift of a rule indicates the ratio between confidence and the marginal failure

rate: P (C=c|A1=a1,...,Ak=ak)
P (C=c) .

4 It is a greedy approach that starts with a single attribute (here: the class attribute)
and tries to add parent attributes greedily. If no addition of an attribute yields a
better result, the process continues at the just inserted parent attributes. The quality
of a given network is measured with the K2 metric (a Bayesian model averaging
metric).
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Fig. 4. The subset marked 1 corresponds to approx. 1000 vehicles whose attributes
values of Country and Transmission yielded a causal relationship with the class variable.
Unfortunately, there was not found a causal description of subset 2. The cluster of
circles below the lift-1 line corresponds to sets of cars that fail less often, if their
instantiantions of attributes become known.

Example 1

Figure 4 shows the analysis result of 60000 vehicles. The chart only depicts failed
cars. Attributes Transmission and Country had most (stochastic) impact on the
Class variable. The subset labeled 1 was re-identified by experts as a problem
already known. Set 2 could not be given a causal explanation.

Example 2

The second dataset consisted of 300000 cars that exposed a many-valued class
variable, hence the different gray levels of the circles in figure 5. Although there
was no explanation for the sets 3, the subset 4 represented 900 cars the in-
creased failure rate of which could be tracked down to the respective values of
the attributes Mileage and RoadSurface.
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Fig. 5. Although it was not possible to find a reasonable description of the vehicles
contained in subsets 3, the attribute values specifying subset 4 were identified to have
a causal impact on the class variable.

Example 3

As a last example, the same dataset as in example 2 yielded the result as shown
in figure 6. Here, an expert user changed the conditioning attributes manually
and identified the set 5 which represented a subset of cars whose failure type
and rate were affected by the respective attribute values.

User Acceptance

The proposed visualization technique has proven to be a valuable tool that facil-
itates the identification of subsets of cars that may expose a critical dependence
between configuration and failure type. Generally, it represents an intuitive way
of displaying high-dimensional, nominal data. A pure association rule analysis
needs heavy postprocessing of the rules since a lot of rules are generated due to
the commonly small failure rate. The presented approach can be considered a
visual exploration aid for association rules. However, one has to admit that the
rules represented by the circles share the same attributes in the antecedence,
hence the sets of cars covered by these rules are mutually disjoint, which is a
considerable difference to general rule sets.
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Fig. 6. In this setting the user selected the parent attributes manually and was able
to identify the subset 5, which could be given a causal interpretation in terms of the
conditioning attributes Temperature and Mileage

5 Conclusion

This paper presented an empirical evidence that graphical models can provide
a powerful framework for data- and knowledge-driven applications with massive
amounts of information. Even though the underlying data structures can grow
highly complex, both presented projects implemented at two automotive compa-
nies result in effective complexity reduction of the methods suitable for intuitive
user interaction.
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