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Abstract

Fuzzy control is characterized by the treatment of vague con-
trol rules. For the serious application of such rule systems it
is of major importance to clarify their semantic background.
How essential these considerations are, is reflected by the fact
that the way engineers use fuzzy control does often not co-
incide with the widespread understanding of control rules as
logical statements or implications. Therefore fuzzy control
should rather be seen as an interpolation of a partially spec-
ified control function in a vague environment, reflecting the
indistinguishability of measurements or control values.

In this paper we outline that the concept of equality relations
is a natural way to represent such vague environments. Fur-
thermore we show how our resulting view of fuzzy control has
successfully been applied to develop a well-founded (general-
ized) fuzzy controller for idle speed regulation of a car engine.

1 Introduction

In the field of approximate reasoning and knowledge based
systems we are often concerned with the problem of handling
linguistic expert rules of the form

(+) Re: if€y is AV and ... and €, is A™
thennpis B, r=1,...,k,

where AY) and B, denote linguistic terms that are interpreted
by fuzzy sets ,uff) : Xy —[0,1] and v : Y — [0,1] wr.t.
underlying domains X;, X,,..., X, and Y, respectively, on
which the variables £;,...,£q, and 1 can take their values (3].
The aim of this paper is to present one approach to a well-
founded semantics for such approximate rules.

In order to achieve an acceptable interpretation, the following
three problems have to be solved:

e What is the meaning of the involved fuzzy sets ?

« Based on this meaning and consistent with it, what is the
semantics of a single approximate rule?

e Finally, what is the semantics of the whole system of
rules?

In Section 2 we will answer these questions from a physical
point of view, where fuzzy sets {vague objects) are used, con-
sidered as representatives of crisp data in a vague environ-
ment, and formalized by the concept of an equality relation
[5, 7.
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As one result it turns out that the well-known (heuristic) in-
ference mechanism of Maemdeni’s fuzzy controller [12] can be
justified based on the corresponding mathematical structures.
Furthermore the methodology introduced in this paper has
been applied successfully in a case study of idle speed control
for the Volkswagen Golf GTI. Section 3 cutlines the underly-
ing control problem, the realization of the controller, and its
comparison with the existing production-line controller.

2 Fuzzy Rules and Equality Rela-
tions

Qur first approach to understand the meaning of approximate
rules of the type (#) is based on vhe idea that each fuzzy
set which corresponds to a linguistic term is a representative
of a concrete crisp value. But according to an existing vague
environment, the handling of this crisp value is only admissible
in the more vague form of a fuzzy set. In order to elucidate
these concepts, we will motivate and explain the notion of a
vague environment.

Vague Environments

Let us consider the following situation, which appears in many '
problems of physics and engineering. We are interested in a
variable £ that can take values on the real interval [a,b]. If
we want to measure £, we have to take into account that our,
measuring instrument is not able to provide a value for £ with
100% exactness. Trying to adjust £ instead of measuring it,
we have to bear in mind that our instruments will never reg-
ulate € in the way that we obtain exactly the desired value.
The reasons for this imprecision might be found in the inap-
propriateness of our instruments. But in many cases also the
experiment or the environment make it impossible to get ex-
act values. For example, it does not make sense to speak of a
room temperature of 21.0236507 °C. In this case it is even not
of any interest to reach arbitrary exactness.

We summarize that we have to deal with enforced inexactness
(according to inappropriate instruments or a ‘bad’ envir_n-
ment) and with intended inexactness (f.e. room temperaturz).
Both types of inexactness involve the {ollowing problem.

In order to represent the inexactness often a (small) number
€ > 0 is chosen. Then two values z,z” € [a,b] are identified
if |z — z'| < € holds. Mathematically, we can represent this
notion by a relation R, C {a,b] x [a, 4] containing all pairs
(z, =) satisfying |z — '] < ¢, 1.e.

R = {(r,i’) €la,b] x [a,8] | |z — 2’| < €}

This relation is reflexive (z is identified with z; |z—z’| < ¢) and
symmetric (if £ is identified with z’, then z’ is also identified
with z; |z - z'] < € = {2/ — z| < ¢), but not transii:-c.
The non-transitivity of this relation means that, although we
identify z with z’ (i.e. jz — z'| < €) and z' with " (t.e. |z’ -



2| < €), we might not necessarily identify z with z” (i.e.
|z — z"| > € is possible). This situation is also known as the
Poincaré paradox [4].

The consequence of the non-transitivity is, that we cannot
introduce equivalence classes induced by the relatica R.. A
discretization of vhe set [a,b] corresponds to choosing values
z1,....Zn € [a,b] as representatives. Values z ¢ {z1,...,%n}
are identified with one of the values z,, ..., z,, gen=raliy with
the value z; for which |z — z;| < ¢ holds. The class of values =
identified with the representative z; strongly depends on the
choice of z; according to the non-transitivity of P.. In this
sense we can say that the relation R, contains more informa-
tion than the discretization {zi,...,za} with its classes.

In many cases we are not only considering one acceptavility
oound ¢ for the decision if two values should be identified
or not. We are now interested in a set of such acceptabiliy
bounds. Without loss of generality, it is sufficient to consider
all 0 < ¢ < 1. (Instead of, {.e., looking at all 0 < ¢ < 2 one
could measure the distance |z — z'| between two points z and
z' by |z ~ |, leading again to 0 < ¢ < 1.) This means, we
have to take into account all relations R, for 0 < e < 1.

We obviously have R, C R, for e < ¢'.

Therefore it is sufficient to know the value

1l

R(z,z"} sup {€€{0,1] { (z,2") € Rc}‘

min {|z -z}, 1}

]

in order to decide whether (z,z’) € R, holds or not.

The greater R(z,z') is, the less we can identify z and z'. If
we consider the value E(z,z')=1—- R(z,z')=1— min{l:r -
z’|, l}, we can say that, the greater E(z,z’) is, the more
and z’ can be identified.

Of course, at first sight it seems artificially complicated to
consider £(z.z') instead of 1 —min {]z -z'], 1} directly. But
this holds only for the simple case where we measure the dis-
tance between two values r and z’ by the standard metric
|z — z’|. In many applications, the standard metric is not
an appropriate measure. For example, in the case of room
temperatures, it does not make a big difference whether the
temperature is 32°C or 36°C (Both temperatures are much
too high). But the difference between 21°C and 25°C 1s
really considerable. For this problem.we would need a non-
linear transformation of the set of possible room temperatures
in order to reflect the notion, that we do not distinguish well
between high temperatures, but we do make finer differences
between temperatures in the normal range. In such cases it
might be more convenient to consider E{z, z) instead of try-
ing to find a corresponding non-linear transformation.
Mathematically, if X is the set of possible values, then E is a
mapping from X x X to the unit interval. It is easy to verify
that E should satisfy the following axioms

(i) E(z,z)=1
(i) E(z,z')= E{(z',z) (symmetry)

(iii) E(z.z')+ E(z',z") - 1< E(z,2")
‘ (transitivity)

(total existence)

Such a mapping is called an equality relation on X [5, 7] or
similarity relation {14]. Indeed, in the above sense E(z,z')
can be interpreted as the degree to which = and z’ can be
identified or to which = and z’ are equal.

From a logical viewpoint condition (i) corresponds the axiom
r = z, whereas (ii) can be interpreted as r = =’ — ' = .

The logical axiom for transitivity sz = Az’ = =" — z = 2"

Valuating this formula using the t-norm T, where T(a,8) =
max{a + 8 — 1,0}, translates it to the condition (iii). The
use of the t-norm associated with Lukasiewicz Logic in this
context is induced by the triangnlar inequality for metrics. Of
course, in general in connection with equality relations also
other t-norms are considered.

If we consider a crisp value z € X in 3 vague environment
(i.e. there is an equality relation E on X}, it is reasonable
to ‘add’ to zy all those values z' € X which are equal to
some degree to zo, in the samc way as we add all elements
equivalent to zo when we consider equivalence classes. This
mzans, instead of the set {z,}, we should consider the fuzzy

set g, 1 X — {0,1], pzo(z) = E{zo,z). In this sense, such

a fuzzy set can be understood as the representation of a crisp
valve in a vague environment.

These considerations lead us to the idea that fuzzy sets might
be interpreted in the above sersc, even if the equality relation
E is not explicitly given or if it is unknown.

The problem of deriving an appropriate equality relation from
given fuzzy sets is solved in [6, 10, 11}, and for reasons of
simplicity, we wiil not consider this problem in this paper. But
we emphasize the fact that the results of the above mentioned
papers indicate the opportunity of interpreting fuzzy sets as
crisp values in vague environments in many cases.

Note that the mapping £ i5 sometimes aiso called indis-
tinguishability operator [15, 8]. But the <ciresponding ap-
proaches do not specify concrete semantics, such as we have
provided in this section, where equality relations are consid-
ered as representations of indistinguishabilities w.r.t. a set of
tolerance bounds. These bounds are directly connected with
the physical environment.

Another class of approaches to the interpretation of approx-
imate rules is based on deduction in logical systems as, for
example, possibilistic logic [3] or fuzzy lcgic as described in
[13]. These approaches are designed to handle logical formu-
lae, to which numerical weights are assigued. In opposition
to equality relations, where a concrete universe of discourse
is given, logical calculi are more appropriate for coping with
axtomatic descriptions of situations.

Interpretation of a Single Rule

We now consider the problem of deriving information about
the value for n given £; = z1,...,$s = za and one rule of the
form (*).

We assume that there are eguality relations £y,..., E,, F
on Xy,....Xn.Y, respectivel. such that the fuzzy sets in-
volved in the rule can be seen as representatives of crisp val-
ues in the corresponding vague environments. The equality
relations might be given exnlicitly or they can be derived
as described in {6, 10]. We 2lso assume. that the fuzzy set
,ugr)(i =1,...,n), z!7, corresponding to the linguistic term
Aﬁ"‘B,@”, respectively, represents the value z&r),y(’) in the
respective vague environment (herefore, we consider fuzzy
sets as induced concepts, i.e. as representations of crisp val-
ues in vague environment characterized by an equality rela-
tion. Thus we assume a very restrictive, but clear interpreta-
tion of {fuzzy sets. We do not claim that this interpretation is
the only one. However, it seems to be weil suited for control
applications.

The Relational Interpretation
In order to apply the ruie we consider the product space
X = X; x - x Xp x Y. Since the sets V... .. X, Y can
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be viewed as vague environments according to the equality re-
lations, X shouid also be considered as a vague environment,
i.e. we have to define an equality relation £ on this set. The
coarsest (greatest) equality relation E on X, satisfying

sup E((Il, < Tn, y) (21, ’I:.,!I')) =
{x).0 TS LT S RTIN Lw,¥)e
(=} =i, ’:+l ..... EL W EX XX X XXy X X N XYL
" Ei(z.,zl) (fori=1,...,n)
and
sup E((z1,.-,Zn.¥). (21, 70, 7")) =
[T RP L),
(x': ..... x:_)ex,x---vzx..
Fly,y")
1s given by
Bl(zi, o za,9), (21,120 y')) =
min{E;(zl,z',),....E,,(z:,.,x:,),F(y,y')}.
E reflects the independence of the equality relations
Ey,...,E, and F. For a more detailed justification of the

definition of E see [9, 10].

The rule R(") represents the point (x(;),.. z ,y"))€/\'
Since we are given fixed inputs zx,... z,, we obtain for
each y € Y the degree to which (z g ¥} and

soeaTn

{21,-..,%a,y) can be identified. This degree can be computed
by .
E( (r) (f (r) ) —

(Il y o Y ) (2’1,... In,y) =
min{pﬁ’)m),...,un)(:n) 1))

Thus we obtain a fuzzy set on Y of possible values for n. This
fuzzy set is equal to the fuzzy set, derived from one rule of the
Mamdani~Controller [12].

The Functional Interpretation

For this interpretation, we assume that the R(") correspond
to the notion that we have to map the input (z(lr , zf,r))
to the output-value y{"). We also assume that if (:1,. - Zn)
and (z},...,z.) can be identified to a degree of at least «,

then the corresponding output-values y and y’ should also

be identified to a degree of at least ¢. In this case, for the
application of the rule R("™), we would have to check, to which

degree (zy,...,z,) and (.‘L‘Y), .. .,zs,r)) can be identified, i.e.
we have to compute the value
min {u{”(z1), ..., s{(za)}.

As possible output-values we obtain the crisp set

() {y ¥ | uy) > min {60(@1), (200} }

Interpretation of a Set of Rules

After we have given two possible interpretations for the appli-
cation of a single rule, we now explain how the results of a set
of rules have to be combined.

In the relational interpretation, each rule R(") leads to an
output-fuzzy set that reflects the idea that we identify the
input (zy,...,z,) with the tuple (z} () rs,r))A We therefore

.....

have to consnder the union of all these fuzzy sets, i.e. the fuzzy
set on Y which yields the .nembership degree

(;)(Ix), ..

ma.x { min {

r=1

Bl )(:,,) KO} }

for y € Y. This is exactly the output—fuzzy set of the
Mamdani-Controller [12].

In the functional interpretation, each rule R(") enforces a re-

- striction in the form of the set {x#) for the possible values for
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y. Since all these restrictions have to be satisfied, we obtain
the intersection of the sets (*x) as the set of possible values
for y.

3 Application to Idle Speed Control

In the previous section we introduced a theoretical and seman-
tic approach to fuzzy control. It has to be checked, whether
the basic concept of equality relations and the presented re-
sults are appropriate for solving existing control problems of
industrial practice.

For this reason in cooperation between Volkswagen AG, Wolfs-
burg, Germany, and the Department of Computer Science of
the University of Braunschweig a idle speed controller for the
Volkswagen 2000cc 116hp petrol engine of the Golf GTI model
has been deveioped.

The controller is based on a cognitive analysis of the underly-
ing motor process and consists of a Mamdani-Controller which -
is embedded in a so-called “meta-controller”. It turns out
that the resulting fuzzy controller has a better performance
than the corresponding production-line controller. Therefore
our methods will also be applied to idle speed control prob-
lems ‘with respect to other petrol engines of Volkswagen AG
and Audi AG, respectively.

Note that from an engineer’s point of view fuzzy control refers
to interpolation of a partially specified control function in a
vague environment. For this reason the whole application is
focused on the functional interpretation of control rules as
discussed 1n Section 2 In practice it turned out that engineers
are thoroughly in the position to define appropriate equality
relations based on available information about existing quanti-
tative dependencies between the cons)dered input and output
variables.

A Short Introduction to Idle Speed Control

Nowadays the intended performance standards of petrol en-
gines make it necessary to decrease the consumption of petrol
and the emission of toxic agents. One specific problem in this
field is the reduction of idle speed, since the enlarged appli-
cation of comfort facilities like, for example, air-conditioning
systems or power steerings, require a flexible control mecha-
nism, as the exalted load leads to heavy drops of revolution.

Generally there are two different kinds of idle speed control:

o Ignition Adjustment

+ Charge Control
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Figure 1: Principle of idle speed control

In order to be most effective, our fuzzy controller only realizes
charge control. The ignition adjustment of the production-
line car is retained.

The principle of charge control is shown in Figure 1. The air-
valve resides in a bypass to the throttle, and varies, if required,
the bypass cross-section.

On the existing vehicle a sudden drop of revolution at idling
may have various reasons {1, 2]

— switching—on electrical units, which load the engine
through the three-phase generator

— switching-on the air-conditioning system, which
load the engine through the air-conditioning com-
pressor (including the additional cooling fan)

— activation of power steering, where the hydraulic cir-
cuit pump loads the engine

The task of charge control is to compensate the drop of revo-
lution by enlarging the cross—section. In this case the number
or revolutions should get the target rotation speed as correct
and as fast as possible.

One of the main problems is the low torque in range of low
revolutions, because in extreme situations, like simultaneous
switching—on of the air-conditioning system and the power
steering, very strong and rapidly occurring drops of revolution
are the consequences.

The above-mentioned lacking quality of engine speed infor-
mation refers to the imprecision of the available signal of the
Hall-pick-up in the ignition distributor (1.e. differences in the
number of revolutions up to = 30 rpm result from manufac-
turing tolerances, gear clearances, and torsional vibrations).
Another problem arises from the plurality of additional
stochastic processes in the system. As an example, bad com-
bustions or deviations of ignition and fuel-injection have to
be mentioned, because in this case a charge controller should
not react on a differing engine speed in order to prevent an
oscillation of the idle speed.

However, the delay of the automatic control system turns out
to be the hardest problem, since it passes about ten sequences
of ignition after an alteration of charge, until the engine de-
livers the scaled torque (essential reason: term of airflow).

Design of the Cognitive Controller

The developed fuzzy controller presents an integrated con-
ception of two controllers to solve the problems mentioned in
Section 3 A Mamdani-Controller (MFC) forms the basic unit,
which is embedded in a so-called *meta—controller’ (Figure 2).
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Figure 2: Construction of the fuzzy «ontroller

The deviation dDRZ of the engine speed to the target rotation
speed and the gradient gDRZ of the deviation are the two
inputs of the MFC. The change of current dLFRSTK for ihe
air-valve is the output.

The MFC was realized by application of equality ielations,
based on the modelling of vague environments that follows
the principle of indistinguishability, as discussed in Section 2.
The fuzzy sets induced by the equality relation Egpgrz with
their associated linguistic terms like nb or ps, which are needed
only for the denomination, are shown in Figure 3. Anal-
ogously, we denote the corresponding associated linguistic
terms for gDRZ and dLFRSTR, respectively.

The 49 tuples specified by the expert, and the three equality
relations Eaprz, E4yprz and EqprprsTr constitute the rule
base shown in Figure 4.

For defuzzification, we used the center-of-area method. Fig-
ure 5 illustrates the induced look-up table of the MFC.

nb nm ns az i ps pm pb
1. i
5 ?
| | \3
-40 7432 234 7 40 x(9DRZ)

Figure 3: : The fﬁzzy partition of gDRZ
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PB|Ns|NsS{NM{NB|{NB|{NB|NB

Figure 4: Rulebase

The fuzzy controller is implemented on a 386-processor lap-
top (program language: C). The data communication takes
place through the control unit of the engine management sys-
tem. The inputs are the number of revolutions DRZ0_LO,
the target rotation speed LFRSDRZ, and the state flag dKLI-
MA of the air-conditioning system (on/off). The value of
current LFRSTREI for the air-valve serves as cutput. The



meta—controller consists of three components: data modifica-

tion, state detection (including MFC activation), and secu-

rity stage. The data modification computes averages from the
original data and supplies evaluatable engine speed informa-
tion. If required, the state detection activates the MFC, and

_ a new control value is determined using the modified and the
original data. A security stage behind the MFC takes care of
the control limitation. At the.time of switching on the air-
conditioning system, the MFC is not activated, and a fixed
crisp output value has to be chosen to get the fastest control
action.

dLFRSTR

CZRR N
20 -,‘-}_‘-:‘3-.-\ o
15 )
10
5
0
-5 S
AN D
-10 NN v,
NIRRT
15 R RN "'.l
.20 VX ‘\.
\.\“\\. X etals
-70 ORI -40
e
dDRZ ‘{4 gDRZ
70 40
Figure 5: Look-up table of the MFC
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Figure 9: Air-cond. syst. with cogn.
control

Comparison to the Production-Line Con-
troller .
Figures 6 to 9 show a comparison of the cognitive controller
and the production-line controller with respect to two kinds
of load. First we have activated the power steering about six
seconds, and then, for about three seconds, we have switched
on the air—conditioning system. A measuring point complies
to one sequence of ignition (i.e. one stroke or the time for
180°%angle of crank shaft). LFRSTRAUS and LFRSTREI
illustrate in each case the time—dependent output of the
production-line controller and the cognitive controller, respec-
tively. Figures 6 and 7 show the situation during the activation
of power steering. Figures 8 and 9 depict the performance by
switching on the air—conditioning system. While switching an
additional load, the over— and under—vibration of engine speed
is not controllable physically because of the delay.

In comparison to the production-line controller, the developed
cognitive controller possesses a quiet smooth control charac-
teristic. In addition, we recognized a fast and precise reach of
the target rotation speed and also a great stability on slowly
increasing load. Moreover, there are no vibrations after ex-
treme alterations of load. The cognitive approach allows a

- good state parting, a simple voting treatment, and a short

period of development.
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