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Recently a new type of data source came into the focus of knowledge discovery from
temporal data: interval sequences. In contrast to event sequences, interval sequences con-
tain labeled events with a temporal extension. However, existing algorithms for mining
patterns from interval sequences proved to be far from satisfying our needs. In brief, we
missed an approach that, at the same time, defines support as the number of pattern
instances, allows input data that consists of more than one sequence, implements time
constraints on a pattern instance, and counts multiple instances of a pattern within one
interval sequence. In this paper we propose a new support definition which incorporates
these properties. We also describe FSMSet, an algorithm that employs the new support
definition, and demonstrate its performance on field data from the automotive business.
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1. Introduction

Mining sequences from temporal data is a well known data mining task which gained

much attention in the past, e.g. Refs. 1–5. In all these approaches, the temporal

data is considered to consist of events. Each event has a label and a timestamp. In

the following, we want to focus on temporal data where an event has a temporal

extension. These temporally extended events are called temporal intervals. Each

temporal interval can be described by a triplet (b, e, l) where b and e denote the

beginning and the end of the interval and l its label. For example a sequence of

temporal intervals may describe the medical history of a patient in a hospital or
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Fig. 1. Allen’s interval relations.

the data collected by a flight recorder. Early work by Kam and Fu,6 Hppner,7

Papapetrou et al.8 and Winarko9 employed Allen’s interval relations (Fig. 1) to

find frequent patterns in sequences of temporal intervals.

At Daimler we are interested in analyzing sequences of temporal intervals in

order to further extend the knowledge about our products, to improve customer

satisfaction, or to assist the development process. In the following, we will describe

three application examples from different business areas which can all be repre-

sented by using temporal intervals.

Application one: Quality monitoring of a vehicle fleet. A major task for any

vehicle manufacturer is to monitor the quality of the product in the field. Temporal

data mining can support this task by identifying sequences of faults or combinations

of faults and vehicle configurations which occur more often than others. In this case

one interval sequence describes the history of one vehicle. The configuration of a

vehicle, e.g. whether it is an estate car or a limousine, can be described by temporal

intervals. The build date is the beginning and the current day is the end of such

a temporal interval. Other temporal intervals contain information about garage

stopovers or the installation of additional equipment. The frequent patterns from

a set of interval sequences (i.e. from a vehicle fleet) can be used by an engineer to

introduce product changes if necessary.

Application two: Analytical customer relationship management. Many of our

customers are re-buyers, i.e. they buy a vehicle, keep it for a certain period of

time, sell it, and buy a new vehicle. These customers are especially valuable as

they show a high brand loyalty. Mining the information that we have about these

“good” customers might help us to determine where we have cross- and upselling

potential for other customers. The information about the customers comes from

two sources. The first source is the sale itself. Here the vehicle type (model line,

special option codes, etc.) and sales type (whether leasing or full buy was preferred)

are of particular interest. The second source are questionnaires which were sent to

the customers. The questionnaires range from micro-economic questions (age, size

of household, income, etc.) to customer satisfaction (repair shops, marketing, etc.).

The patterns found are useful to guide marketing or commercial actions.

Application three: Mining CAN-Bus data. The popularity of electronic systems

(navigation, mobile phones, antiblock system, etc.) has led to a steady increase
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in the number of electronic control units (ECU) within a vehicle. Most of the

ECUs are communicating with each other over a CAN-Bus System (Controller

Area Network). During the development of new ECUs or a new model line the

network traffic of the CAN-Bus is particularly analyzed as it contains the status

and all status changes of the connected ECUs. There is also information about

the general driving conditions available (e.g. speed, gear, steering angle, etc.). All

these information can be expressed by using interval sequences. Then one interval

sequence belongs to one trip of one vehicle. Mining these sequences for frequent

patterns helps to identify typical driving situations for the ECUs. In case of an ECU

malfunction temporal patterns can also support electronic diagnostics by pointing

out the conditions and their relations under which the malfunction occurred.

Despite their different application areas, all three examples share a common

problem setting. There are instances (vehicles, customers, trips) which are described

by a sequence of temporal intervals. The mining task is to find all frequent temporal

patterns within these interval sequences.

2. Related Work and Structure

Previous investigations on discovering patterns from interval sequences include

the work of Höppner,7 Kam and Fu,6 Papapetrou et al.,8 and Winarko and

Roddick.9 These approaches can be divided into two different groups.

The main difference between both groups is the definition of support. Höppner

defines the temporal support of a pattern. This definition is closely related to the

frequency in Ref. 3. The temporal support can be interpreted as the probability to

see an instance of the pattern within a time window if the time window is randomly

placed on the interval sequence.

All other approaches count the number of instances for each pattern. The pat-

tern counter is incremented once for each sequence that contains the pattern. If

an interval sequence contains multiple instances of a pattern then these additional

instances will not further increment the counter. This way of counting instances of

a pattern was introduced in Ref. 1 and is also employed in Refs. 2, 12–14.

The rest of this paper is organized as follows. In the next section we provide

formal definitions of the mining task. In Sec. 4 we argue that the commonly used

definitions for the support of temporal patterns are not feasible for our application

examples. Therefore we introduce a new support definition which is motivated by

our experience in the automotive industry, but is directly transferable to other

domains. Next, we propose FSMSet a novel algorithm for finding frequent patterns

which implements the new support definition. The algorithm is evaluated on real

world data from our domain in Sec. 6.

3. Foundations

As mentioned above we represent a temporal interval as a triplet (b, e, l). Next,

temporal intervals are used to define interval sequences.
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Definition 1. (Temporal Interval) Given a set of labels L, we say the triplet

(b, e, l) ∈ R × R × L is a temporal interval, if b ≤ e. The set of all temporal

intervals over L is denoted by I .

Definition 2. (Interval Sequence) Given a sequence of temporal intervals, we say

(b1, e1, l1), (b2, e2, l2), . . . , (bn, en, ln) with (bi, ei, li) ∈ I is an interval sequence, if

∀(bi, ei, li), (bj , ej , lj) ∈ I, i 6= j : bi ≤ bj ∧ ei ≥ bj ⇒ li 6= lj (1)

and

∀(bi, ei, li), (bj , ej , lj) ∈ I, i < j :

(bi < bj) ∨ (bi = bj ∧ ei < ej) ∨ (bi = bj ∧ ei = ej ∧ li < lj)
(2)

hold. A given set of interval sequences is denoted by S.

Equation (1) above is referred to as the maximality assumption.7 The maximal-

ity assumption guarantees that each temporal interval A is maximal, in the sense

that there is no other temporal interval in the sequence sharing a time with A and

carrying the same label. Equation (2) requires that an interval sequence has to be

ordered by the begin (primary), end (secondary) and label (tertiary, lexicographi-

cally) of its temporal intervals.

Without temporal extension there are only two possible relations. One event

is before (or after as the inverse relation) the other or they coincide. Due to the

temporal extension of temporal intervals the possible relations between two intervals

become more complex. There are 7 possible relations (respectively 13 including

inverse relations). These interval relations have been described by Allen in Ref. 15

and are depicted in Fig. 1. Each relation of Fig. 1 is a temporal pattern on its

own that consists of two temporal intervals. Patterns with more than two temporal

intervals are straightforward. One just needs to know which interval relation exists

between each pair of labels. Using the set of Allen’s interval relations I, a temporal

pattern is defined by:

Definition 3. (Temporal Pattern) A pair P = (s, R), where s : (1, . . . , n) → L

and R ∈ In×n, n ∈ N, is called a “temporal pattern of size n”.

Figure 2(a) shows an example of an interval sequence. The corresponding temporal

pattern is given in Fig. 2(b). The temporal pattern in Fig. 2(b) is represented by

using a table. While the table directly corresponds to R ∈ In×n in Definition 3 the

function s : (1, . . . , n) → L is given by the order of the column headers.

(a) A

B

A

1 5 10 time

(b) A B A

A e o b

B io e m

A a im e

Fig. 2. (a) Example of an Interval Sequence: (1,4,A), (3,7,B), (7,10,A). (b) Example of a Temporal
Pattern (e stands for equals, o for overlaps, b for before, m for meets, io for is-overlapped-by, etc.)
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Note that a temporal pattern needs not necessarily be valid in the sense that

it must be possible to construct an interval sequence for which the pattern holds

true. On other hand, if a temporal pattern holds true for an interval sequence we

consider this sequence as an instance of the pattern.

Definition 4. (Instance) A temporal pattern P = (s, R) holds true for an in-

terval sequence S = (bi, ei, li)1≤i≤n, if ∀i, j : s(i) = li ∧ s(j) = lj ∧ R[i, j] =

ir([bi, ei], [bj , ej ]) with function ir returning the relation between two given inter-

vals. We say that the interval sequence S is an instance of temporal pattern P . We

say that an interval sequence S ′ contains an instance of P if S ⊆ S ′, i.e. S is a

subsequence of S′.

Obviously a temporal pattern can only be valid if its labels have the same order as

their corresponding temporal intervals have in an instance of the pattern.

The mining task is to find all temporal patterns in a given set of interval se-

quences which satisfy a user specified minimum support threshold. Note that this

mining task is closely related to frequent itemset mining.16–19

4. A New Support Definition

After having conducted extensive experiments with the algorithms of Höppner and

Papapetrou et al. we came to the conclusion that contemporary algorithms do not

meet our needs. The problem originates from a gap between the support definitions

of temporal patterns in Refs. 6, 8, 9 or 7 and the demands of our application.

On one hand, Höppner’s algorithm handles only a single interval sequence us-

ing temporal support as support definition. Despite the fact that we had multiple

sequences, we found it hard to interpret the support of the frequent patterns. The

temporal support gives the probability of seeing an instance of the pattern in a ran-

domly placed time window. In general, this probability is not related to the number

of instances of the pattern. It could either be a few instances that are visible for a

long time or a lot of instances that are only shortly visible in the time window that

lead to the same temporal support. Yet the accurate number of pattern instances

is indispensable for generating knowledge in our domain.

On the other hand, the algorithms of Papapetrou et al.,8 Kam and Fu,6 and

Winarko and Roddick9 only count one instance of a pattern within the same in-

terval sequence. Multiple instances in an interval sequence are neglected. In our

applications typically several instances of a pattern can occur within one interval

sequence.

In addition we missed time constraints on a pattern instance as one instance

should not be arbitrarily long.

Consider the pattern C before D in the example of Fig. 3(a). As the interval

sequence contains an instance of the pattern, the support of Papapetrou et al., Kam

and Fu, and Winarko and Roddick is 1. Using a time window of size 3, Höppner will

calculate an absolute support of 3 (a duration of 2 for the first occurrence and 1 for
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A B C D

A e e c c

B e e c c

C d d e b

D d d a e

Fig. 3. (a) Example of an Interval Sequence. (b) Example of a Temporal Pattern (e is the
abbreviation for equals, c for contains, etc.)

the second).a For our applications we would like to see an support of 2 as C before

D occurs twice in the data. In general, we think that counting pattern occurrences

is the only feasible support definition when mining the repair history of vehicles or

CAN-Bus data. A domain expert has to review all resulting patterns before any

further actions can take place. Obviously the most important information for the

domain expert is how often a certain pattern occurred in the data.

Summing up, for our needs and comparable applications neither of the previous

approaches turned out to be satisfying. Thus we developed a new support definition

which:

(1) counts the number of pattern instances,

(2) handles multiple instances of a pattern within one interval sequence,

(3) and allows time constraints on a pattern instance.

In Ref. 3, Mannila et al. introduced minimal occurrences as a support definition

for patterns in a single sequence of events. We extend the approach of minimal

occurrences to meet the demands of temporal intervals and Allen’s interval relations.

Definition 5. (Minimal Occurrence) For a given interval sequence S a time

interval (time window) [b, e] is called a minimal occurrence of the k-Pattern

P (k ≥ 2), if

(1) the time interval [b, e] of S contains an instance of P, and

(2) there is no proper subinterval [b′, e′] of [b, e] which also contains an instance

of P.

For a given interval sequence S a time interval [b, e] is called a minimal occurrence

of the 1-Pattern P, if

(1) the temporal interval (b, e, l) is contained in S, and

(2) l is the Label in P.

The definition above contains a special case for temporal patterns of size 1, i.e.

P contains only one label. Then every temporal interval (b, e, l) with b < e leads to

aFor Höppner’s temporal support the absolute support must be divided by the sum of the sequence
length (10) and the window width (3). Hence the temporal support in the example is 3

10+3
.
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an infinite number of minimal occurrences.b Therefore the minimal occurrences of

P are [b, e] for each temporal interval (b, e, l) and l is the label of P .

Minimal occurrences also provide an easy way to introduce time constraints on

a pattern instance. Suppose a pattern instance is only valid if it occurs within a

certain period of time, then we just need to count those minimal occurrences whose

lengths do not exceed the time limit.

After we introduced minimal occurrences in our application, we realized that

the support definition is still not sufficient. There is a subset of temporal patterns

whose supports should be calculated in a different way. Figure 3(a) gives an example

of such a temporal pattern (solid lines). The minimal occurrence is [1, 11]. In any

smaller time window, the relation equals between the temporal intervals A and B

is not visible. Thus if an interval sequence contains a second C before D during the

temporal intervals A and B (dashed lines in Fig. 3(a)), it will not be counted as it

produces the same minimal occurrence.

This example is important to us because in the quality monitoring application

the temporal intervals C and D might describe garage stopovers for a car with A

and B specifying its vehicle configuration. So we want to count multiple instances

of temporal patterns (here C before D) for different combinations of configurations.

Hence, in the example above, we have to count the minimal occurrences of the

subpatternc C before D given that the subpattern is contained in temporal intervals

A and B.

As a result, we have to identify all temporal patterns where a subpattern is

decisive for the support calculation. In these patterns exists a subpattern which is

contained in all other temporal intervals of the temporal pattern. We can decide

whether a given temporal pattern P contains such a subpattern by transforming

the problem into graph theory based on the upper triangular matrix of its relation

table. We start by creating an empty graph. For each label of the temporal pattern

we insert a vertex into the graph. Next we create an edge for each relation in

the upper triangular matrix of the relation table which is not contains between the

corresponding vertices in the graph. If the resulting graph is unconnected then there

is a subpattern which is contained in all other temporal intervals of the pattern.

This subpattern corresponds to one of the connected subgraphs.

We call a temporal pattern connected if its graph is connected. Otherwise we call

the temporal pattern unconnected. In contrast to Ref. 3 we define the support of

a connected pattern P as its total number of minimal occurrences in all sequences

of S. If P is unconnected the support is given by the total number of minimal

occurrences of its subpattern.

bIn this case each time window [x, x] with x ∈ R and b ≤ x ≤ e would be a minimal occurrence.
cA subpattern can easily be obtained by removing one or more labels and their corresponding
rows and columns from the superpattern’s relation table.
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5. New Algorithm: FSMSet

A pattern is considered to be frequent if its support is above a user defined support

threshold (≥ MinSupp). As in existing approaches, the main idea is to generate all

frequent temporal patterns by applying the Apriori scheme of candidate generation

and support evaluation. This approach requires that each subpattern of a frequent

temporal pattern be frequent. Unfortunately the extension of minimal occurrences

to temporal intervals destroys this downward closure property. The problem arises

if a temporal interval is used as the same part of a pattern for multiple instances.

Consider, e.g., the interval sequence (1,11,A), (2,3,C), (7,8,C) (see Fig. 3(a)). The

two minimal occurrences of the pattern A contains C are [2, 3] and [7, 8] but there

is only one minimal occurrence of A [1, 11]. Here A is used twice as the same part of

the pattern. Hence, the downward closure property is not guaranteed for minimal

occurrences.

A closer investigation shows that contains is the only relation for which the

property does not hold. Consider the pattern A overlaps B. The downward closure

property can only fail if A overlaps two or more Bs. This is impossible as these

Bs would have to share a time interval which is prohibited by the maximality

assumption (Equation (1)). The same argumentation holds for meets, is-finished-

by, is-started-by, equals and their inverse relations. In case of A before B there can

be several Bs after the A but the definition of minimal occurrences allows only to

count the first B.

Obviously the downward closure property only fails for unconnected temporal

patterns. Our approach to solve this problem is by treating connected and uncon-

nected temporal patterns differently.

5.1. Candidate generation

Following the scheme of Apriori,17 our algorithm consists of two main steps: gener-

ation of candidate sets and support evaluation of these candidates. These two steps

are alternately repeated until no more candidates are generated. Apriori starts with

the frequent 1-patterns and then successively derives all k-candidates from the set

of all frequent (k-1)-patterns.

In general this generation and test scheme exploits the downward closure prop-

erty of support in two ways:

(a) Generating the set of all (k+1)-candidates by joining all pairs of frequent k-

patterns that share a common (k-1)-pattern as their first part ensures that we

obtain a superset of the frequent (k+1)-patterns.

(b) Those candidate patterns can be pruned a priori to evaluation of support values

for which at least one subpattern is known to be not frequent.

Yet, when mining frequent patterns in the context of temporal intervals,

the situation is not as straightforward. As mentioned above, the downward clo-

sure property does no longer hold for unconnected patterns. For example, when
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(a)

A

B

∪ A

C

⇒

A

B

C

(b)

A

C

∪ B

C

⇒

A

B

C

Fig. 4. Two different ways of generating the temporal Pattern A equals B, A and B contain C :
(a) by the common subpattern A or (b) by the common subpattern C.

generating candidates in the Apriori-way, the candidate pattern A equals B, A and

B contain C would be generated based on the two subpatterns A equals B and A

contains C (see Fig. 4(a)). However A equals B needs not necessarily be frequent

even when the resulting candidate A equals B, A and B contain C is frequent. As a

result we face two challenges: Not only is pruning the candidates by infrequent sub-

sets no longer possible but also does the Apriori-approach for candidate generation

no longer guarantee that we do not miss any of the frequent patterns.

In the example above, obviously the subpatterns A contains C and B contains

C are necessarily frequent when the candidate itself is frequent (see Fig. 4(b)).

Generally, in a valid unconnected (k+1)-pattern, k ≥ 2, there exists a j, 1 ≤ j ≤ k,

such that the first j labels always describe those temporal intervals which contain

all other temporal intervals of the pattern (labels j +1, . . . , k+1). Contains implies

“starts before and ends after”, so the ordering of sequences guarantees exactly this

property. Hence, in the opposite way, the last k + 1 − j labels of the pattern are

always responsible for the frequency of the pattern. If we remove the first or second

label from a frequent (k+1)-pattern the resulting k-patterns must still be frequent.

In other words, generating (k+1)-candidates by joining the two subpatterns that

share the last k–1 labels ensures that the set of generated (k+1)-candidates is a

superset of the frequent (k+1)-patterns. We only have to guarantee that the initial

set of frequent 2-patterns contains all frequent unconnected patterns.

Thus, by modifying the candidate generation step, we can transfer the com-

pleteness property of the Apriori approach, see (a) above, to unconnected temporal

patterns. The interaction between candidate generation and support evaluation is

shown in Algorithm 1. In detail, our approach of candidate generation is as follows:

The candidate patterns of size 1 are generated by using all available labels in the

dataset. In the next step, we use all 1-candidates to create the candidate patterns

of size 2. This guarantees that we will find all frequent 2-patterns, albeit they are

connected or unconnected. For the actual candidate generation and test approach

the frequent patterns of size k (k ≥ 2) are used to generate the candidate patterns

of size k+1. This is achieved by joining every pair of temporal patterns P and Q

which are identical w.r.t. the last k-1 rows and columns of their relation table, i.e.
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Algorithm 1 FSMSet: procedure to find all frequent temporal patterns
1: procedure FindFrequentPatterns(S, L) . S: interval sequences, L: set of labels in S

2: k := 1, Ck := {l ∈ L} . Ci: candidate patterns in i-th iteration
3: repeat

4: evaluateSupport(Ck, S)
5: for all c ∈ Ck do

6: if getSupport(c) ≥ MinSupp then

7: Fk := Fk ∪ {c} . Fi: frequent patterns in i-th iteration
8: end for

9: if k = 1 then C2 := generateCandidates(C1)
10: else Ck+1 := generateCandidates(Fk)
11: k := k+1
12: until Ck = ∅
13: return F1...k

14: end procedure

P l
p
1

l2 . . . lk

l
p
1

e C

l2
... B A
lk

∪

Q l
q
1

l2 . . . lk

l
q
1

e E

l2
... D A
lk

=⇒

R l
p
1

l
q
1

l2 . . . lk

l
p
1

e ? C

l
q
1

¬? e E

l2
... B D A
lk

Fig. 5. Temporal patterns P , Q share a k-1 subpattern, joining P and Q yields R.

they share a common (k–1)-pattern on the last k-1 labels. Each temporal pattern

describes the desired (k+1)-pattern except for one label. If we join P and Q to the

temporal pattern R, as it is illustrated in Fig. 5, then there is only one interval

relation missing in R. The missing interval relation (and its inverse) describes the

relation between the first labels of P and Q (lp
1

and l
q
1
). Now we can extend R to a

set of candidates by applying Allen’s interval relations. The missing value in R is

substituted by each of Allen’s interval relations. Hence, the extension of R leads to

seven (k+1)-candidate patterns.

In part, even Apriori’s candidate pruning scheme, see (b) above, can be trans-

ferred to temporal patterns. After all (k+1)-candidates have been generated, we

apply the following pruning: Each k-subpattern of a connected (k+1)-candidate

pattern has to be contained in the set of frequent k-patterns. Hence, a candidate

pattern which contains non-frequent subpatterns can be dismissed without support

evaluation. Note that we do not apply this pruning step to unconnected candidate

patterns as we know these patterns may contain infrequent subpatterns.

For the actual candidate generation it is necessary to identify all pairs of frequent

k-patterns which share a common (k−1)-subpattern as their last partd (see Fig. 5).

An efficient solution to this problem is provided in Ref. 3. The basic idea is to sort

dFor a convenient abbreviation we call a n-subpattern of P a n-suffix, if the subpattern consists
of the last n labels and relations of P (i.e. it is the last part of P ). For example in Fig. 5, Q is a
k-suffix of R.
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the set of frequent k-patterns Fk in a way that all patterns with common (k − 1)-

suffix constitute contiguous blocks in the ordered set of patterns. To sort the set

of frequent patterns we use a vector representation for temporal patterns. For a

temporal pattern P = (s, R) of size k the vector representation of P is given by:

P = ( s(k)
︸︷︷︸

1-Suffix

, s(k − 1), R[k − 1, k]

︸ ︷︷ ︸

2-Suffix

, s(k − 2), R[k − 2, k − 1], R[k − 2, k]

︸ ︷︷ ︸

3-Suffix

, . . .).

For example the vector representation of the pattern in Fig. 2 is P = (A, B,

meets, A, overlaps, before). By ordering Fk alphabetically after the patterns vector

representation we can guarantee that all patterns with a common (k− 1)-suffix are

next to each other.

Algorithm 2 uses the ordered set of frequent patterns to generate all candidate

patterns. Algorithm 2 consists of two main loops. The outer loop (lines 3–20) iterates

over all patterns in the ordered list Fk. The inner loop (lines 6–19) passes through

all patterns which belong to the same block as the current pattern marked by the

Algorithm 2 Candidate Generation for FSMSet

1: procedure CandidateGeneration(Fk) . Fk: frequent k-patterns in ordered

vector representation

2: Ck+1 := ∅ . Ck+1: candidate patterns of size k + 1

3: for i:=1 to |Fk| do

4: currentBlockStart := getBlockStart(Fk, i)

5: j := currentBlockStart

6: while currentBlockStart = getBlockStart(Fk, j) and j ≤ |Fk| do

7: R := Fk[i] ∪ Fk[j] . join of Fk[i] and Fk[j] according to Figure 5

8: for all rel ∈ {b, m, o, if, c, is, e} do

9: P := extend(R, rel) . use rel as the missing relation in R

10: if isConnected(P ) then

11: if allSubFrequent(P , Fk) then . apply pruning scheme

12: Ck+1 := Ck+1 ∪ P

13: end if

14: else

15: Ck+1 := Ck+1 ∪ P

16: end if

17: end for

18: ++j

19: end while

20: end for

21: return Ck+1

22: end procedure
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outer loop. Hence, the combination of both loops iterates over all pairs of patterns

which belong to the same block (i.e. share a common (k−1)-suffix). This is achieved

by using the help function getBlockStart (lines 4 and 6). GetBlockStart returns the

index of the first pattern in Fk which has the same (k − 1)-suffix as the pattern

indexed in the parameters. Each pair of temporal patterns is joined as described in

Fig. 5 (line 7). Afterwards all possible relations are used to extend R to candidate

patterns (line 9). Finally, we apply the described pruning scheme for connected

patterns (lines 10 and 11) in order to reduce the number of generated candidates.

5.2. Support evaluation

The second important step is the support evaluation of the candidate patterns.

As already mentioned, the labels of a valid temporal pattern have the same order

as their counterparts in an instance would have. Therefore we can find an instance

of a temporal pattern in S by using finite state machines which subsequently take

the temporal intervals of an ordered temporal sequence as input.

It is straightforward to derive a finite state machine from a temporal pattern.

For each label in the temporal pattern a state is generated. The finite state machine

starts in an initial state. The next state is reached if we input a temporal interval

that contains the same label as the first label of the temporal pattern. From now

on the next states can only be reached if the shown temporal interval carries the

same label as the state and its interval relation to all previously accepted temporal

intervals is the same as specified in the temporal pattern. If the finite state machine

reaches its last state it also reaches its final accepting state.

We can derive the minimal time window in which this particular pattern instance

is visible from the set of temporal intervals which has been accepted by the state

machine. We know that the time window contains an instance of the pattern but

we do not know whether it is a minimal occurrence. Therefore we apply a two step

approach. First we will find all instances of a pattern using finite state machines.

Second we will filter out all corresponding time windows which are not minimal

occurrences.

To find all occurrences of a pattern in an interval sequence we are maintaining a

set of finite state machines.e At first, the set only contains the finite state machine

that is derived from the candidate pattern. Subsequently, each temporal interval

from the interval sequence is shown to every finite state machine in the set. If a

finite state machine can accept the temporal interval, a copy of the state machine

is added to the set. The temporal interval is shown only to one of these two state

machines. Hence, there will always be a copy of the initial state machine in the set

trying to find an occurrence of the pattern. In this way we can also handle situations

in which single state machines do not suffice. Consider the pattern A meets B and

eThe algorithm’s name FSMSet also originates from the idea of maintaining a set of f inite state
machines.
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the interval sequence (1, 2, A), (3, 4, A), (4, 5, B). Without using look ahead a

single finite state machine would accept the first temporal interval (1, 2, A). This

state machine is stuck as it cannot reach its final state because there is no temporal

interval which is-met-by (1, 2, A). Hence the pattern instance (3, 4, A), (4, 5, B)

could not be found by a single state machine. Here this is not a problem because

there is a copy of the first state machine which will find the pattern occurrence.

For the second step, we need to find the set of minimal occurrences out of

all instances. This can be done by maintaining a list of time windows for each

candidate pattern. Each time a finite state machine reaches its final accepting state

the minimal time window is checked against the candidate pattern’s list of time

windows. If the list already contains a subwindow of the window then the window

is dismissed. If the current window is a subwindow of windows in the list then those

windows are removed and the current window is added to the list. Thus in the end

the list contains the set of minimal occurrences of the pattern.

Algorithm 3 FSMSet: Support Evaluation of Candidate Patterns
1: procedure evaluateSupport(C, S) . C: candidate patterns, S: interval sequences
2: for all s ∈ S do

3: fsms := createStateMachines(C)
4: for i := 1 . . . length(s) do

5: (b, e, l) := i-th element of s

6: new-fsms := process(fsms, (b, e, l))
7: for all fsm ∈ new-fsms do

8: if fsm.isFinallyAccepted() then putSupport(s, fsm)
9: else fsms := fsms ∪ {fsm}

10: end for

11: end for

12: end for

13: end procedure

Algorithm 3 shows the assembly of the described ideas on a top level. First, we

iterate over the set of all interval sequences. For each interval sequence the initial set

of final state machines fsms is generated by calling the function createStateMachines

(line 3), i.e. fsms contains one state machine for each candidate pattern. Then, we

subsequently process all temporal intervals in the current interval sequence. The

function process (line 6) takes the set of state machines and the current temporal

interval as arguments. It returns a set of state machines new-fsms. Each element in

new-fsms is a copy of a state machine in fsms but has accepted the current temporal

interval. At this step, the set fsms stays untouched. We check all new state machines

whether they have reached their final acceptance state (lines 7–10). In that case

the procedure putSupport is used to potentially add the new occurrence to the list

of minimal occurrences. Otherwise the state machines are added to the set fsms

(line 9) to make them available to the next temporal interval in the sequence. The

procedure putSupport has to maintain one list of minimal occurrences per pattern

and interval sequence. Therefore it also takes the current interval sequence as an

argument.
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In our implementation of FSMSet we did some minor changes to enhance the

algorithm’s runtime. For example we divided the big set of state machines fsms

into subsets. Each subset contains all state machines which are expecting the same

label in the next accepted temporal interval. Thus we only need to process a subset

of all state machines in each iteration. Also we implemented a pruning mechanism

in the final state machines. If the current temporal interval would lead to a time

window which is longer than a user defined threshold (our required time constraint

on a pattern instance) than this state machine is dismissed. In this way we also

dismiss state machines which will never reach their accepting state (state machine

which are stuck).

6. Performance Evaluation

In order to evaluate the performance of FSMSet we employed a dataset from our

domain. This dataset contains information about the history of 101 250 vehicles.

There is one sequence for each vehicle. Each sequence comprises between 14 and

48 temporal intervals. In total, there are 345 different labels and more than 1.4

million temporal intervals in the dataset. A first scan over the data showed that

only a subset of Allen’s interval relations is present in the dataset, i.e. before, after,

contains, during and equals.

We performed 5 different experiments varying the minimum support threshold

from 3200 down to 200. In each run we measured how many candidates were

generated in each iteration of FSMSet and how many of them proved to be frequent

during the support evaluation. The runtime of the algorithm was also measured for

each experiment. The algorithm is implemented in Java and all experiments were

carried out on a SUN Fire X2100 running at 2.2 GHz.

Figure 6(a) shows the number of candidates that are generated in each itera-

tion. Obviously the number of candidates grows rapidly as the minimum support

threshold gets lower. This general behaviour is well known from frequent itemset

mining. In contrast to the generation of frequent itemsets, Fig. 6(a) shows two dis-

tinct peaks. There is one peak for the candidate patterns of size 2 and one peak for

patterns of sizes 6–7. Moreover, the first peak does not vary with different minimum

support thresholds. This peak is a result of the special candidate generation in the

first iteration of FSMSet. The candidates of size 2 are generated by using all the

candidates of size 1 (only in subsequent iterations the frequent patterns are used).

As the dataset contains 345 different labels and we are using a subset of Allen’s

interval relations (before, contains and equals) we get 3452 · 3 = 357075 candidate

patterns of size 2. Consequently the number of 2-candidates is independent of the

chosen minimum support threshold.

In Fig. 6(b) the number of frequent patterns is depicted for each iteration. For

each minimum support threshold the maximum number of frequent patterns is

found between the 5-th and 7-th iteration. Again the number of frequent patterns

grows rapidly with decreasing minimum support thresholds.
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Fig. 6. (a) Candidate patterns generated and (b) frequent patterns found in each iteration
for different minimal support thresholds (3200, 1600, 800, 400, 200). (c) Runtime over support
threshold.
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The increasing number of frequent and candidate patterns also leads to longer

runtimes of the algorithm for decreasing minimum support thresholds as Fig. 6(c)

shows. While the first experiment (MinSupp = 3200) was finished within 36 minutes

subsequent experiments took 98, 295, 1052 and 2 822 minutes.

7. Conclusions

In this paper we presented FSMSet: a new algorithm for discovering frequent tempo-

ral patterns. The key advantages of this algorithm are the ability to mine data that

consists of several separate interval sequences, a new support definition that allows

counting multiple instances of a pattern per sequence, and finally the consideration

of time constraints on pattern instances.

Whereas on its own, these features have been described before, e.g. Refs. 7 and

8, an algorithm implementing them all together had not yet been available. As for

our and many other applications, combining these features is essential. Therefore

our approach opens a broad range of new applications for sequence mining.

Combining the sketched features is far from being straightforward. The main

algorithmic challenge is that the downward closure property of support, also known

as the Apriori-criteria, is not met. In other words, we had to develop an algorithm

that is efficient and still complete with respect to a minimal support threshold,

although subpatterns of a frequent pattern may be infrequent. We finally tackled

the issue by distinguishing so called connected and unconnected patterns based on

the temporal relation contains.

Based on an analysis of warranty data from the automotive domain, we showed

that FSMSet can be successfully applied to real world data. The results contained

valuable knowledge far beyond current approaches and were produced within rea-

sonable time.
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