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Abstraci—In this paper we consider possibility dis-
tributions as information—compressed representations
of imperfect characterizations of object states. With
the corresponding formalized semantic background,
we investigate how to operate on possibility distribu-
tions and how 4o introduce appropriate uncertainty
measures for this framework. It turns out that the
well-known concept of a possibility measure and an
additional certainty measure, which is not its dual ne-

cessity measure, are justified as reasonable choices.

I. INTRODUCTION

One basic motivation for possibility distributions is
to consider them as imprecise and uncertain descrip-
tions of object states wg of interest. Choosing an
appropriate universe of discourse {2, and stating the
closed world assumption wq € 2, a possibility distri-
bution = : @ — [0,1] for wy may be interpreted in
the way that, for each w € Q, 7(w) quantifies the
possibility of truth of the proposition "w = wy”.

In the last years there have been many publica-
tions on the clarification of the semantics of possibil-
ity degrees. Numerical approaches to be mentioned
are based, for example, on the epistemic interpreta-
tion of fuzzy sets [Zadeh, 1978], the axiomatic view
of a theory of possibility [Dubois and Prade, 1988},
contour functions of consonant belief functions
[Shafer, 1976], one-point-coverages of random sets
[Nguyen, 1978], falling shadows in set-valued statis-
tics [Wang, 1983}, Spohn’s theory of epistemic states
[Spohn, 1990], and possibility theory based on likeli-
hoods [Dubois et al. 1993].

In this paper we prefer to relate the semantic back-
ground of possibility theory to imperfect characteri-
zations I' = (v, Po) of wy, defined as a multivaluated
mapping v : C' — 2% w.r.t. an underlying (normal-
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ized) measure space (C, 2, Pc).

In section II we introduce this view, which,
to some extent, refers to similar considerations that
were suggested, for example, in [Strassen, 1964],
[Dempster, 1968], and [Kampé de Fériet, 1982], but
1t 1s in fact a more general formal and semantic frame-
work for handling imperfect data in knowledge-based
systems [Gebhardt and Kruse, 1993a, Gebhardt and
Kruse, 1993b]. We then investigate possibility func-
tions (non-normalized possibility distributions) as
information—-compressed representations mp of imper-
fect characterizations I, and briefly consider how to
operate on them in this setting. Among other things
this leads to an alternative justification of the exten-
sion principle [Zadeh, 1975].

In section IIT we focus our interest on the definition
of uncertainty measures that coincide with our view
of possibility functions.

As a result we obtain a new approach to the well-
known notion of a possibility measure [Zadeh, 1978]
as an upper uncertainty measure for possibility the-
ory, whereas a specific certainty measure — which is
not its dual necessity measure — seems to be the ade-
quate choice for the corresponding lower uncertainty
measure. :

II. INFORMATION COMPRESSION VIEW OF
PossiBILITY FUNCTIONS

In this section we introduce possibility functions as
information-compressed representations of imperfect
characterizations of an object state wg € O under
consideration, or, in a more general sense, of a non—
empty set p C € of possible object states, where
Q0 = {wo} occurs as a special case. The starting
point of our investigation is a multivalued mapping
v :C — 2% wrt. an underlying normalized mea-
sure space (C, 9, Pc). The basic idea is to view O
as a set of competing consideration contexts, each of
them chosen to be possibly adequate for an impre-
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cise characterization of {1g. Any context ¢ € C, to
be specified as a proposition in a common algebra of
propositions, delivers its individual imprecise char-
acterization y(c) of Qg. At first glance, C might be
interpreted as a sample space, which means that ex-
actly one context in C' is assumed to be the right
choice for characterizing o, but we do not know
which one. If ¢ € C turns out to be the true context,
then 7(c) is expected to be correct (o C 7v(c)) and
of maximum specificity w.r.t. Qo (no proper subset
of y(c) is guaranteed to satisfy the correctness con-
dition). Restricting ourselves in the following to the
important case of finite context sets, Pc({c}) then
quantifies the probability of truth of context c. On
the other hand, dropping the sample space assump-
tion implies that there is no longer the condition of
having one and only one true context in C for the
characterization of §2p. A typical example of this sit-
uation is given when C is a set of sensors which im-
precisely observe Q. In this case, the interpretation
of P¢ has to be weakened in the sense that Pc({c})
simply reflects an additive correctness weight, to be
carefully chosen based on specificity and reliability
assumptions for context ¢. An imperfect characteri-
zation T = (v, Pc), v : C — 2%, is therefore called
a—correct w.r.t. Qq, iff Pc({c € C|Q Cy(c)}) 2«
where a > 0.

It is obvious that a well-founded and reasonable ap-
plication of this approach requires to clarify the se-
mantics of correctness weights, how to obtain them
in practice, how to consistently operate on imper-
fect characterizations, and how to justify decision
making procedures w.r.t. a—correctness assumptions.
But this is out of the scope of this paper. For
some basic issues on the mentioned topics we refer
to [Gebhardt and Kruse, 1993a], while a more de-
tailed consideration regarding the special problem
of combining evidence in various numerical settings
is presented in [Gebhardt and Kruse, 1993b]. Us-
ing sample spaces of contexts, handling of imperfect
characterizations supports, for example, a compari-
son and alternative justification of concepts that are
known from probabilistic reasoning and Dempster—
Shafer theory. In this paper we drop the sample
space assumption and rather focus on possibility the-
ory, where possibility functions, at least from a pure
data—oriented and knowledge-representation point of
view (i.e.: ignore the exact semantics of the underly-
ing contexts), coincide with one-point—coverages of
random sets [Nguyen, 1978].

Definition 2.1
Let T =(y,Pc),v:C— 2€ be an imperfect char-

acterization. Then,
rp Q- [0, 1],
mro(w) 2 Po({ee C lwer(a)})

is called the induced possibility function of T. Fur-
thermore, let POSS(§2) denote the set of all induced
possibility functions w.r.t. Q. For = € POSS(€),
Repr(m) o {(a,[7]e) | @ € [0,1]} with the a—cuts
o2 fwe | mw) > a), o€ 01 [ro 2 Qs
the identifying set representation of .

Finally, if 71,73 € POSS(Q) and 71 < g, then m; is
called as least as specific as 7a.

Presupposing the a—correctness of I' w.r.t. {lo, note
that [7r]a is the most specific imprecise character-
ization of . For this reason possibility functions
are the appropriate choice for representing our im-
perfect knowledge I' on {2, whenever a—correctness
assumptions are made. In our setting, operating on
possibility functions is then characterized as follows:

Given an operation ¢ : 2% — 2@ and n possi-
i=1

bility functions m; € POSS(£;), where m; = 7,

Fi = (7i7PC;)’ Yot Cz . 2Qia i = 1)”’)”7 Fi be-

ing imperfect characterizations of (inaccessible) non-

empty Qg) C €, and assuming a—correctness of

T; wor.t. Qf)l), calculate the most specific possibility
function 7 € POSS(€?) such that [7]4 is correct w.r.t.
s, ... Q™). In fact, defining ¢[m,.... 7] €
POSS(R) by [¢lrs,. ., alla = @([mla, - [Tala,
o > 0, it turns out that = = ¢[my,...,m], 1ff
6 satisfies a property called sufficiency—preservation

[Gebhardt and Kruse, 1992].

Definition 2.2
7 n ﬂ . . .
Let ¢ : X2% — 2% be an operation on imprecise

i=1
characterizations. ¢ is called sufficiency—preserving,
iff

(a) @ie{l,...o)(A=0) =
¢(A1,..., An) =10
(b) ¢(A1UB1)aAnUBn) =

U{¢(Cl,...,cn) | C; € {4y, Bj},
j=1,...,n

for all A;, B; C Q;, i=1,...,n.

The identity m = ¢[mi,..., 7] reflects a general-
ized form of the extension principle [Zadeh, 1975],
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provable through the semantic background of pos-
sibility functions and the application of sufficiency—
preserving operations (which are, for instance, inter-
section, projection, and cylindrical extension, just
to mention a few of those that are relevant in the
field of possibilistic reasoning systems). In a sim-
ilar way other basic concepts of possibility theory
(e.g.: principle of minimum specificity, projection—
combination mechanism [Dubois and Prade, 1991])
are not just principles, but also provable as theorems
in our framework. More detailed results regarding
the field of possibilistic reasoning are contained in
[Gebhardt and Kruse, 1993c].

IIT. POsSSIBILITY MEASURES AND CERTAINTY
MEASURES

In the previous section we introduced an
information-compression view of possibility func-
tions and discussed how to operate on them with re-
spect to the chosen formal and semantic background.
The aim of this section is to briefly consider aspects
of possibilistic decision making. This means, given
a possibility function = € POSS(2) as an imperfect
characterization of a non-empty set Qo C Q of pos-
sible object states, we are searching for a decision D
such that Q¢ C D is accepted to be true.

Again, we start with the assumption that there are
n (inaccessible) imperfect characterizations T; =
(vi, Pc,), v : Cy — 2% of underlying unknown, non-
empty sets Qf)z) CQ;,1=1,...,n, and induced, ob-
servable possibility functions 7T, such that I'; is a—

. 3
correct w.r.t. Qg)_ Furthermore let ¢ : X?n' — 2

i=1
be an operation on imprecise characterizations. For
any chosen A C Q we then want to calculate

(1) the minimum of all correctness degrees
a such that the correctness of A4 w.r.t.
o, QM) is certain,

(2) the maximum of all correctness degrees
o such that the correctness of A w.r.t.
qﬁ(QgU, ceey Q(On)) remains at least possible.

Based on these correctness presuppositions, (1) in-
duces the most pessimistic, (2) the most optimistic

decision w.r.t. qzﬁ(le), . .,Q(()n)). The following defi-
nition formalizes what we intend to achieve:

Definition 3.1

Let I'; = (vi, Pe,), i - C; — 2% be imperfect char-
n

acterizations, ¢ : X 2% — 99 4y operation on im-

. _i=1
precise characterizations, and A C Q.

(a)

Cert[p; Ty, ... 2

,Fn](A) =

(g

inf{a 1 (\/(Al,.,.,An) ei:>"<lzﬂi)

((w e{l,...,n})
(T a—correct w.r.t. A;) =
(A correct w.r.t. ¢(Ag, .. .,An))}

is called the certainty degree of A w.r.t. ¢ and
(Ty,...,Ty).

(b)
Poss[¢; Ty, ..., T,](A) £
sup {a | (H(Al, L An) € i—%w’)

((Vi €{1,...,n})
(T'y a—correct w.r.t. 4;) A
(A correct w.r.t. ¢(Ay, .. .,An)>}

is defined to be the possibility degree of A w.r.t.
¢ and (Fl, . ,Fn)

The following theorem shows that certainty and pos-
sibility degrees can directly be calculated with the
aid of the induced possibility functions Ty, - AT,
without the need of referring to the underlying im-
perfect characterizations 'y, ..., T,,.

In advance we state a helpful definition of two
uncertainty measures, one of which is the well-
known possibility measure in possibility theory
[Dubois and Prade, 1988}, whereas the other one in-
duces a different concept (certainty measure) and
therefore not occurs as the dual necessity measure.

Definition 3.2
Let m € POSS(9).

(a) Certfr]: 2% —[0,1],

Cert[r](4) % inf{a | 0 £ [1]. C A},
inf % o0,

is called the certainty measure induced by .

(b) Poss[a] : 2% —[0,1],
Poss[r](A) ) sup{a | [7]a N A4 # 0}

is the possibility measure induced by .

If Cert[r](A) = oo, then no correctness assumption
can ensure the correctness of 4 w.r.t. the non-empty
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set g, imperfectly characterized by .

Theorem 3.3

Let Iy = (%, Pc,), vi : Ci — 2%, be imperfect
i3
characterizations, ¢ : X2% — 2% a sufficiency—

i=1
preserving operation, and A C .

(a) Cert[d;T'y,..., [,](4) =
Cel’t[qﬁ[ﬂ'rl, cey Fpn]](14>

(b) Poss[e; Ty, ..., r,](4) <

Poss[[mr,, ..., mr, JJ(A)

U3
(c) If there exists a mapping ¢ : X; — Q such
=1

that &(A;. ..., An) = ¥(A; X - x Ap), then
(b) changes to equality. '

IV. CONCLUDING REMARKS

In spite of the proposed rich semantic background
of possibility functions it has turned out that oper-
ations on them as well as decision making based on
the concepts of a—correctness, certainty and possi-
bility measures, respectively, can be realized by only
considering the induced possibility functions rather
than their underlying imperfect characterizations, as
far as the sufficiency—preservation property of the in-
volved operators is satisfied. The whole investigation
therefore supports a well-founded and effective han-
dling of possibility functions.

For this reason, in cooperation with German
Aerospace, the presented approach to possibility the-
ory has successfully been applied in order to de-
velop a software tool (POSSINFER) for possibilistic
reasoning in multidimensional spaces of hypotheses
[Kruse et al., 1994].
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