A Fuzzy Neural Network Learning Fuzzy Control Rules and

Membership Functions by Fuzzy Error Backpropagation

Detlef Nauck

Rudolf Kruse

Department of Computer Science

Technical University of Braunschweig

W-3300 Braunschweig, Germany

Abstract— In this paper we present a new kind
of neural network architecture designed for con-
trol tasks, which we call fuzzy neural network.
The structure of the network can be interpreted in
terms of a fuzzy controller. It has a three-layered
architecture and uses fuzzy sets as its weights. The
fuzzy error backpropagation algorithm, a special
learning algorithm inspired by the standard BP-
procedure for multilayer neural networks, is able
to learn the fuzzy sets. The extended version that
is presented here is also able to learn fuzzy-if-then
rules by reducing the number of nodes in the hid-
den layer of the network. The network does not
learn from examples, but by evaluating a special
fuzzy error measure.

I. INTRODUCTION

Neural Networks and Fuzzy Controllers are both capable
of controlling nonlinear dynamical systems. The disad-
vantage of neural control is that it is not obvious how the
network solves the respective control task. It is not pos-
sible in general to retrieve any kind of structural knowl-
edge from the network that could be formulated e.g. in
some kind of rules, or to use prior knowledge to reduce
the learning time. The network has to learn from scratch,
and might have to do so again if substantial parameters
of the dynamical system change for some reason.

The use of a fuzzy controller on the other hand allows to
interpret the control behavior due to the explicit linguistic
rules the controller consists of. The design problems of
a fuzzy controller are the choice of appropriate fuzzy if-
then-rules, and membership functions, and the tuning of
both in order to improve the performance of the fuzzy
controller. The disadvantage of this method is the lack
of suitable learning algorithms retaining the semantics of
the controller.

We propose to overcome these disadvantages by using
a special feed-forward neural network architecture with
fuzzy sets as its weights. The weights are membership
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functions and represent the linguistic values of the input
variables and the output variables, respectively. Due to
its structure the network can be interpreted as a fuzzy
controller, where the nodes of the hidden layer represent
fuzzy if-then-rules. The input layer consists of nodes for
the variables describing the state of the dynamical system,
and the output layer contains the node(s) representing the
control action to drive the system towards a desired state.
A learning algorithm utilizing a fuzzy error measure, val-
uating the output of the fuzzy neural network, is able to
learn fuzzy rules by deleting hidden nodes, and to adapt
the membership functions. We call this learning procedure
fuzzy error backpropagation (FEBP).

We refrained from just inserting neural networks in
fuzzy controllers to tune some weights scaling the rules
or the fuzzy sets [3], or from using neural networks to
identify fuzzy rules to build a fuzzy controller [9]. We use
instead a new architecture which we call fuzzy neural net-
work (FNN) that is able to learn both fuzzy if-then-rules
and fuzzy sets by changing its structure and its weights.
The network converges to a state that can be easily inter-
preted and has clear semantics. Our model is able to learn,
to use prior knowledge, and has no black box behavior.
Its structure can be interpreted in terms of membership
functions and fuzzy-if-then rules. The learning procedure
Is an extension to our fuzzy error propagation algorithm
for neural fuzzy controllers [6, 7]. A learning procedure
that uses examples is considered in [2].

II. THE Fuzzy NEURAL NETWORK

We consider a dynamical system S that can be con-
trolled by one variable C' and whose state can be de-
scribed by n variables Xy, ..., X,,. For each variable we
consider measurements in a subinterval H = [hy, hy] of
the real line. The imprecision is modelled by mappings
p : [hi, ho] — [0,1] in the sense of membership functions
with the obvious interpretation as representations of lin-
guistic values.

The control action that drives the system S to a desired
state is described by the well-known concept of fuzzy if-
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then rules [10] where a conjunction of input variables as-
sociated with their respective linguistic values determines
a linguistic value associated with the output variable. All
rules are evaluated in parallel, and their outputs are com-
bined to a fuzzy set which has to be defuzzified to receive
the crisp output value.

As the T-norm operator for the conjunction of the input
values usually the min-operator is used, and as the S-
norm for aggregating the output values of the rules the
max-operator is used, as it is done by the well known
Zadeh-Mamdani procedure [10, 5].

For the evaluation of fuzzy rules the defuzzification-
operation constitutes a problem that cannot be neglected.
It is not obvious which crisp value is best suited to char-
acterize the output fuzzy set of the rule system. In most
of the fuzzy control environments the center-of-gravity
method is used [4]. Using this method, it is difficult to
determine the individual part that each rule contributes
to the final output value.

To overcome this problem we use Tsukamoto’s mono-
tonic membership functions, where the defuzzification is
reduced to an application of the inverse function [1]. Such
a membership function p is characterized by two points
a,b with p(a) = 0 and p(b) =1, and it is defined as

—ax— & if(z €la,b]Aa <)
p(x) = V (z € [b,a] Aa>b)
0 otherwise

The crisp value z belonging to the membership value y
can be easily calculated by

e=p"y)=-yla—b)+a

with y € [0,1].
In Fig. 1 a simple fuzzy neural network is shown that
incorporates the two fuzzy-if-then rules

R;: IF X, is PL AND X, is PL THEN C'is PL,
Ro: IF X; is PL AND X, is PM THEN (' is PM,

where PL and PM represent the usual linguistic expres-
sions positive large and positive medium. The circles rep-
resent the nodes, and the squares represent the fuzzy
weights.

The network consists of three layers. The first layer,
the input layer, contains one node for each input variable.
The states of these nodes reflect the crisp values of the
variables. The intermediate layer is called the rule layer.
It contains one node for each fuzzy-if-then rule. The state
of each rule node represents the membership value ob-
tained by the conjunction of the rule antecedents. The
crisp input values are sent over the respective connections
to the rule nodes. Each connection has a fuzzy weight
attached to it that i1s combined with the input value. In

our case these weights are membership functions y;x, rep-
resenting the linguistic values of the input variables. The
combination of the weight p;z, and the crisp input value
¢; simply results in the membership value p;g,(2;). If an
input variable takes part with the same linguistic value
in more than one rule antecedent, it is connected to the
respective rule nodes by connections that share a common
weight (see TableI and Fig. 1, weight p211). The sharing of
the fuzzy weights is an important aspect of the architec-
ture. We want to interpret the behavior of the network,
and so we need identical membership functions for identi-
cal linguistic values.

The rule nodes R; collect all incoming membership val-
ues and use a T-norm (e.g. min-operation) to calculate the
conjunction of their antecedents. This is done by all rule
nodes in parallel, and then they pass their states on to the
output layer that contains one or more nodes describing
the control action for the next time step. The weights at-
tached to the connections between the intermediate and
the output layer are membership functions vy representing
the linguistic values of the rule consequents. The calcu-
lations that are carried out on the connections represent
a fuzzy implication (e.g. Mamdani’s minimum operation
as fuzzy implication) resulting in fuzzy sets vp describ-
ing the output of each rule R;. Nodes representing rules
with an identical linguistic output value share a common

Fig.1: A fuzzy neural network with two fuzzy rules
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TABLE I:
TyPES oF CONNECTIONS IN A Fuzzy NEURAL NETWORK

membership
value
A connection from an input vari-
crisp input able to three different rule nodes,
H which use the same linguistic
value of this input variable in
their antecedents.
membership
values
(conjunctions) modified A connection from three rule
fuzzy sets nodes with the same linguistic
(implications) .
value for their consequences to
V. |——————= | an output node. The output
node receives three different sig-
nals from this connection.

weight on their connection to the respective output node.
In this case more than one value travels on the connection
to the output node (see Table I).

Each output node collects the incoming fuzzy sets, ag-
gregates them, and determines a crisp output value with
the help of an appropriate defuzzification procedure D.

The learning algorithm for the fuzzy neural network
needs to know the part each rule contributes to the final
output value, and therefore the use of monotonic member-
ship functions in the consequence parts of the fuzzy rules
is required. This results in Tsukamoto’s method for fuzzy
reasoning [4] where the aggregation and the defuzzifica-
tion are carried out in one step. The crisp output value ¢
(activation of the output node) is calculated by

i -1
z_:l’"j”R,-(rj)
c=1=__

m
2T
ji=1

where m is the number of rules, and r; is the result in-
ferred from rule R;. This is a simplified reasoning method
based on Mamdani’s minimum operation rule that is usu-
ally used in fuzzy controllers [4].

If the fuzzy rules are known, the learning algorithm has
just to tune the membership functions. This situation is
described in [6]. In the case that the rules are unknown,
the learning algorithm has to be extended, so they can be
learned, too.

To build a fuzzy neural network we have to identify
the input and output variables. Then for each variable a
number of initial non-optimal fuzzy sets have to be cho-

sen describing such linguistic terms as positive large, neg-
ative small, etc. If we assume that the fuzzy if-then-rules
that are necessary to control the dynamical system are not
known, we have to create a network, that represents every
possible rule that can be created from the number of fuzzy
sets attributed to the variables. If we have a MISO (mul-
tiple input single output) system with two input variables
and five linguistic variables for each variable we have to
create a fuzzy neural network with 2 input nodes, 1 output
node, and 53 = 125 intermediate rule nodes. An example
of our fuzzy neural network where three fuzzy sets are at-
tributed to each variable is depicted in Fig. 2. During the
learning procedure the network has to remove those rule
nodes that are not needed or that are counterproductive.

III. Fuzzy ERROR BACKPROPAGATION AND RULE
LEARNING

Our goal is to tune the membership functions of the fuzzy
neural network by a learning algorithm. Because it is usu-
ally not possible to calculate the optimal control action
by other means parallel to the network so we can derive
the error directly, we have to obtain a measure that ade-
quately describes the state of the plant under considera-
tion.

The optimal state of the plant can be described by a
vector of state variable values. That means, the plant
has reached the desired state if all of its state variables
have reached their value defined by this vector. But usu-
ally we are content with the current state if the variables
have roughly taken these values. And so it is natural to
define the goodness of the current state by a membership
function from which we can derive a fuzzy error that char-
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acterizes the performance of the fuzzy neural network.
Consider a system with n state variables X,,..., X,.
We define the fuzzy-goodness GG; as

.. .,,u;?jimal(xn)} ,

where the membership functions uoxpfima' have to be de-
fined according to the requirements of the plant under
consideration.

In addition of a near optimal state we also consider
states as good, where the incorrect values of the state
variables compensate each other in a way, that the plant
is driven towards its optimal state. We define the fuzzy-
goodness Gy as

Gy =

: optimal
G = mln{li;?1 (21),

min {ucompensatel(

7

T ) KU

)

where the membership functions p¢o™mPem5%%€5 again have
to be defined according to the requirements of the plant.
There may be more than one p®°™Pms4t¢ and they may
depend on two or more of the state variables.

The overall fuzzy-goodness is defined as

G= g(GhG?),

compensate
P k(xla

where the operation g has to be specified according to the
actual application. In some cases a min-operation may be

crisp output

shared fuzzy
weights
(conclusions)

27 nodes
R h (rules)
shared fuzzy
L] i weights

(antecedents)

crisp input

Fig.2: The initial state of a fuzzy neural network

appropriate, and in other cases it may be more adequate
to choose just one of the two goodness measures, perhaps
depending on the sign of the current values of the state
variables, e.g. we may want to use G if all variables are
positive or negative and Gy if they are both positive and
negative.

The fuzzy-error of the fuzzy neural network is defined
as

E=1-(,

and it is needed to tune the membership functions.

In addition to this error measure we need an additional
measure that helps to determine the rule nodes that have
to be deleted from the network. We have to define when
we conceive a transition between two states as desirable.
By this we can derive a fuzzy transition error By to punish
those rule nodes that contribute to overshooting or those
nodes that apply a force that is too small to drive the
system to a desired state.

The fuzzy transition error is defined as

E;=1—min{n(Az)li € {1,...,n}},

where Az; is the change in variable X;, and 7; is a mem-
bership function giving a fuzzy representation of the de-
sired change for the respective variable.

We are now able to define our learning algorithm. For
each rule node R; the value r; of the conjunction of its
antecedent and the value cg; of its consequence is known.
Because we are using monotonic membership functions,
cr; is already crisp. After the control action has been
determined in the output node, applied to the plant, and
its new state is known, we propagate the fuzzy-error F,
the fuzzy transition error E; and the current values of
the state variables back through the network. The out-
put node can determine for each rule node R; that has
contributed to the control output, i.e. 7; # 0, whether its
conclusion would drive the system to a better or to a worse
state. For the first case the rule node has to be made more
sensitive and has to produce a conclusion that increases
the current control action, i.e. makes it more positive or
negative respectively. For the second case the opposite
action has to be taken.

The learning procedure is divided in three phases:

Phase I: During phase I all rule nodes that have produced
a counterproductive result, i.e. a negative value where a
positive value is required and vice versa, are deleted in-
stantly. Furthermore each rule node maintains a counter
that is decremented each time the rule node does not fire,
i.e. r; = 0. In the other case, i.e. r; > 0, the counter 18
reset to a maximum value.

Phase II: At the beginning of phase II there are no
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rule nodes left that have identical antecedents and con-
sequences that produce output values of different direc-
tions. To obtain a sound rule base, from each group of
rules with identical antecedents only one rule node must
remain. During this phase the counters are evaluated and
each time a counter reaches 0 the respective rule node is
deleted. Furthermore each rule node now maintains an in-
dividual error value that accumulates the fuzzy transition
error. If the rule produced a counterproductive result, E,
is added unscaled, and if not, E; is weighted by the nor-
malized difference between the rule output value and the
control output value of the whole network. At the end
of this phase from each group of rule nodes with identi-
cal antecedents, only the node with the least error value
remains, all other rule nodes are deleted. This leaves the
network with a minimal set of rules needed to control the
plant under consideration.

Phase III: During phase III the performance of the fuzzy
neural network is enhanced by tuning the membership
functions. Consider that we are using Tsukamoto’s mono-
tonic membership functions. Each membership function
can be characterized by a pair (a,b) such that p(e) = 0
and p(b) = 1 hold. A rule is made more sensitive by in-
creasing the difference between these two values in each
of its antecedents. That is done by keeping the value of
b and changing a. That means the membership functions
are keeping their positions determined by their b-values,
and changing a such that their ranges determined by |b—a]
are made wider. To make a rule less sensitive the ranges
have to be made smaller. In addition to the changes in its
antecedents, for firing rule the membership function of its
conclusion have to be changed. If a rule has produced a
good control value, this value is made better by decreasing
the difference |b — a|, and a bad control value is made less
worse by increasing |b — al.

The output node C has to know the direction of the
optimal control value copt. The value itself is unknown,
of course, but from the observation of the current state it
can be determined if e.g. a positive or a negative force had
to be applied, i.e. sgn(copt) is known. The output node
calculates an individual rule error er; for each rule node
R; according to

e =4 T E if sgn(ch) = sgn(copt ),
g rj-E  if sgn(cg;) # sgn(copt)-
The changes in the membership functions v; of the con-
nections from the intermediate layer to the output layer
are determined as follows:

a}clew - {

where o is a learning factor and rule node R; is connected
through v, to C. If a weight v is shared, it is changed

Ay — 0 - €R; - ]ak — bk‘ if (ak < bk),
ar + 0 -eg; - |ap — bg| otherwise,

by the output node as often as rule nodes are connected
to it through this weight.

The rule errors are now propagated back to the interme-
diate layer, where the rule nodes change the membership
functions of their antecedents:

new __
Aip, = {

where input node X is connected to R; through px,, k; €
{1,...,5;}, si is the number of linguistic values of X;. If a
weight g, is shared, it is changed by as much rule nodes
as X; is connected to through this weight.

At the end of the learning process we can interpret the
structure of the network. The remaining rule nodes iden-
tify the fuzzy if-then-rules that are necessary to control the
dynamical system under consideration. The fuzzy weights
represent the membership functions that suitably describe
the linguistic values of the input and output variables.

if (aik, < bix,),
otherwise,

ik, + 0 - er; - |aik, — big,]
@ik, — 0 - €Rr; - |aik; — bk,

IV. SIMULATION RESULTS

The fuzzy neural network has been simulated and applied
to the control of an inverted pendulum. Although it is too
early to present final results of the performance, and more
tests have to be run, first experiments gave promising re-
sults. For the inverted pendulum a simplified version was
used that is described by the differential equation

.1
(m +sin? 6)6 + 592 sin(26) — (m + 1)sinf = —F cos 8.

The movement of the rod is simulated by a Runge-Kutta
procedure with a timestepwidth of 0.1.

There are eight linguistic values attributed to each of
the three variables. This are the common values PL, PM,
PS, PZ, NZ, NS, NM, NL. Because we use monotonic
membership functions that are not symmetric, we model
the value Zero as Positive Zero and Negative Zero. This
leads to an initial state of the network with 8 -8 .8 =512
possible rules. Several tests have been run under these

TABLE II:

THE RULE BASE AFTER THE LEARNING PROCESS
| |[NL|NM[NS]NZ]PZ|PS]PM]PL]
NL || NZ | NZ | NZ | NZ

NM || NZ | NZ | NZ | NZ
NS || NZ | NZ | NZ | NZ

NZ || NZ | NM | NM | NS

PZ PS | PM | PM | PZ
PS PM | PZ | PZ | PZ
PM PZ | PZ | PZ | PZ
PL PZ | PZ | PZ | PZ
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TABLE III:

THE MEMBERSHIP FUNCTIONS BEFORE AND
AFTER THE LEARNING PROCESS

angle angle velocity force

b d d b d d b d d
NL || -45 45 439]-40 4.0 36|(-30 30 15.0
NM ||-30 30 30.0(|-25 25 22]-20 20 14.9
NS ||-15 15 149|-1.0 10 1.0{-10 10 8.0
NZ 0 -45 -149| 0.0 -40 -1.0 0 -30 -8.0
PZ 0 45 145 0.0 4.0 0.9 0 30 8.0
PS 15 -15 -149) 1.0 -1.0 -09| 10 -10 -84
PM || 30 -30 -299| 25 -25 -211] 20 -20 -15.0
PL 45 -45 -43.91% 40 -40 -361{ 30 -30 -15.0

conditions. One result is shown in the Tables II and III, REFERENCES

where the final fuzzy rule base (remaining hidden nodes)
and the initial and final state of the membership func-
tions can be found. In Table III d denotes the difference
b—a. As we stated above a monotonic membership func-
tion is adapted by changing its parameter a to a’ during
the learning process.

The system was able to balance the pendulum with this
configuration. In our experiments the learning process
succeeded in about 90% of all cases resulting in different
rule bases and fuzzy sets depending on internal parameters
describing the error measures.

V. CONCLUSIONS

The presented fuzzy neural network is able to learn fuzzy-
if-then rules by deleting nodes of its intermediate layer,
and it learns membership functions that are used as its
weights by fuzzy error backpropagation. The structure of
the network can be easily interpreted in terms of a fuzzy
controller.

The network has not to learn from scratch as it is pre-
sented here, but knowledge in the form of fuzzy if-then
rules can be coded into the system. The learning proce-
dure does not change this structural knowledge. It tunes
the membership functions in an obvious way, and the se-
mantics of the rules are not blurred by any semantically
suspicious factors or weights attached to the rules [6, 7].
If some parameters of the controlled plant change, the
fuzzy neural network can be easily changed, e.g. by adding
additional rule nodes, and by restarting the the learning
process to change the membership functions, if necessary.

Berenji has presented a similar approach [1] combining
two neural networks into a system that behaves like a
fuzzy controller. A comparison between Berenji’s and our
approach is presented in [8].
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