
Relevance Feedback for Association
Rules by Leveraging Concepts from

Information Retrieval

Georg Ruß

Institute for Knowledge and

Language Engineering

University of Magdeburg

Germany

Mirko Böttcher

Intelligent Systems

Research Centre, BT Group

Ipswich, United Kingdom

Detlef Nauck

Intelligent Systems

Research Centre, BT Group

Ipswich, United Kingdom

Rudolf Kruse

Institute for Knowledge and

Language Engineering

University of Magdeburg

Germany

Abstract

The task of detecting those association rules which are interesting
within the vast set of discovered ones still is a major research challenge
in data mining. Although several possible solutions have been proposed,
they usually require a user to be aware what he knows, to have a rough
idea what he is looking for, and to be able to specify this knowledge in
advance. In this paper we compare the task of finding the most relevant
rules with the task of finding the most relevant documents known from
Information Retrieval. We propose a novel and flexible method of rel-
evance feedback for association rules which leverages technologies from
Information Retrieval, like document vectors, term frequencies and simi-
larity calculations. By acquiring a user’s preferences our approach builds
a repository of what he considers to be (non-)relevant. By calculating
and aggregating the similarities of each unexamined rule with the rules
in the repository we obtain a relevance score which better reflects the
user’s notion of relevance with each feedback provided.

1 Introduction

Association rule mining [1, 2] originally has been developed for market basket
data analysis, where each basket, also referred to as a transaction, consists of
a set of purchased items. The goal of association rule mining is to detect all
those items which frequently occur together and to form rules which predict
the co-occurrence of items. However, association rule mining is not just bound
to this specific purpose. It can be applied, for example, to every relational
database.

Nowadays, the discovery of association rules is a relatively mature and well-
researched topic. Many algorithms have been proposed to ever faster discover
and maintain association rules. However, one of the biggest problems of as-
sociation rules still remains unresolved. Usually, the number of discovered as-
sociations will be immense, easily in the thousands or even tens of thousands.
Clearly, the large numbers make rules difficult to examine by a human user.
Moreover, many of the discovered rules will be obvious, already known, or not
relevant to a user. For this reason several methods have been proposed to assist
a user in detecting the most interesting or relevant ones. The vast majority
of these approaches either calculate a relevance score or determine rules that
contradict a user’s prior knowledge based on Boolean logic.

In this paper we argue that such approaches only insufficiently reflect the
way a user searches for relevant rules because a user’s perception of relevance is
not a static but rather a dynamic process due to several reasons: firstly, when
a user starts to explore a set of discovered association rules he only has a very
vague notion about which rules might be relevant to him. Secondly, while seeing
more rules his knowledge about the domain of interest changes, some aspects
might gain while others might lose importance. His notion of relevance depends
on these changes and thus changes too, almost always becoming clearer. The
more rules a user examines, the more knowledge he gathers about the domain
of interest. This knowledge then helps him to decide for newly encountered
rules whether they are (non-)relevant for him, for example, because they are
kind-of similar to previously seen (non-)relevant ones.

The importance of user dynamics and incremental knowledge gathering in
assessing the relevance of data mining results only recently gained attention in
the research community [3, 4]. However, it is a rather well-researched topic in
the field of information retrieval where it is known for a long time that a user
cannot express his information need from scratch. For example, when using
a internet search engine to search documents about a non-trivial topic most
users start with a rather simple query. By analysing the search results they
gain more knowledge about what they actually look for and thus are able to
further refine their initial query, i.e. to express their notion of relevance more
clearly. To support a user in this process techniques like relevance feedback
based on document similarities have been developed.

In fact, the way a user builds up his internal notion of relevancy when
searching for the most relevant association rules described above is very similar
to the models of user behaviour used in information retrieval (cp. [5]). Based on
these similarities we present a new approach to the problem of finding the most
relevant rules out of a large set of association rules which is inspired by ideas
from information retrieval. Our approach uses relevance feedback to acquire
users’ preferences and to build a knowledge base of what he considers to be
relevant and non-relevant, respectively. By calculating the (dis-)similarity of
each unexamined rule with the rules in the knowledge base and aggregating the
scores we obtain a relevance score which—with each feedback provided—better
reflects the user’s notion of relevance.

The remainder of this paper is organised as follows: Section 2 gives the

background on association rules, Section 3 shows the related work that is most
relevant to our topic. Section 4 will further elaborate the link between infor-
mation retrieval and interestingness assessment of association rules. Section 5
introduces a novel notion of association rules based on features vectors which
are inspired by document vectors from information retrieval. This represen-
tation is closely related to our notion of rule similarity explained in Section 6
and Section 7. The relevance scoring metric will be derived in Section 8 before
Section 9 concludes the paper.

2 Association Rules

Formally, association rule mining is applied to a set D of transactions T ∈ D.
Every transaction T is a subset of a set of items L. A subset X ⊆ L is called
itemset. It is said that a transaction T supports an itemset X if X ⊆ T .

An association rule r is an expression X → Y where X and Y are itemsets,
|Y| > 0 and X ∩ Y = ∅. Its meaning is quite intuitive: Given a database D
of transactions the rule above expresses that whenever X ⊆ T holds, Y ⊆ T is
likely to hold too. If for two rules r : X → Y and r′ : X ′ → Y, X ⊂ X ′ holds,
then it is said that r is a generalization of r′. This is denoted by r′ ≺ r.

As usual, the reliability of a rule r : X → Y is measured by its confidence

conf(r), which estimates P (Y ⊆ T | X ⊂ T), or short P (Y | X). The statistical
significance of r is measured by its support supp(r) which estimates P (X ∪Y ⊆
T), or short P (XY). We also use the support of an itemset X denoted by
supp(X).

3 Related Work

The strength of an association rule learner to discover all patterns is likewise
its weakness. Usually the number of discovered associations can be immense,
easily in the thousands or even tens of thousands. Clearly, the large numbers
make rules difficult to examine by a human user. Therefore significant research
has been conducted into methods which assess the relevance, or interestingness,
of a rule. Studies concerning interestingness assessment can roughly be divided
into two classes. The first class are objective measures. These are usually
derived from statistics, information theory or machine learning and assess nu-
merical or structural properties of a rule and the data to produce a ranking [6].
Objective measures do not take any background information into account and
are therefore suitable if an unbiased ranking is required, e.g. in off-the-shelf
data mining tools. The second class are subjective measures which incorporate
a user’s background knowledge. In this class a rule is considered interesting if
it is either actionable or unexpected.

Actionability of a rule means that the user “can act upon it to his advan-
tage” [7]. Their focal point is on rules that are advantageous for the user’s
goals. The actionability approach needs detailed knowledge about the current

goals and also about the cost and risks of possible actions. Systems that utilise
it are hence very domain specific, like the KEFIR system described in [8].

A rule is unexpected if it contradicts the user’s knowledge about the do-
main. Systems that build upon this approach require the user to express his
domain knowledge – a sometimes difficult, long and tedious task. The methods
are usually based on pairwise comparison of a discovered rule with rules rep-
resenting the user knowledge. This comparison can be logic-based [9, 10, 11]
or syntax-based [12]. In logic-based systems a contradiction is determined by
means of a logical calculus, whereas in syntax-based systems a rule contradicts
if it has a similar body but a dissimilar head.

In [9, 10, 11] the authors connect belief models with association rules. In
particular, they assume that a belief system has been provided by the user
whereby beliefs are defined as association rules. Based on this definition they
provide a set of conditions to verify whether a rule X → y is unexpected with
respect to the belief X → z on the rule database D. They propose an algorithm
ZoomUR which discovers the set of unexpected rules regarding a specified set
of beliefs. The algorithm itself consists of two different discovery strategies:
ZoominUR discovers all unexpected rules that are refinements (or specialisa-
tions). On the other hand, ZoomoutUR discovers all unexpected rules that are
more general.

In [12] the authors address the insufficiency of objective interestingness mea-
sures by focusing on the unexpectedness of generalised association rules. They
assume that taxonomies exist among association rules’ attributes. In subse-
quent work [13], human knowledge is recognised to have different degrees of
certainty or preciseness. Their system allows for three degrees, notably general

impressions, reasonably precise concepts and precise knowledge. The approach
they propose accounts for these degrees and uses the gathered knowledge to find
rules which are unexpected in regard to the expressed knowledge. The approach
works iteratively: first, the user specifies his knowledge or modifies previously
specified knowledge, supported by the specification language; second, the sys-
tem analyses the association rules according to conformity and unexpectedness;
and third, the user inspects the analysis results (aided by visualisation), saves
interesting rules and discards uninteresting rules.

How to incorporate user dynamics into the relevance assessment has been
studied in [3]. They propose an approach based on two models which a user has
to specify prior to any analysis: a model of his existing knowledge and a model
of how he likes to apply this knowledge. The degree of unexpectedness of each
discovered rule is calculated with respect to these two models. Their approach
is based on what they call the See-and-Know assumption. Once a user has
seen a rule, the rule itself and similar rules are not of interest anymore. Our
approach, in contrast, uses two classes of seen rules, relevant and non-relevant
ones. The ranking is calculated by aggregating the (dis-)similarity of a rule
with respect to rules in both classes. Our approach also does not require a user
to specify any kind of prior model of a his knowledge.

4 Using Concepts from Information Retrieval

Existing approaches to assess the relevance of association rules strongly require
a user to explicitly specify his existing knowledge in advance. This leads to two
major drawbacks. In the first place, when specifying their existing knowledge,
domain experts often forget certain key aspects or may not remember others
which come into play under rarer circumstances. This problem can be termed
‘expert dilemma’ and has already been observed by designers of expert systems
in the 1980s [14]. Secondly, at the beginning of an analysis session a user
can only very vaguely specify what he considers to be relevant. His notion of
relevance only becomes clearer the more rules he examines. This problem, that
a user is incapable of specifying his information need from scratch, is very well-
known in the field of information retrieval [5] where it lead to the development
of relevance feedback methods.

Relevance feedback is an intuitive technique that has been introduced to
information retrieval in the mid-1960s [15]. In information retrieval it is a
controlled, semi-automatic, iterative process for query reformulation, that can
greatly improve the usability of an information retrieval system [16]. Relevance
feedback allows a user to express what he considers to be relevant by marking
rules as relevant and non-relevant, respectively. Whenever a rule has been
marked as relevant, it is added to the set of relevant rules Rr. Whenever a
rule is marked as non-relevant, it is added to the set of non-relevant rules Rn.
For simplicity, we will assume that in each feedback cycle exactly one rule is
marked.

After each feedback cycle the remaining rules are compared with the set of
annotated rules and a new relevance score is calculated. The set of annotated
rules, in turn, can be seen as a representation of the user’s notion of relevance.
Hence it also provides a solution to the first of the above-mentioned drawbacks
by supporting an iterative, easy way for a user to specify his knowledge about
a domain. For example, he may annotate rules that are already known as
non-relevant and some novel rules as relevant.

In order to develop a feedback system for association rules the following
questions need to be answered:

• How do we represent association rules for the purpose of relevance feed-
back?

• How do we score the likely relevance of a rule in relation to a rule already
marked as (non-)relevant?

• How do we aggregate those scores to an overall relevance score?

We will provide answers to these questions in the subsequent sections. In
particular we are aiming at adapting established methods from information
retrieval.

5 Rule Representation

To be the core building block of a relevance feedback approach it is necessary
to transform the rules into an equivalent representation. In particular, such a
representation should have a couple of properties. Firstly, rather than relying
on generalisation and specialisation relationships among rules as a key to rule
similarity it should support a less crisp and thus more flexible definition. For
example, rules that have the same head and share items in their body should
be regarded as similar to a certain degree. Secondly, items have a different
importance to a user. For example, an item that is contained in almost every
rule does not contribute much towards a user’s understanding of the domain,
whereas an item that is only contained in a few rules can contribute consider-
ably. This importance should be reflected in the rule representation. Thirdly,
it should be easy to extend the rule representation by further numeric prop-
erties of a rule. For example, recently there has been an increasing interest
into the change of a rule’s support and confidence values (e.g. [17]) as a key to
rule interestingness. In this scenario the rule representation should incorporate
the timeseries of support or confidence in order to enable similarity calculations
based on rule change. To illustrate the usage of further information about rules
for relevance feedback we will use the example of rule change throughout this
paper.

As a representation that fulfills all of the above requirements we define a
feature vector ~r of an association rule r whose elements are numerical values
and which consists of three components: a representation of the rule’s body, a
representation of the rule’s head and a rule’s time series. The latter component
can easily be replaced by other numeric features of a rule or completely omitted.
Formally, a feature vector thus is defined as

~r = (

body
︷ ︸︸ ︷
r1, . . . , rb,

head
︷ ︸︸ ︷
rb+1, . . . , rb+h,

︸ ︷︷ ︸

symbolic

rb+h+1, . . . , rb+h+t
︸ ︷︷ ︸

timeseries

) (1)

The different components can be seen as a projection of ~r and will be referred
to as follows:

~rbody = (r1, . . . , rb) (2)

~rhead = (rb+1, . . . , rb+h) (3)

~rsym = (r1, . . . , rb+h) (4)

~rtime = (rb+h+1, . . . , rb+h+t) (5)

To calculate the item weights ri we adapted the well-known TF-IDF ap-
proach [18] from information retrieval. The TF-IDF approach weights terms
according to their appearance in a document and in the overall document col-
lection. A high term weight, which is correlated with a high importance of
that particular term, is achieved if the term appears frequently in the docu-
ment (term frequency, TF) but much less frequently in the document collection

(inverse document frequency, IDF). This approach filters out commonly used
terms and tries to capture the perceived relevance of certain terms.

This method, carried over to association rules, means that items that appear
in the vast majority of rules will get a very low weight whereas items that are
rather infrequent will get a rather high weight. Since item appearance in rules is
linked to item appearance in a data set this also means that infrequent attribute
values in the data set will receive a high weight.

The term frequency tf of an item x in an association rule r is calculated as
follows:

tf(x, r) =

{

1 if x ∈ r,

0 otherwise.
(6)

The inverse document frequency idf of an item x in an association rule r and
in regard to a rule set R is calculated as follows:

idf(x,R) = 1 −
ln |r : r ∈ R ∧ x ∈ r|

ln |R|
(7)

To generate ~rbody and ~rhead, a series of steps has to be performed. For
body and head separately, a set of items is generated: Ibody = {x1, . . . , xb} and
Ihead = {x1, . . . , xh} where the xi are the items that occur in body or head
of the association rules in R, respectively. Each item of these sets is assigned
exactly one vector dimension in ~rbody or ~rhead, respectively. Hence, the values
for b and h in (1) are the cardinalities of the respective itemsets: b = |Ibody|
and h = |Ihead|

The part of the feature vector of an association rule r which covers body
and head consists of TF-IDF values. Let xi the i-th item of the alphabetically
ordered set Ibody and let ri be the i-th component of ~rbody. Then, ~rbody is defined
as follows:

ri = tf(xi, r) · idf(xi, R), i = 1, . . . , b (8)

~rhead is treated in the same way, except that xj is the j-th item of the alpha-
betically ordered set Ihead

rb+j = tf(xj , r) · idf(xj , R), j = 1, . . . , h (9)

6 Pairwise Similarity

A relevance feedback system must have the ability to compare unrated rules,
or features of those, with rules previously rated as (non-)relevant. Instead
of utilizing the generalisation and specialisation relationships among rules we
choose a more flexible approach based on a notion of similarity among rules.
As a similarity measure we have chosen the cosine similarity. It calculates the
cosine of the angle between two n-dimensional vectors r and s as follows:

sim(~r,~s) =

∑n

i=1 risi
√

r2
i

√

s2
i

(10)

Since the cosine measure yields values in [0, 1], the corresponding dissimilarity
measure therefore is:

dissim(~r,~s) = 1 − sim(~r,~s) (11)

The cosine similarity compared to other similarity measures, like ones based on
the Euclidean distance, has the advantage that it does not take missing items
in a rule into account. For example, when measuring the similarity between a
rule X y → z and its more general rule X → z only the item weights contained
in both rules (i.e. X and z) contribute towards the similarity measure. This
property of the cosine measure is also the reason why it is frequently used in
information retrieval systems. When comparing, for example, a query with a
document it is desirable only to take the actual words contained in the query
into account and not each of the many words the user did not specify.

The similarity between rules’ bodies or rules’ heads can be calculated straight-
forwardly using the cosine measure, yielding sim(~rbody, ~sbody) and sim(~rhead, ~shead),
respectively. By averaging both we obtain the similarity of a rule ~rsym with re-
gard to a rule ~ssym:

sim(~rsym, ~ssym) = 0.5sim(~rbody, ~sbody) + 0.5sim(~rhead, ~shead) (12)

The cosine measure is also suitable as a measure of time series similarity
sim(~rtime, ~stime) which we use in this paper as an example of further information
about rules embedded into the rule vector. For time series the cosine measure
has the advantage only to reflect the magnitude of the angle between two vec-
tors but—compared with other distance measures (e.g. Euclidean distance)—to
ignore the magnitude difference between the two vectors. This means, it is ro-
bust w.r.t. different variation ranges of the time series. It is, however, not
robust w.r.t. shifts of the time series mean value. Nevertheless, robustness can
be achieved by subtracting from both time series their respective mean value
prior to similarity calculation.

7 Similarity Aggregation

So far, we have discussed how to calculate pairwise similarities between vectors
which represent certain features of a rule like its head, body or a time series
of rule measures. For the purpose of relevance feedback it is necessary to
measure the similarity of a feature of an unrated rule r relative to the features
contained in the elements of a rule set R which may represent relevant and
non-relevant rules. Generally, we define the similarity of a vector ~r relative to
a set R = {~s1, . . . , ~sm} as

simrs(~r,R) = Ω({sim(~r,~s1), . . . , sim(~r,~sm)}) (13)

whereby Ω denotes a suitable aggregation operator which we will describe in
the next section. As in Section 6, the dissimilarity of a vector relative to a set
is defined as

dissimrs(~r,R) = 1 − simrs(~r,R) (14)

7.1 The OWA Operator

Our choice of the aggregation operator Ω is guided by two requirements: firstly,
the user should be able to influence the aggregation operator, either implicitly
or explicitly. Secondly, to obtain comparable results, the aggregation operator
should be able to represent also simple aggregation operators like min, max
or median. These two requirements are met by the family of OWA operators,
which originate in the Fuzzy Domain and have been introduced by [19]. An
OWA operator Ω is a mapping Ω : S → R, where S is a set of numerical values
si with S 6= ∅ and |S| = n. The OWA operator Ω has an associated weighting
vector W = (w1, w2, . . . , wn)T with wj ∈ [0, 1] and

∑n

j=1 wj = 1. It is defined
as

Ω({s1, s2, . . . , sn}) =

n∑

j=1

wjbj , (15)

with bj being the j-th largest of the si.

The most important feature of this operator is the ordering of the arguments
by value. The OWA operator is in a way very general in that it allows different
conventional aggregation operators. This is achieved by appropriately setting
the weights in W – different arguments can be emphasised based upon their
position in the ordering.

Min, max, mean, and median are special cases for the OWA operator and
were described by [20]. They illustrate the generality and flexibility of the
OWA operator. By setting the weights accordingly, the user can influence
the relevance score to suit the needs of his particular application scenario. For
example, (1/n, 1/n, . . . , 1/n)T yields the mean, whereas (1, 0, . . . , 0)T yields the
maximum operator.

Furthermore, the OWA operator is strongly related to the concept of linguis-
tic quantifiers, such as many, a few, most. In [19] the connection to linguistic
quantifiers is presented by explaining how the weights of the OWA expression
can be obtained by using the membership function of any linguistic quantifier.

7.2 Relative Importance of Recent Relevance Choices

The retrieval of relevant association rules is a consecutive, iterative process.
The user’s knowledge, his beliefs and assumptions change during the relevance
feedback cycle as he sees more rules. Therefore, the user’s latest choices should
be considered as having a higher priority over the first, relatively uninformed
ones. This concept can be captured as the decay of a relevant or non-relevant

rule’s importance over time. The similarity aggregation should account for this
and thus should weight recently selected rules higher than older ones.

Let t(r) be the age of a relevant or non-relevant association rule r. This
means, t(r) is the number of feedback cycles that have been performed since
the rule r was marked as being (non-)relevant, thereby a newly selected rule

receives t = 0. Two possibilities to model such a relevance decay are:

τexp(r) = (1 − δ)t(r) (16)

τlin(r) = max(1 − t(r) · δ, 0) (17)

with (16) for an exponential type of decay and (17) for a linear decay down
to a minimum of zero, whereby δ ∈ [0, 1] is a decay constant that controls the
speed of decay.

This concept can also be described as a kind of memory of the relevance
feedback engine. The higher the decay factor δ, the faster the system forgets
what has been chosen in an earlier step. If we set δ = 1 then our approach
would only consider the user’s latest relevance decision in its relevance score
calculation. The value of δ = 0 would deactivate the decay completely. Values
of δ in between those bounds activate a gradual decay. Using the time weighted
importance we refine our definition of a vector ~r its similarity relative to a set
R and yield

simrs(~r,R) = Ω({τ(~s1)sim(~r,~s1), . . . , τ(~sm)sim(~r,~sm)}) (18)

8 Relevance Scoring

Based on the similarity measure we defined in the last section we can develop
a notion of a rule’s pairwise score, i.e. its relevance score with respect to a
certain rule that was marked as relevant. While in information retrieval it is
mostly assumed that those documents which are similar to (non-)relevant ones
are (non-)relevant too, we use a slightly different approach.

For rules marked as relevant we assume that once a user has seen such a rule
rather than being interested in similar ones his attention is attracted by those
which are similar in certain features but dissimilar in others. This means, a
user aims for rules which have an element of surprise. For example, a rule could
have a very similar antecedent, but a rather dissimilar head when compared
to a relevant one. It would therefore be surprising to a user because it is an
exception to his previous knowledge. This approach also captures the case of
rule contradiction employed by other authors [12, 11], albeit in a fuzzy, less
crisp way.

Table 1 shows three of such interesting combinations of rule features. The
case discussed above is named C1 in this table. Another example is C2. It
assigns a high score to those rules that are very different in their symbolic
representation, but exhibit a similar time series. Such a combination can hint
at an unknown hidden cause for the observed changes, which in turn are of
interest to a user who typically will assume that only similar rules change
similarly. The remaining entry C3 is basically the inversion of the last one. A
rule is considered interesting if it is similar to a relevant one, but has a very
dissimilar time series

For rules marked as non-relevant we use an approach similar to the one used
in information retrieval, i.e. rules that are similar to non-relevant ones are also
considered non-relevant.

similar

d
is

si
m

il
a
r

h
ea

d

ti
m

e
se

ri
es

sy
m

b
ol

ic

body C1 - -
time series - - C2

symbolic - C3 -

Table 1: Interestingness Matrix

Based on these considerations our calculation of the overall relevance score
is split into two parts: one each for the relevant and non-relevant rules, respec-
tively.

Our definition of the relevance of a rule with regard to the set of relevant
rules is rather straightforward and shown in (19),(20) and (21) for the three
cases mentioned above. To pick up on our examples from the previous section,
using C1 a rule receives a high relevance score if its body is similar to the
rule bodies in Rr and its head dissimilar to the rule heads in Rr. Likewise,
the score for C2 is calculated by multiplying the similarity of the rule/rule
set combination for the time series with the dissimilarity of the rule/rule set
combination for the symbolic representation.

C1 : Φ(~r,Rr) = simrs(~rbody, Rr)dissimrs(~rhead, Rr) (19)

C2 : Φ(~r,Rr) = simrs(~rtime, Rr)dissimrs(~rsym, Rr) (20)

C3 : Φ(~r,Rr) = simrs(~rsym, Rr)dissimrs(~rtime, Rr) (21)

For the non-relevant rules we assume that rules in Rn specify a subspace of
the rule space where more non-relevant rules are located. To direct the user
away from this subspace, rules that are far away from it will receive a higher
score, whereas those in the vicinity will receive a low score. An unrated rule
r should therefore receive a high interestingness score the more dissimilar it is
from the set of non-relevant rules, i.e.

Ψ(~r,Rn) = dissim(~r,Rn) (22)

Our final relevance score of an unrated rule r under consideration of the set
of relevant and (non-)relevant rules consists of two parts, Φ(~r,Rr) and Ψ(~r,Rn),
which are both weighted to give the user more influence on the scoring.

F (~r,Rr, Rn) = wrelΦ(~r,Rr) + wnrelΨ(~r,Rn) (23)

After every feedback cycle, i.e. after every update of Rr or Rn, each unrated
rule r is being reevaluated whereby a new score F (~r,Rr, Rn) is assigned. Rules
which previously have been ranked as rather non-relevant can now receive a
higher score whereas others may lose their relevance.

9 Conclusion

In this paper we have dealt with the well-known issue of finding the most
relevant rules within a large set of association rules. By leveraging techniques
and concepts from Information Retrieval we have proposed a novel method
for association rule relevance feedback which has several advantages compared
to existing methods. Firstly, it allows a user to refine his notion of relevancy
over time by providing feedback. Secondly, it utilizes a more flexible notion of
related rules based on vector similarity. Thirdly, it allows to incorporate further
information about rules into the exploration process by turning the symbolic
notion of a rule into a numeric feature vector.

Our approach is currently being trialed within BT Group to assist users
in exploring association rule changes with the CRM (Customer Relationship
Management) domain. So far, the results we obtained are quite promising and
underlining the usefulness of our relevance feedback method.

References

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining associa-
tion rules between sets of items in large databases. In Proc. ACM SIGMOD

1993, pages 207–216, Washington, DC, 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–
499. Morgan Kaufmann, 12–15 1994.

[3] Ke Wang, Yuelong Jiang, and Laks V. S. Lakshmanan. Mining unexpected
rules by pushing user dynamics. In Proceedings of the 9th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages
246–255, 2003.

[4] Dong Xin, Xuehua Shen, Qiaozhu Mei, and Jiawei Han. Discovering in-
teresting patterns through user’s interactive feedback. In Proceedings of

the 12th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, pages 773–778, New York, NY, USA, 2006. ACM
Press.

[5] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Informa-

tion Retrieval. ACM Press / Addison-Wesley, 1999.

[6] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the
right objective measure for association analysis. Information Systems,
29(4):293–313, 2004.

[7] Abraham Silberschatz and Alexander Tuzhilin. What makes patterns in-
teresting in knowledge discovery systems. IEEE Transactions on Knowl-

edge and Data Engineering, 8(6):970–974, 1996.

[8] G. Piatesky-Shapiro and C. J. Matheus. The interestingness of deviations.
In Proceedings AAAI workshop on Knowledge Discovery in Databases,
pages 25–36, 1994.

[9] Balaji Padmanabhan and Alexander Tuzhilin. Unexpectedness as a mea-
sure of interestingness in knowledge discovery. Decision Support Systems,
27, 1999.

[10] Balaji Padmanabhan and Alexander Tuzhilin. Small is beautiful: dis-
covering the minimal set of unexpected patterns. In Proceedings of the

6th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 54–63, 2000.

[11] Balaji Padmanabhan and Alexander Tuzhilin. Knowledge refinement
based on the discovery of unexpected patterns in data mining. Decision

Support Systems, 33(3):309–321, 2002.

[12] Bing Liu, Wynne Hsu, and Shu Chen. Using general impressions to analyze
discovered classification rules. In Proceedings of the 3rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages
31–36, 1997.

[13] Bing Liu, Wynne Hsu, Shu Chen, and Yiming Ma. Analyzing the sub-
jective interestingness of association rules. IEEE Intelligent Systems,
15(5):47–55, 2000.

[14] David B. Fogel. The advantages of evolutionary computation. In D. Lundh,
B. Olsson, and A. Narayanan, editors, Bio-Computing and Emergent Com-

putation. World Scientific Press, Singapore, 1997.

[15] Gerard Salton. The SMART Information Retrieval System. Prentice Hall,
Englewood Cliffs, NJ, 1971.

[16] Tommi Jaakkola and Hava Siegelmann. Active information retrieval. In
Advances in Neural Information Processing Systems 14, pages 777–784.
MIT Press, 2001.

[17] Mirko Boettcher, Detlef Nauck, Dymitr Ruta, and Martin Spott. Towards
a framework for change detection in datasets. In Proceedings of the 26th

SGAI International Conference on Innovative Techniques and Applications

of Artificial Intelligence, pages 115–128. Springer, 2006.

[18] Gerard Salton and Chris Buckley. Term weighting approaches in automatic
text retrieval. Information Processing and Management, 5(24):513– 523,
1987.

[19] Ronald R. Yager. On ordered weighted averaging aggregation operators in
multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern., 18(1):183–
190, 1988.

[20] Ronald R. Yager. On the inclusion of importances in owa aggregations. In
The ordered weighted averaging operators: theory and applications, pages
41–59, Norwell, MA, USA, 1997. Kluwer Academic Publishers.

