
 

 

Fakultät für Informatik 
Otto-von-Guericke-Universität Magdeburg 

Nr.: FIN-007-2008 

A Temporal Extension of 
Closed Item Sets for  
Change Mining 
Mirko Böttcher, Martin Spott, Rudolf Kruse 

Arbeitsgruppe Computational Intelligence (IWS) 

 



 

  
 

Impressum (§ 10 MDStV): 
 

   Herausgeber: 
 Otto-von-Guericke-Universität Magdeburg  
 Fakultät für Informatik 
 Der Dekan 
 
 
  Verantwortlich für diese Ausgabe: 

Otto-von-Guericke-Universität Magdeburg 
Fakultät für Informatik 

               
Postfach 4120 

 39016 Magdeburg  
E-Mail:   
 
http://www.cs.uni-magdeburg.de/Preprints.html 

 
   

Auflage:   

Redaktionsschluss:   

Herstellung: Dezernat Allgemeine Angelegenheiten,  
                   Sachgebiet Reproduktion 

    
Bezug: Universitätsbibliothek/Hochschulschriften- und 

Tauschstelle 

Prof. Dr. Rudolf Kruse 

kruse@iws.cs.uni-magdeburg.de 

71 

August 2008 



A Temporal Extension of Closed Itemsets for Change Mining

Mirko Böttcher
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Abstract

Frequent pattern mining often produces a vast set of
results. To overcome this problem, two fundamental ap-
proaches are commonly employed: condensed representa-
tions, such as closed itemsets, and relevance assessment.
In recent years, the change of itemsets over time is gain-
ing increasing attention as a promising basis for developing
novel, more comprehensible relevance assessment methods.
One of the unsolved problems is that typically many of the
observed changes are the side-effect of other changes. Ex-
isting condensed representation approaches fail in remov-
ing such redundancies because they have not been devel-
oped with the temporal dimension in mind. This paper
proposes a novel approach for a condensed representation
of itemsets which is based on utilizing temporal redundan-
cies. In particular we prove that our approach yields a tem-
porally non-redundant subset of closed itemsets which we
therefore call temporally closed itemsets. Our experiments
with real-life data sets show that the set of temporally closed
itemsets is significantly smaller than the set of closed item-
sets.

1. Introduction

Frequent pattern mining originally has been developed
for market basket analysis, where each basket, also referred
to as a transaction, consists of a set of purchased items [1].
Here, the goal of frequent pattern mining is to detect sets of
items which frequently occur together and, in a subsequent

step, to form rules which predict their co-occurrence. How-
ever, frequent pattern discovery is not only bound to the
specific purpose of association mining. It can be applied to
every relational database and plays also an essential role in
fields such as sequential patterns [3] and episode discovery
from event sequences [10].

The comprehensibility and utility of frequent itemsets,
as frequent patterns are also called due to their roots, con-
tribute much to their popularity. It is also well known that
the number of discovered itemsets can be vast and thus dif-
ficult to examine by a user. Moreover, many of the itemsets
will be obvious, already known, or not relevant.

Two fundamental techniques have been proposed to
tackle this problem. First, condensed representation algo-
rithms aim to produce a reduced number of itemsets from
which all other itemsets can be derived. The probably most
well-known condensed representation are closed itemsets
[14]. Second, a variety of methods for relevance assess-
ment have been developed which aim at providing a ranking
of the itemsets according to their (likely) relevance to a user
(cf. [18]).

In recent years, there has been an increasing research in-
terest in methods which rate the relevance of itemsets by an-
alyzing their change over time. Such methods are based on
time series (also called histories) of support [12, 5]. Item-
sets which change hint at unknown or surprising changes
in the underlying population. Such changes may indicate
that an intervening action is required [9], for instance, to
rectify a problem. On the other hand, an itemset which al-
ways remains stable can be expected to describe an invari-
ant of the population. Invariants, however, are almost al-



ways known by domain experts and are thus of less interest.
Nevertheless, this approach suffers from the problem that
many of the observed changes are simply the side-effect of
other changes. For this reason it is desirable to first obtain
a condensed representation which captures the fundamen-
tal set of itemset histories and allows to reconstruct those
properties of all other itemsets and their histories that are
necessary for change analysis.

Existing reduction techniques, such as closed itemsets,
are not the optimal choice when used in this setting because
they cannot detect nor utilize redundancies which are only
visible when itemsets are analysed over time. Hence, they
do not allow to reduce the number of itemsets towards the
maximum possible extent. Consider, as an example, sur-
vey data which contains information about used telecom-
munication services, like broadband or phone, and the so-
cial background of customers, like their gender. Itemset dis-
covery is applied to this dataset to discover usage patterns in
a sociographical context. Assume that the following item-
sets have been discovered:

X1 : BROADBAND=YES

X2 : BROADBAND=YES, PHONE=YES

Closed itemset discovery would detect that the itemset X1

is redundant (i.e. non-closed) if it has the same support as
X2. This redundancy is due to the fact that a supplier may
always bundle a broadband with a phone connection. This,
in turn, is an invariant of the underlying domain and thus
probably known to a domain expert. Now consider the item-
set

X3 : BROADBAND=YES,GENDER=MALE

and assume that its history of support values shows an up-
ward trend. Using closed itemsets X1 would be regarded
as non-redundant (i.e. closed) with respect to X3 because
broadband users are not always males. Nevertheless, the
fraction of males among all people who use broadband may
be invariant over time. This means, X1 and X3 show quali-
tatively the same trend which has its root inX1. The history
of X3 could be derived from the one of X1 by multiplying
it with a gender-related constant factor. For this reason, one
of the itemsets is temporally redundant with respect to the
other.

In this paper we propose temporally closed itemsets as
an approach which accounts for such temporal redundan-
cies. It extends the idea of closed itemsets towards the tem-
poral dimension. As the central theorem of this paper we
prove that the set of temporally closed itemsets is a subset
of the set of closed itemsets. It results from removing re-
dundancies from the set of closed itemsets which are only
visible when itemsets are analysed over time. Our approach
results in a set of itemsets which is minimal in the sense

that the shape of every other itemset’s history can be recon-
structed from it. This information, in turn, is sufficient for
subsequent change analysis if we assume that an itemset’s
relevance is primarily determined by its change over time.
An itemset is declared as interesting not by the extent with
which it exceeds a user-defined support threshold but by the
qualitative way in which it changes [9, 2]. We show exper-
imentally that mining temporally closed itemsets can lead
to a significantly smaller result set than mining for closed
itemsets.

The remaining of this paper is organized as follows. In
Section 2 we discuss related work. Section 3 and Section
4 introduce the necessary background on frequent itemset
mining and closed itemsets. In Section 5 we define temporal
redundancy by introducing the concept of temporally deriv-
able itemsets, which we will subsequently use in Section
6 as basis for the definition of the set of temporally closed
itemsets. Section 7 discusses a statistical test for temporal
closedness. Section 8 shows the experimental results we
obtained.

2. Related Work

The approach described in this paper is related to two so-
far rather distinct fields of association mining: condensed
representations and change mining. For this reason we will
first provide an overview over existing condensed represen-
tation approaches, followed by the necessary background
on change mining methods for associations.

As already pointed out earlier, the number of discovered
itemsets is usually vast and thus often hardly manageable by
a user. For this reason, several approaches have been pro-
posed which lead to a condensed representation of the set of
discovered itemsets by utilizing redundancies such that all
other itemsets can be derived from the representation. Four
such techniques can be found in the literature: closed item-
sets [14, 15, 19], counting inference [4], deduction rules
[8] and disjunction free sets [7]. From the perspective of
analyzing the change of itemsets over time these methods
treat each element of a sequence of temporally ordered data
sets independently from each other. For this reason, they
do not have the capability to detect redundancies which are
only visible if itemsets are analysed over time. Of these
condensed representation approaches, closed itemsets are
related to our approach which yields a subset of them. We
will discuss closed itemsets in more detail in Section 4.

Several methods have been proposed in the area of as-
sociation mining which aim to discover interesting changes
in histories of itemsets and association rules, respectively.
Agrawal et al [2] proposed a query language for shapes
of histories. Liu et al [12] showed how trend, semi-stable
and stable rules can be distinguished using a statistical ap-
proach. In [9] the temporal description length of an itemset
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is introduced which rates support changes by using meth-
ods from information theory. Frameworks to monitor and
analyse changes in support and confidence are described in
[17, 5]. All of these publications have in common that they
employ a concept of itemset interestingness which is only
based on the qualitative change of an itemset over time but
not on the extent with which this itemset exceeds a user-
defined support-threshold. None of these publications dis-
cusses how the set of discovered itemsets can be effectively
reduced such that the shape of all other itemsets can still be
derived, nor do they discuss how existing reduction tech-
niques for itemsets can be extended towards the temporal
dimension.

In [11] a method to detect so-called fundamental rule
changes is presented that aims to identify changes in sup-
port and confidence of association rules which cannot be
explained by other changes. The authors provide heuristic
criteria for solving this task. However, their approach dif-
fers to our approach of temporally closed itemsets in the
following aspects: first, their approach can only be applied
to histories of two periods length, whereas much longer his-
tories are the norm when analyzing change. An extension to
many periods is not straightforward due to the form of the
underlying statistical test. Second, due to the heuristic na-
ture of their approach it can lead to counter-intuitive results
[6].

3. Itemsets and Support Histories

Formally, itemset discovery is applied to a data set of
transactions. Every transaction T is a subset of a set of
items L. A subset X ⊆ L is called itemset. It is said that
a transaction T supports an itemset X if X ⊆ T . If X ⊂
Y holds for two itemsets X and Y we will say that X is
more general than Y becauseX puts less restrictions on the
underlying transaction set. Likewise, we say that Y is more
specific than X . Furthermore, we define XY := X ∪ Y for
simplicity.

The statistical significance of an itemset X is measured
by its support supp(X) which estimates P (X ⊆ T ), or
short P (X). It is said that an itemset is frequent if its
support is greater than or equal to a user-defined minimum
support value suppmin. The downward closure property of
itemsets states that for two itemsets Y ⊃ X the support
of X is greater or equal to the one of Y , i.e. supp(X) ≤
supp(Y ).

The change of an itemset is defined by the change of
its support over time. The time series of support values is
called support history. Formally, let D be a time-stamped
data set and [t0, tn] the minimum time span that covers
all its tuples. The interval [t0, tn] is divided into n > 1
non-overlapping periods Ti := [ti−1, ti], such that the cor-
responding subsets Di ⊂ D each have a size |Di| � 1.

After carrying out frequent itemset discovery for each
Di, i = 1, . . . , n the support of each itemset X is now re-
lated to a specific time period Ti. We will indicate this by
using the notation suppi(X) ≈ P (X| Ti). An itemset X
which has been discovered in all periods is therefore de-
scribed by n support values. Imposed by the order of time
the values form sequences (supp1(X), . . . suppn(X)).
These support histories capture many of the changes of the
underlying domain. Hence, they are mostly not stable but
exhibit trends and other patterns.

4. Closed Itemsets

Closed itemsets are a subset of itemsets from which all
other itemsets can be derived without further mining. The
formal underpinnings of closed itemset algorithms can be
found in the theory of lattices and Galois connection clo-
sures [14]. Still, their meaning is rather intuitive: a closed
itemset is the largest itemset common to a set of transac-
tions. All non-closed itemsets have the same support as
their closure, which is the smallest closed itemset contain-
ing them. Formally, a closed itemset is defined as follows
(cf. [15]):

Definition 1 (Closed Itemset) An itemset X is a closed
itemset iff there exists no proper superset Y ⊃ X such that
supp(X) = supp(Y ).

Several algorithms have been proposed to efficiently dis-
cover the set of closed itemsets from a given data set, for
example: A-Close [14], Closet [15] and Charm [19].

In the context of analyzing changes of itemsets, closed
itemsets have several shortcomings. First of all, as already
mentioned in Section 2, they only take into account each
data set separately. In fact, they were developed to be ap-
plied only for single data sets. As a result they do not ac-
count for redundancies imposed by the temporal dimension
as the example in the Introduction showed. Secondly, the
definition of closed itemsets as well as the proposed min-
ing algorithms rely on strict equality between support val-
ues which makes closed itemset mining susceptible to a low
data quality. One bad record can turn an actually non-closed
itemset into a closed one. Here, a less restrictive compari-
son is desirable, for instance, on the basis of statistical tests.

5. Temporally Derivable Itemsets

As laid out in the Introduction, the aim is to find a set
of itemsets which is non-redundant in the sense that it is
the minimal set necessary to derive the shape of the history
of all remaining itemsets. We therefore first have to define
what makes a history of an itemset XY derivable from the
history ofX and thus the itemsetXY temporally derivable:
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Definition 2 (Temporally Derivable Itemset) Let
XY,X 6= ∅ be an itemset with support history
(supp1(XY ), . . . , suppn(XY )). The itemset XY is
said to be temporally derivable with regard to an item-
set X , denoted X↪→XY , iff for each XZ,Z ⊆ Y
with support history (supp1(XZ), . . . , suppn(XZ))
there exists a constant ε, 0 < ε ≤ 1 such that
suppi(XY ) = ε suppi(XZ), i = 1, . . . , n.

The main idea behind the definition is that the history of
an itemset and hence the itemset itself is temporally deriv-
able if it has the same shape as the history of a more gen-
eral itemset apart from a scaling factor ε. To emphasize
the scaling factor ε we will sometimes use the notation
X

ε
↪→ Y . The criterion suppi(XY ) = ε suppi(X), i =

1, . . . , n used within the definition can be rewritten as
ε = suppi(XY )/ suppi(X) = P (XY |Ti)/P (X |Ti) =
P (Y |XTi). This means, the probability of Y is required
to be constant over time given X , so the fraction of transac-
tions containing Y additionally toX constantly grows in the
same proportion as X . In other words, the confidence (rep-
resented by the scaling factor ε) of the ruleX → Y does not
change over time. Such time-invariant properties, however,
often represent domain knowledge known to a user. Thus,
a user would be able to infer the history of XY if he knows
the one of X . In the opposite direction, he could also derive
the history of X from the one of XY .

Figures 1 and 2 show an example of a temporally deriv-
able itemset taken from the customer survey data used for
our experiments, cf. Section 8. For reasons of data protec-
tion, the underlying itemset cannot be revealed. For illustra-
tion, the reader is referred to the example given in the Intro-
duction, instead. Figure 1 shows the support histories of the
less specific itemset at the top and the more specific item-
set below, both over 20 time periods. The shape of the two
histories is obviously very similar and it turns out that the
history of the more specific itemset XY can approximately
be determined using the more general one X by applying
a scaling factor. As shown in Figure 2, the reconstruction
is not exact. The reason for this is noise. As a result, a
statistical test is employed in Section 7 to test for temporal
derivability. Obviously, the history of the less specific item-
set could be determined from the more specific in the same
way. In the following we will show several properties of
temporally derivable itemsets which we will use later on in
this paper:

Lemma 1 All itemsets are temporally derivable with re-
gard to themselves, i.e. X↪→X .

Proof 1 Lemma 1 follows directly from Definition 2.

Lemma 2 Let X
ε1
↪→ XY and X

ε2
↪→ XZ with Y ⊂ Z then

ε2 ≤ ε1 ≤ 1, i.e. εi are a monotonously decreasing series.

Proof 2 By Definition 2 it is ε1 suppi(X) = suppi(XY )
and ε2 suppi(X) = suppi(XZ). Using the downward clo-
sure property of itemsets supp(XY ) ≥ supp(XZ), XY ⊆
XZ it follows that ε1 suppi(X) ≥ ε2 suppi(X). This, in
turn, yields ε1 ≥ ε2. Next, we show that ε ≤ 1. By Defini-
tion 2 it is ε suppi(X) = suppi(XY ). From this it follows
that ε suppi(X) ≤ suppi(X) using the downward closure
property of itemsets suppi(XY ) ≤ suppi(X). Division
yields ε ≤ 1.

�

Lemma 3 If X
ε1
↪→ Y and Y

ε2
↪→ Z then X

ε1ε2
↪→ Z, i.e.

derivability is transitive.

Proof 3 By Definition 2 it is ε1 supi(X) = supi(Y ) and
ε2 supi(Y ) = supi(Z). Substitution yields ε1ε2 supi(X) =
supi(Z) and thus X

ε1ε2
↪→ Z.

6. Temporally Closed Itemsets

Building upon the notion of temporally derivable item-
sets we can define the set of non-redundant itemsets. If we
assume that the interestingness of an itemset is solely deter-
mined by the changes represented in its history both X and
XY would have the same interestingness if XY is tempo-
rally derivable from X . For example, in Figure 1 both his-
tories show all characteristic features that would make them
interesting for a user: a trend turning point and a declining,
respectively inclining, trend left and right from it. Hence, if
one is known the other(s) can be regarded as redundant.

Commonly, sequences of itemsets X1↪→X2 . . . ↪→Xn

temporally derivable from each other are discovered.
Thereby, we assume that this sequence is maximal in the
sense that there exists no Y ⊂ X1 or Z ⊃ Xn such that
Y ↪→X1 or Xn↪→Z, respectively. From such a sequence
we will define the maximum element Xn as being non-
redundant and treat the others as redundant. We will call
such non-redundant itemsets temporally closed itemsets be-
cause they are related to closed itemsets as we prove later
in this section.

Definition 3 (Temporally Closed Itemset) An itemset X
is temporally closed iff there exists no itemset Y ⊃ X such
that X↪→Y . A temporally closed itemset is frequent if it
exceeds a user defined support threshold in all periods.

Apparently, from the above sequenceX1↪→X2 . . . ↪→Xn

the minimum element X1 could also have been chosen as
the non-redundant element. Nevertheless, the choice of the
maximum Xn as the basis for the definition of temporally
closed itemsets provides the advantage that in this way they
can be related to closed itemsets and thus extending this
established notion by temporal considerations.

4
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Figure 1. Histories of the itemsets XY
and X showing that X↪→XY
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Figure 2. Approximated history of XY
using the history of X

To show how the definition of temporally closed itemsets
relates to closed itemsets discussed in Section 4 we will first
extend Definition 1 such that it can be applied to histories
of support.

Definition 4 (Closed over a Sequence of Time Periods)
An itemset X is closed over the sequence of time periods
{T1, . . . , Tn} iff there exists no itemset Y ⊃ X such that
suppi(X) = suppi(Y ), i = 1, . . . , n.

In the following we will refer to itemsets which are closed
over a sequence of time periods simply as closed itemsets.

By comparing Definition 4 with Definition 2 it can be
seen that an itemset’s closedness over a sequence of time
periods can also be expressed using the notion of temporal
derivable.

Lemma 4 An itemsetX is closed over the sequence of time
periods {T1, . . . , Tn} iff there exists no itemset Y ⊃ X such

that X
1
↪→ Y .

Proof 4 Follows directly from the definition of a temporally
derivable itemset (cf. Definition 2).

We now have the necessary tools to prove the central
theorem of this paper which shows that temporally closed
itemsets are a subset of closed itemsets.

Theorem 1 Let C be the set of all closed itemsets over the
sequence of time periods {T1, . . . , Tn} and TC be the set
of temporally closed itemsets. Then, it is TC ⊆ C.

Proof 5

X ∈ TC Def. 3⇐⇒ @Y ⊃ X : ∃ε ∈ (0, 1] : X
ε
↪→ Y

=⇒ @Y ⊃ X : X
1
↪→ Y

Lemma 4⇐⇒ X ∈ C

From X ∈ TC ⇒ X ∈ C it follows that TC ⊆ C.

The following counterexample shows that TC is generally
a proper subset of C. Consider the itemsets X1 ⊂ X2 ⊂
X3 ⊂ X4 with X1, X3 ∈ C. Further, assume that X1

0.5
↪→

X2
1
↪→ X3

0.5
↪→ X4. Using Lemma 3 it is X1↪→X4 and

X3↪→X4. Using Definition 3 it follows that X1 6∈ TC and
X3 6∈ TC.

This means, every temporally closed itemset is also a
closed itemset but not every closed itemset is also a tem-
porally closed one. The counterexample shows that one
temporally closed itemset can be temporally derivable from
multiple closed itemsets. Temporally closed itemsets form
a (almost always proper) subset of closed itemsets in which
temporal redundancies have been removed. The set of tem-
porally closed itemsets can in fact be significantly smaller
than the set of closed ones as we will demonstrate in our ex-
perimental evaluation in Section 8. At the same time, tem-
porally closed itemsets are lossless in the sense that they can
be used to uniquely determine the shape of the histories of
all remaining itemsets.

7. Testing for Temporal Closedness

To check whether an itemsetX is temporally non-closed
we need to test whether an itemset XY exists which can be
temporally derived fromX . This, in turn, means we have to
test whether ε in suppi(XY ) = ε suppi(X), i = 1, . . . , n
is constant over time. Due to data usually being noisy as
we showed in Figure 2, we will not check this criterion
directly, but instead statistically test its validity. Also, we
rewrite the criterion in an equivalent form to account for the
order of values over time in the histories. Our experiments
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have shown that direct use of the criterion counterintuitively
marked some histories as temporally derivable when they
were noisy.

Let ∆i supp(X) := suppi(X)
suppi−1(X) be the relative change in

support for itemsetX between two periods Ti−1 and Ti, i =
2, . . . , n. Then, the above criterion holds, iff for any i =
2, . . . , n

∆i supp(XY ) = ∆i supp(X) (1)

This means, if the itemset XY is temporally derivable from
X then the relative changes in the history of XY are equal
to the temporally related relative changes in the history of
the itemset X .

Imagine ∆i supp(X) and ∆i supp(XY ) in a plotted
graph, whereby ∆i supp(XY ) is – as implied by Defi-
nition 2 – the dependent quantity. If ∆i supp(XY ) =
∆i supp(X) holds, then all points in the plot should be
on a straight line with slope 1 and intercept 0. In prac-
tice, however, this equality will rarely hold due to noise.
As a solution, we model the underlying relationship as
∆i supp(XY ) = ∆i supp(X) + γ where γ is a random
error with zero mean and unknown, but low variance.

Under the assumption that the dependency of
∆i supp(XY ) from ∆i supp(X) can be generally de-
scribed by ∆i supp(XY ) = a · ∆i supp(X) + b + γ, we
fit a regression line ∆ supp(XY ) = â · ∆ supp(X) + b̂.
The parameters â and b̂ are estimates for a and b and
obtained by minimizing the regression error. We then test
if ∆i supp(X) is statistically equal to ∆i supp(XY ) by
carrying out the following two steps:

1. Based on the estimates â and b̂ we test the hypothesis
that the true parameters of the model are a = 1 and
b = 0 using a standard t-test [13].

2. Additionally, we test if the variance of γ is small, i.e.
if (∆i supp(X),∆i supp(XY )) are sufficiently close
to the regression line by setting a threshold r̃ for Pear-
son’s correlation coefficient r.

Figure 3 illustrates the testing procedure. It shows the
scatter plot of the relative changes of the support histories
from Figure 1. The fitted regression line is ∆ supp(XY ) =
1.0332·∆ supp(X)−0.0396 and the correlation coefficient
r ≈ 0.9545. The above test procedure using a significance
level of 0.05 and r̃ = 0.95 shows that XY is indeed tempo-
rally derivable from the history of X .

8. Experimental Results

As Theorem 1 as the central result of this publication
states temporally closed itemsets form a subset of those
itemsets which are closed over a sequence of time periods.
For this reason, the question to be answered experimentally

0.8 1 1.2 1.4
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1.2

1.4

rel. change X
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l. 
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an

ge
 X

Y

Figure 3. Scatter plot of the relative changes
of the support histories shown in Figure 1.
The fitted regression line is ∆ supp(XY ) =
1.0332 ·∆ supp(X)− 0.0396 and the correlation
coefficient r ≈ 0.9545.

is how much the set of temporally closed itemsets is smaller
than the set of closed itemsets.

For our experiments we chose two data sets. One data
set, here called CRS, is extracted from the data-warehouse
of a telecommunication company. The other data set we ex-
tracted from the IPUMS project1 [16] which is dedicated to
collecting, harmonizing and freely distributing census data.

The CRS data set contains answers of customers to a sur-
vey collected over a period of 20 weeks. Each record is de-
scribed by 19 nominal attributes with a domain size between
2 and 9. We transformed the data set into a transaction set
by recoding every (attribute, attribute value) combination as
an item. Then we split the transaction set into 20 subsets,
each corresponding to a period of one week. The subsets
contain between 385 and 547 transactions. To each subset
we applied a frequent itemset miner2 using a minimum sup-
port threshold of suppmin = 0.05. From the obtained 20
sets of itemsets we only kept those itemsets which had been
discovered in every period, i.e. those with complete support
histories.

The data set we extracted from IPUMS contains cen-
sus data of the USA collected during the years 2001–2006.
Due to the data set being vast we restricted the data to the
states New Jersey, New York, and Pennsylvania. From the
available attributes we selected 15 concerning the person
himself (e.g. age, race, gender), the house they are liv-

1http://usa.ipums.org/usa/
2We did use the frequent itemset miner contained within the apri-

ori software package by Ch. Borgelt. It can be obtained from
http://borgelt.net/fpm.html
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ing in (e.g. number of bedrooms, year of built), and their
profession (e.g. travel time, avg. hours worked per week,
net income). Numeric attributes were converted into nom-
inal ones using uniform binning. The domain size of the
attributes varies between 2 and 9. We split the data set
year-wise resulting in six data sets each containing between
130364 (for 2002) and 397788 (for 2006) records. We ap-
plied the same preprocessing and mining steps as for the
CRS data.

We then tested the itemsets obtained from each data set
for temporally closed itemsets by applying Definition 3 in
combination with the test procedure in Section 7. We also
tested for itemsets which are closed over the sequence of
time periods. Here, we employed two approaches. The
first one uses the original definition which requires strict
equality of support values (cf. Definition 4). To rule out the
effects of low quality data we also tested for approximate
closedness, i.e. we did regard an itemset as non-closed if
its support value is approximately the one of a more general
itemset. Here, we did use the test from Section 7 extended
by an additional test for ε > 0.98 because for strict closed-
ness it must be ε = 1 (cf. Lemma 4).

The experimental results are shown in Table 1. Each row
in the table corresponds to one data set, CRS or IPUMS.
The column ‘All’ shows the number of all itemsets discov-
ered, the following columns show how many of these item-
sets are temporally closed itemsets, approximately closed
itemsets and strictly closed itemsets, in this order. Both,
absolute and relative numbers are given. As can be seen,
the approach of temporally closed itemsets leads to a sig-
nificant reduction in the number of itemsets compared to
both conventional closed itemset approaches. While min-
ing only for closed itemsets reduces the CRS result set to
roughly 69% and the IPUMS result set to roughly 76% of
its initial size, the temporally closed itemset approach leads
to reduction of 36% and 24%, respectively. This means,
for the CRS data the set of temporally closed itemsets is by
a factor of 1.7 smaller than the set of strictly closed item-
sets. For this IPUMS data this factor is with 3.1 even better.
Figure 4 and Figure 5 show how the factor ε is distributed
which maps the history of a non-temporally closed itemset
to the smallest temporally closed itemset derivable from it.
As we may expect from the results in Table 1 the range of ε
is spread over a large range. The bar on the very right side in
each histogram rougly indicates the number of itemsets that
would have been discarded by a closed itemset approach.
Because temporally closed itemsets are also closed itemsets
the experimental results show that by exploiting temporal
redundancies the set of closed itemsets can be further re-
duced by a very large extent, hence making it easier for a
user to browse the discovered itemsets.

9. Conclusion and Future Research

Frequent itemset discovery suffers from the problem that
typically a vast number of itemsets are generated. The large
number makes them not only difficult to examine by a user
but also influence the efficiency of subsequent processing
steps. In the recent past, there have been considerable re-
search efforts to exploit the time dimension in order to find
novel ways to solve the relevance problem, no research had
been done on how to utilize the temporal dimension in order
to produce a reduced set of itemsets.

In this paper we introduced temporally closed itemsets
as an extension to closed itemsets. In contrast to closed
itemsets our approach also takes redundancies into account
that are only visible if itemsets are observed over time. As
the central theorem of this paper we proved that temporally
closed itemsets are a subset of closed itemsets. Based on
temporally closed itemsets it is possible to derive the shape
of all other itemsets. Our experiments not only demon-
strated that temporally closed itemsets do exists in real-
world data. We also showed that the set of temporally
closed itemsets can be smaller than the set of closed item-
sets by a factor of two to three and by orders of magnitude
smaller than the set of initially discovered itemsets.

As extensions to our work on temporally closed itemsets
as presented in this paper, we are currently looking into the
following two problems. First of all, we are working on
a time and memory efficient algorithm to discover frequent
temporally closed itemsets directly from data. Secondly, we
aim to use temporally closed itemsets to generate a reduced
set of association rules. Based on our current experiments
it can be expected that they are significantly less in number
than the results produced by other rule mining approaches.
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