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Abstract

The concept of movable evidence masses that flow
from supersets to subsets as specified by experts
represents a suitable framework for reasoning
under uncertainty. The mass flow is controlled by
specialization matrices. New evidence is integrated
into the frame of discernment by conditioning or
revision (Dempster’s rule of conditioning), for
which special specialization matrices exist. Even
some aspects of non-monotonic reasoning can be
represented by certain specialization matrices.

1 INTRODUCTION

In this paper we present a suitable theoretical model for
handling uncertainty, which is an important problem in
the range of knowledge based systems. Uncertainty corre-
sponds to the valuation of some datum, reflecting the faith
or doubt in the respective source. So we have to deal with
statements being not just simply true or false but with a
validity which is a matter of degree. This is caused by the
fact that the actual state of the world is not completely
determined and we have to rely on a human experts sub-
jective preferences among different possibilities.

Throughout this paper we will restrict ourselves to the
treatment of subjective valuations of evidence which re-
quires the use of belief functions measuring the credibility
of information although our concept of specialization is
very general and can be applied to probabilities as well as
possibility measures.

Let £2, a finite nonempty set be our frame of discernment.
We assume 2 to be a product space Q¥ £ Q, x..x Q_
with m characteristics X’ € Q,,..., X™ e Q, where Q,
(i = 1,.., m) is a finite nonempty set. The partial know-
ledge is encoded through evidence masses attached t
subsets of 2. Specialization matrices quantify the flow of

masses, the concept we prefer to Dempster’s rule of con-
ditioning (Shafer 1976).

A mass distribution is considered here as the condensed
representation of a (possibly unknown) random set, for
other semantics see (Kruse, Schwecke and Heinsohn
1991).

Section 2 provides an overview about mass distributions
and belief functions. In section 3 we present our main
concept: the flow of evidence masses given by a speciali-
zation matrix (Kruse and Schwecke 1990). In section 4
we consider specialization matrices which can be applied
to conditioning and revision, and discuss certain aspects
of non-monotonic reasoning.

2 REPRESENTING KNOWLEDGE WITH
MASS DISTRIBUTIONS

Belief functions aim to model a human decision maker’s
subjective valuation of evidence. For this purpose we
consider an inaccessible, finite probability space & of sen-
sors or experts and a sample space £ containing the pos-
sible events. The sensors or experts choose subsets of
which they believe to contain the actual state of the
world. This means we consider multivalued mappings
defined on a probability space, here called random sets
(Matheron 1975). With respect to the probability distribu-
tion on the sensor space © one unit of ‘‘belief’” which we
conceive. as movable ‘‘evidence mass’’ is distributed
among the elements of £, attributing a greater amount o
the more likely elements (the elements chosen by the
most or most reliable sensors or experts). That means a
mass distribution m (basic probability assignment (Shafer
1976)) is specified, which is a mapping from 2° to the
unit intervall.

Definition 1:  Each function m : 2% — [0, 1] is called
a mass distribution, whenever
(i) m(d) =0,



m(A) = 1

i ¥
AAC Q
hold.

The mass mfA) is understood to be the measure of “‘be-
lief’’ that is commiited exactly to A and corresponds to
the support given o0 A but not to any strict subset of A.
Those sets A with m(A) > 0 are called focal elements. To
obtain the fotal measure of belief committed t0 some set
A, we have to sum up the quantities m(B) for all B ¢ A.

Definition 2:  If m is a mass distribution on 2°, then
the function Bel, : 2% — [0, 1],
Bel (4) £ Y m(B),

B:BCcA

is called the belief function induced by m.

Bel, (A) represents the degree to which the actual evidence
supports A, i.e. it measures the credibility of A. We are
also able to calculate the degree to which the evidence
fails to refute A, i.e. the degree to which A remains plau-
sible:

PL_(A) £ 1 - Bel (A)
=1- Y m®B = Y m®B).
B:BC A B:AN B2@
We have

Bel (A) £ P1,(A), and

Bel, (A) + Bel (A) < 1
forall A ¢ Q.

To measure the evidence mass that can freely move to
any element or subset of A we use the concept of commo-
nality functions. Let m be a mass distribution defined on
22, The function

oW E Y m®

B:Ac B

measures the evidence mass which is attached to supersets
of A and can move to A or to any of its subsets. Obvio-
usly Q,(A) = 0 indicates that there is no mass ‘‘above”’
A, ie. A cannot receive more evidence mass from its
supersets.

To represent fotal ignorance about the domain under
consideration, we set m(€2) = 1 and m(A) = 0 for all A #
Q) and we obtain Bel (Q) = 1 and Bel,(A) =0 forall A
# Q. This belief function is called the vacuous belief
function. On the other hand setting m({x;}) = p, x,€ Q=
{xp..., x,} and m(A) = O for all non-elementary sets A
leads to a Bayesian belief function or, in terms of the
probability theory, a discrete probability distribution. We
can imagine ‘‘belief’’ as partially movable evidence mass,
where m(A) is that amount of mass which can, in the light
of new information, move to every subset of A but not to
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sets with elements outside of A.

The concepts of conditioning and revision are based on
this idea. When we obtain the information that ‘‘the

truth’’ is within some set E with certainty, all elemenis of E
become impossible. The two concepts differ in their treat-
ments of sets which have a nonempty intersection with E.
Conditioning a mass distribution m defined on €2 with
respect to a set £ ¢ Q means to neglect the evidence
mass which is inconsistent with the new information. All
masses not attached to subsets of E are omitted and the
remaining masses are normalized.

Definition 3:  Let m be a mass distribution on 2% and
E be a subset of Q with Bel (E) > 0. The mass distribu-
tion
m(A)
m(|E): 2% = [0, 1;; m(A|E) £ { Bel (B)
0 otherwise
is called conditional’ mass distribution.

ifAcCE

The concept of revision is directly based on the idea of
partially movable evidence mass. All masses attached to
subsets A of Q float to the sets A N E after revision with
respect to the set E.

Definition 4 Let m be a mass distribution on 2% and
E be a subset of Q with Bel (E) > 0. The mass distribu-
tion

m,: 2% = [0, 1];

Y mD)

D:DNE=A

LB

0 otherwise

mE(A)g ifA+J

is called revised® mass distribution.

Contrary to conditioning revision does not omit the evi-
dence mass attached to sets lying just partially in E. Revi-
sing m on E yields the belief function

Bel (4 U B) - Bel,(B)

Bel (A) = cf
) 1 - Bel (B)
and the plausibility function
Pl (A N B)
Pl A) = o, ACQ
: PL_(B)

Remembering our idea of experts or sensors choosing

! This concept is also called strong conditioning (Dubois and
Prade 1986a) or geometric conditioning.

2 This concept is aiso know as Dempster’s rule of conditioning
(Shafer 1976).
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subsets of £ the differences between the two concepts
conditioning and revision can be made clear quite easily.
Conditioning is a very strict treatment of experts whose
valuations are inconsistent with the new information E.
These experts are now considered as totally unreliable and
the evidence mass distributed due to their staiements has
to be redistributed under the subsets A < E chosen by the
reliable experts.

Revision induces a more optimistic treatment of the ex-
perts. The idea is that the valuations which are only parti-
ally inconsistent with the new information (A ¢ E but
A N E # ) are now treated as if the expert meant A N E
and not A. The expert just was not able to express this
situation because he had not enough information. So he is
still considered to be reliable and the evidence mass atta-
ched 10 A flows completely to the intersection with E.
Only those experts whose valuations are totally inconsi-
stent with E are treated as in the case of conditioning,.

3 THE CONCEPT OF SPECIALIZATION

In order to compare different frames of discernment we
introduce the notion of a refinement (Shafer 1976).

Definition 5: A set 0 is a refinement of Q if there is

a mapping 1 : 2° = 2% such that
@ fl({x}) # O for all x € ),
Al
\

W nal)) =@, irxex,
A

{n

Gy 11
Gip U
Gy N =U { fl({x}) [xe A }

[T is called a refinement mapping. If such a mapping
exists, the sets £ and £’ are compatible, where the refi-
ned space {2’ is able to carry more information than its
quotient space 2. In order to decide for each ® € Q
whether information concerning some set A’ ¢ 0’ may be
of relevance for the valuation of ® or not we define the
mapping T1.

3
x})[xe Q}=Q’and

Definition 6:

1T : 2% — 2% is the respective refinement mapping. The
mapping

Let £’ be a refinement of & where

m: 2% - 29, T1I(4% g{me Q | fl({m})ﬂA’;t@}

is called the outer reduction induced by T1.

TI{(A’) contains those ® € €2 which have one or more

elements @ e T1({®}) within A’. Note that IT essentially
is a projection that attaches to each element @ €  that

element ® with ©* € T1({o}). The projection of a mass
distribution m” defined on 2% can be obtained by
I(m’) : 2% - [0,1]; TmHA) ¢ F miAh.
é(z%’)iz:\

If there is a mass distribution m’ defined on 2% and a
projection IT(m’) of m’ on 2%, then m’ is a refinement of
TI(m’). The formulation of a mass distribution m on {J in
terms of the refined space €2’ is defined by

fim) : 2% - [0,1];

0 otherwise

and is denoted as the vacuous extension of m. From the
definition it is obvious, that each vacuous exiension of a
mass distribution is its refinement. In conirast to the pro-
jection which generally means a loss of information, the
vacuous extension preserves the information borne by the
original mass distribution.

The main issue of this chapter is to define the concept of
specialization. The intuitive idea of a specialization is the
projection of a revision.

Definition 7:  Let s, 1 be two mass distributions defined

on 2% We call s a specialization of t (s  t), if and only

if there are two mass distributions s* and t’ on a refine-

ment ) of Q where 5° and t’ are refinements of s and ¢,

respectively, and if there is an event E* < Q’ such that
$'(B’) = t;.(B’)

holds for each B’ < Q.

This definition tells us that we will get all specializations
of a given mass distribution on £ by considering all pos-
sible revisions in a refined space {)’. Relating now the
concept of specialization with Dempster’s rule of combi-
nation we can see, that specialization is bound to the idea
of updating and not to aggregation. Dempstes’s rule com-
bines two mass distributions (basic probability assign-
ments) which are defined on the same sample space but
based on different bodies of evidence. This is a concept of
aggregating different expert views.

The change from a mass distribution m to a specialization
of m is a different concept, and it is due to an updating of
the refinement of m in a refinement of the sample space
. We use revision as the updating rule which causes a
change of data in the refined space. Those observations A
of the experts which are not completely covered by the
new evidence E are changed to become A M E instead
without loosing any evidence mass.



In addition to the definition above the following theorem
gives two equivalent characterizations of the specialization
relationship. The first one allows to check easily whether
§ = ¢ is valid or not. The second one reflects our intuitive
idea of floating evidence masses describing the flow of
the mass #(A) onto the subsets of A.

Theorem 1: Let s, t be two mass distributions on £, The
following three statements are equivalent:

@ s,

(i) VAcQ:(QW=0=0A =0)

(iii) For every A < K there are functions
h, : 2% — [0,1] such that

d) Y hB) = iA),

B:BC Q

b) h(B) # 0 = B C A, for all B C Q, and
¥y n®
¢) s(By = 242 forall @ #B c Q.
1- E k(D)
AAC O

h,(B) specifies that amount of ‘‘belief”” comitted to A that
in the course of refining m to m’ floats to the set B. Con-
dition (iii.a) of Theorem 1 assures that no evidence mass
is lost, condition (iii.b) requires that the masses flow only
to subsets. Those masses floating to the empty set repre-
sent partial coniradictions, thus have to be neglected and
the remaining portions have to be normalized as pointed
out in condition (iii.c).

The normalization in condition (iii.c) is due to our treat-
ment of experts whose observations are totally inconsi-
stent with the new evidence (see sect. 2), They are now
considered to be unreliable and so the evidence mass
bound to their observations has to be redistributed under
the consistent observations. Note that we also use a closed
world assumption. Smets (Smets 1988) considers an open
world assumption and allows the empty set to bear evi-
dence mass. In this case there is no normalization of the
remaining masses because the evidence mass on the emp-
ty set is supposed to indicate the belief that the actual
state of the world cannot be represented in the chosen
frame of discernment. Our perception of the empty set is
a different one. The evidence mass that flows to the emp-
ty set indicates from our point of view the inconsistency
of expert observations at the beginning of the updating
process and is not characterizing the current situation. So
a normalization has to be made because we don’t want to
weaken the belief in the consistent observations. Using an
open world assumption means that an expert cannot be
wrong in spite of inconsistencies due to new information.
From our point of view inconsistency arises because of
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errors made by some of the experts.

A similar concept to the specialization relation is the idea
of a containment of ‘‘bodies of evidence’ introduced in
(Yager 1986). A body of evidence is a pair (F,m), where
m is a mass distribution defined on £ and F contains the
focal elements of m. A definition of ‘‘strong inclusion”’
can be found in (Dubois and Prade 1986b):

(F,m) < (F',m’) if and only if

() VBe F,3A'e F,BcA'

@) VA eF,3Be FBcA

(iti) There exist W,,, € [0,1], for all B, A’ such that
Wou >0 =B A, Y W, =1, and

A'B
VBe F,mB) = 3 W,
ABc A
VA eF,mA)= ¥ W, .
BBc A

Specialization is more general than strong inclusion. We
have (F,m) < (F’, m’) = m = m’ but not vice versa. The
Ws,s are identical to the values h,(B), but there is no
normalization. From considering the definition above and
our idea of floating evidence masses, it is obvious that in
the case of strong inclusion there is no mass flow to the
empty set and that no mass is lost & W, = 1), 50 a nor-
malization is not necessary.

4 SPECIALIZATION MATRICES

In order to compute a specialization of a mass distribution
m we characterize m as a vector and the respective specia-
lization-relation by a matrix V : 2% x 2% — [0, 1] and
obtain the more specific mass distribution m” by ‘‘multi-
plying’’ the vector m with the matrix V. In the following
we use square brackets to indicate that we conceive the
respective functions as vectors or matrices.

Definition 8:  Let Q be the frame of discernment.
(i) A matrix V:2° x 2% > [0, 1] is called a speciali-
zation matrix, if and only if

(@ E VIABl =1 forall A cQ

B:Bc Q@

() B¢ A= V[AB] =0.
(ii) Let V be a specialization matrix and let m be a mass
distribution on 2°. If

¢t Y Y mA] - VIABI >0

A:A:c Q@ B.B=OD

then the mass distribution m © V is defined by
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L. ml[A] * VIAB] ifB# @
(m Q@ V)[B] £4° AEQ
0 otherwise
Jor all B ¢ Q.

In contrast to the mass flow functions ,, A c £2, specia-
lization matrices do not assign absolute portions but rela-
tive amounts of mass.

Theorem 2: Let m and m’ be two mass distributions
defined on2°. We have

meme IV.m=meV,
where V is a specialization matrix.

The processes of conditioning and revision, i.e. the change
from a mass distribution m to the conditional mass dis-
tribution m(-|E) or to the revised mass distribution m;
respectively, are special cases of specialization and can
therefore be described by special specialization matrices.

Recall that conditioning with respect to the set £ < Q
means that those masses bound to sets A ¢ E remain
where they are, while those bound to sets A ¢ E have to
be neglected.

Definition 9:  Letr Q be the frame of discernment and
let E < Q be a ncn-empty set. The conditional mairix
CE) : 2°x 2° = [0, 1] is defined by

11 ifAcEand B =@
CEMABI =31 ifAcEandB =A
0 otherwise

We obtain m(-|E) = m @ C(E).

Revision with respect to the set E means that the masses
attached to sets A # & float to A N E. Masses attached to
sets with A N E = & have to be neglected since they
represent (partial) contradictions of the information E and
the mass distribution m.

Definition 10: Ler Q be the frame of discernment and
let E — Q be a non-empty set. The revision matrix R(E) :
2% % 2% — [0, 1] is defined by

1 fB=ANE
0 otherwise

R(E)A,B] £ {

We obtain m; = m © R(E).

The use of specialization matrices leads to a new inter-
esting concept. Some specialization matrix V represents a
piece of ‘‘structural knowledge’’. Multiplying a mass
distribution m with V means to split the evidence masses
in the light of knowledge encoded by V. A rather strict
requirement is that the ‘‘application’” of V to a more
specific mass distribution m’ should yield a more specific
result. ‘

Definition 11:  Let V : 2% x 2% — [0, 1] be a speciali-

zation matrix. V is called monotonic, if and only if
sct = soeVeteV

holds for all mass distribution s, t : 2% — [0, 1].

The next theorem provides a simple possibility to check
whether a given specidlization matrix is monotonic or not.
It relies on a test, if there is no such set A whose mass
flow is completely ‘‘outrun’’ by one of its supersets mass
flow.

Theorem 3:  Let V : 2% x 22 — [0, 1] be a speciali-
zation matrix. V is monotonic, if and only if for all sets A,
B < Q with VIA,B] > 0, and for all C o A there is a set
D 2 B with VIC,D] > 0.

Theorem 4: Let 5.t be two mass distributions defined
on 2% and s © 1. Then there is always a specialization
matrix V : 2% x 22 — [0, 1] and V is monotonic, such
that s=toe V.

We want to show in the sequel that also aspects of non-
monotonic reasoning can be handled with specialization
matrices. From Theorem 3 it is clear that a specialization
matrix V is non-monotonic, if there exist sets Bc A c C
such that there is a mass flow from A t©0 B and no mass
flow from C to supersets of B.

First we want to compare non-monotonic specialization
matrices with Yager’s non-monotonic compatibility rela-
tions (Yager 1988). Yager defines a (type II) compatibility
relation on two sets X and Y as a relation R on 2% x ¥
such that for each T € 2¥ there exists at least one y € Y
such that (T,y) € R, where 2* is the power set of X minus
the empty set. R(T,y) implies that (x,y), for all x € T, are
possible states of the world.

Let W = {yl R(T,y)} be the subset of Y that contains the
y € Y which are related to any x € 7. W is called the
“‘associated set’” in Y of 7, denoted T — W. A compatibi-
lity relation R is called “‘irregular’’ if there exists a triple
T, > W, T,>Wand T, » W, with T; = T, U T, such
that W; is strictly contained in W, U W,, W, c W, U W,.
Yager has proven that every irregular (type II) compati-
bility relation is noa-montonic. That means if we have
two mass distributions s, ¢ and we have s < ¢ (strong
inclusion) this does not imply s R < f o R,

Because the concept of specialization matrices is more
general than compatibility relations, a non-monotonic
compatibility relation R can be easily expressed with a
non-monotonic specialization matrix. Let § be a subset of

XxV let Dy = {x [3y ny) e S, R(x,y)}, and let
WD: be the associated set of Dg. A (type II) compatibility

relation R can be expressed with a specialization matrix
Ve 257 x 27 with



Lif s =5N{Dgx W,}

V.[5,8] =
R[5:57 0, otherwise

If the relation R is non-monotonic, the same is true for
the specialization matrix V. If we express any (type II)
compatibility relation R with a specialization matrix Vj,
and V; is non-monotonic, the same holds for R.

Now let us take a look at the well known example of the
bird Tweety who is not able to fly because he is a pen-
guin. Let O = Q, x Q, be our frame of discernemt where
Q, = {birds, fish} and Q, = {fly, not fly}. Now the rule
““All birds fly”’ can be expressed by a specialization
matrix V with

VIAB] & 1 fB=A - {(birds, not ﬂy)}

0 otherwise

The rule ‘‘Penguins don’t fly’’ can only be represented in
a refined space, e.2. £ = ;" x Q,, where Q;” = {eagles,
penguins, fish}. In our refined space the two (partially
contradicting) rules ‘‘All birds fly’’ and ‘‘Penguins don’t
fly’’ are expressed by the following specialization matrix
V.

1 if A o leagles, penguins} x {not fly}
=Hand B =A - H,
1 if (penguins, fly) € A and B
=A - {(penguinsﬂy)},
1 if A 2 H and (penguins, fly) ¢ A,
0 otherwise

The two rules force the mass attached to the set C =
{eagles, penguins} x {fly, not fly} to float to the set D =
{eagles, penguins} x {fly} and the masses attached to A
= {penguins} x {fly, not fly} to B = {penguin} x {not
fly}. We have C o A but D 2 B. That means the speciali-
zation matrix V’ is non-monotonic.

V/[AB] £

5 CONCLUSIONS

With the calculus of mass distributions we presented a
suitable theoretical tool for reasoning under uncertainty.
We showed that the flow of evidence masses can be con-
veniently handled by specialization matrices. For the
concepts of conditioning and revision (Dempster’s rule of
conditioning) there exist special specialization matrices.
We also demonstrated that certain aspects of non-monoto-
nic reasoning, especially partially contradicting statements
can be expressed by non-monotonic specialization matri-
ces. In cooperation with Dornier GmbH the method of
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reasoning with mass distributions was implemented on a
TI-Explorer under KEE.

References

D. Dubois, H. Prade (1986a). ‘On the Unicity of Demp-
ster’s Rule of Combination’. Int. J. Intelligent Systems, 1,
133-142.

D. Dubois, H. Prade (1986b). ‘A Set Theoretic View of
Belief Functions’. Int. J. General Systems, 12, 193-226.
F. Klawonn, R. Kruse, E. Schwecke (1990). ‘Belief Func-
tions and Non-monotonic Reasoning’. Proc. of the Ist
DRUMS Workshop on Non-monotonic Reasoning, Mar-
seille, February 1990.

R. Kruse, E. Schwecke (1990). ‘Specialization - A New
Concept for Uncertainty Handling with Belief Functions’,
to appear in: Int. J. General Systems.

R. Kruse, E. Schwecke, J. Heinsohn (1991). Uncertainty
Handling in Knowledge Based Systems: Numerical
Methods, Series Attificial Intelligence, Springer, Heidel-
berg.

G. Matheron (1975). Random Sets and Integral Geometry,
Wiley, New York.

G. Shafer (1976). A Mathematical Theory of Evidence,
Princeton University Press, Princeton.

P. Smets (1988). ‘Belief Functions’. In P. Smets, E.H.
Mamdani, D. Dubois, H. Prade, Non-Standard Logics for
Automated Reasoning, Academic Press, London, 253-286.
R. R. Yager (1986). *The entailment principle for Demp-
ster-Shafer granules’. Int. J. Intelligent Systems, 1,
247-262.

R. R. Yager (1988). "Non-monotonic Compatibility Rela-
tions in the Theory of Evidence’. Int. J. Man-Machine
Studies, 29, 517-537.

187



