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Abstract

In this paper we devote ourselves to the difficulty of fitting human designed ex-
periments to real-world cases. We decompose this problem into two smaller subprob-
lems: 1.) The search of recurrent patterns in temporal sequences, so called motifs
that are deemed to be discovered in both the experiments and the real observations
and 2.) the matching of motifs to linguistic terms which are possibly available as do-
main knowledge. Therefore we describe an effective time series representation that
enormously speeds up the search for these motifs. We present some approaches to
adjust the designed experiments with the help of the discovered motifs. Finally, we
conclude our work and give prospects to possible extensions.

Keywords: Multivariate Time Series Analysis, Motif Discovery, Labeling, Fre-
quent Pattern Mining.

1 Introduction

Conducting field tests of complex systems to evaluate their behavior is usually expensive
and time consuming. One requirement is that the designed tests should be as similar as
the behavior of their pendants which are produced in series and used in the real world.
Based on these experiments which quantitatively describe criteria (e.g., lifetime, errors,
loadings), the quality of a system might be improved. For instance sources of error can
be found and remedied in the next generation of systems.

In order to evaluate these criteria, sensor data are recorded over long periods of time from
the test and the real objects, respectively. Existing data analysis methods are based on
one-dimensional load spectra which are utilized to compare the tests to the reality. These
methods are completely time-independent. However, the timely behavior of real-world
systems might contain many different processes that have not been considered in the tests
so far. Additionally, the tests may contain procedures that do not meet reality at all.

Data mining methods that consider time as additional variable are discussed to some ex-
tend in Section 2. By means of these methods to analyze time series we are able to
discover interesting recurrent patterns, so-called motifs. We describe a very effective al-
gorithm to find such motifs in Section 3.

One task then would be to match discovered motifs to test criteria of the time series.
Every time series containing a motif thus can be labeled by at least one test criterion if the
relevant test has been designed thoroughly. Hence a motif and its label can be regarded as



a discovered rule’s antecedent and consequent, respectively. In Section 4 we explain how
motifs are labeled by means of expert’s knowledge.

Having identified a set of rules in all experiments, we try to retrieve a subset of it in real-
world data. As a consequence unseen time series can be assigned and compared to the
given experimental criteria. This part of our work is specified in Section 5.

Thence it is possible to adjust the experiments to the given real-world cases as follows.
For example if the motifs of an unseen time series cannot be found in any experiment, then
the tests should be adjusted such that every new motif occurs at least once. Then again
motifs that only exist in test data and not in the real-world should be removed since they
do not seem to be relevant. Section 6 clarifies further details of this approach. We finally
summarize our work and give prospects to open questions and problems in Section 7.

2 Time Series Data Mining

In research and development, data mining in time series has gained incredibly big at-
tention in the last years. Meanwhile time series are simply ubiquitous in areas such as
finance, medicine, biometry, chemistry, astronomy, robotics, networks and industry. So-
called time series databases save an additional time stamp for every stored dataset. A
time series can be arbitrarily long and potentially involve several dimensions (attributes,
channels, sensors). Then a time series is no longer called univariate but multivariate.

A big challenge is the search for useful information in time series. Today we distinguish
between the following time series data mining tasks: Clustering [1], classification [2],
motif discovery [3], rule generation [4], visualization and anomaly detection [5].

Due to the plenty of data, many of those problems can usually be broken down to the
search for recurrent sequences in the time series that are similar to each other. In order to
find these sequences one has to define a similarity measure that compares two sequences.
Most publications in that field use the Euclidean distance

d(Q,C) =

√√√√ w∑
i=1

(qi − ci)2 (1)

between two normally distributed sequences Q = (q1, . . . , qw)T and C = (c1, . . . , cw)T

of length w as basis for the similarity measure. If we use (1) to measure the similarity,
usually lots of comparisons must be performed to find some motifs. Moreover, the ca-
pacity of every fast main memory is most of the time to small to load all original data at
once.

2.1 Memory-Efficient Representations

Owing to these many and especially slow accesses to the original data on the hard disc,
one should us an approximation of every time series that fits into the main memory of a
computer and contains all essential and interesting features. There are dozens of differ-
ent kinds of time series approximations, e.g., discrete Fourier transform (DFT), discrete
wavelet transform (DWT), piecewise linear models (PAA), piecewise constant models



(APCA), singular value decomposition (SVD), symbolic representations. The latter ones
benefit by being applicable to algorithms that originate from text processing and bioinfor-
matics, e.g., hashing, Markov models, suffix trees, etc.

In current research the symbolic representation of Lin and Keogh [6] wins out even over
well-known approximations. Their symbolic aggregate approximation (SAX) transforms
a univariate time series sequence into a word of defined length n over a chosen alphabet
A with |A| = a. The SAX algorithm is rather simple but intuitive.

Firstly, the sequence is separated into n equal parts. Then the mean of every interval
is computed as representative of all values in that interval. This method is also called
piecewise aggregate approximation (PAA) [7].

After that step the essentially shorter sequence of mean values is discretized as follows.
Every mean value of the PAA sequence is assigned to one of the a letters such that the
occurrence of every letter in the sequence is equally probable. This is achieved by as-
suming that the PAA sequence’s range of values is normally distributed. Furthermore,
this distribution is split up into parts such that all parts share the area under the Gaussian
curve. This assumption can be made due to the following fact. Long time series may not
be normally distributed, but their short sequences certainly are to a high degree [6].

While other symbolic representations generate a word from time series data as well, SAX
is yet one of a kind compared with them. It does not only compress the sequence. SAX
also enables us to measure a distance d∗(Q,C) between two SAX words which is a lower
bound of the Euclidean distance (1) between the original sequences Q and C, formally

d∗(Q,C) ≤ d(Q,C).

For the rest of the paper we assume that the similarity is determined by the Euclidean
distance (1). So, a lower bound means that if two SAX words are dissimilar, then their
original sequences are dissimilar as well. Consequently, algorithms that are based on SAX
produce identical results compared to algorithms that work with the original data. Merely
similar SAX words should be compared in the Euclidean space again. Fortunately, those
accesses to the original data are only very rare since most of the comparisons are based
on dissimilar sequences.

Having a memory-efficient representation we can concentrate ourselves on finding similar
sequences efficiently. In the following we proceed from the assumption that every time
series is approximated by SAX since the next algorithms are based on hashing.

3 Motif Discovery in Time Series

If we are able to find recurrent sequences that are similar to each other, then problems
such as clustering or classification of time series are much easier to solve. These similar
sequences are called motifs due to the vocabulary that is used in bioinformatics. This
originates from the fact that in this domain, motifs correspond to recurrent strings (usually
from a DNA).

In the article from Chiu et al. [8] SAX is associated with motif discovery in univariate
time series for the first time. In order to find all motifs of a time series of length l, it is



separated by a sliding window with certain width w into (l − w + 1) sequences. Every
sequence is transformed into a SAX word and saved into a (l−w + 1)× n matrix which
we call SAX matrix.

The positions of possible motifs are then guessed using the random projection algorithm
proposed by Buhler and Tompa [9]. Actually, the positions are found by pairwise com-
parisons of the SAX words. So, for each of those (l − w + 1)2 comparisons, we firstly
reserve one entry in a collision matrix M which can be implemented efficiently by a hash
table. In the beginning, let every entry M(i, j) be zero for 1 ≤ i, j ≤ l − w + 1.

Although usually n << w, it is not preferable to compare every single character of the
saved SAX words in the matrix with each other. Buhler and Tompa rather had the idea that
there exist so-called don’t care symbols of which we do not know where they might be in
the words. These symbols would correspond to, e.g., a noisy motif, a dilation/contraction
of a temporal sequence.

Accordingly the SAX matrix is projected down to 1 ≤ k < n randomly chosen columns.
Afterwards all rows of the projected matrix are compared with each other. If two projected
SAX words in the rows i and j are equal, then the value in M(i, j) is incremented by one.

The projection is repeated t times since one can assume that some of the hidden motifs will
share one entry in M after t iterations. Additionally, it is improbable that many random
sequences will collide together with an already found motif. Therefore they would have
to be identical to this motif in all k positions.

Since the algorithm cannot know if a collision entry in M is a motif or not, the user
must specify a threshold 1 ≤ s ≤ k. All M(i, j) ≥ s thus would be motif candidates.
Remembering that we deal with temporal and not DNA sequences, the problem of motif
discovery becomes harder as we find similar occurrences of the i-th sequence in its direct
neighborhood. Those sequences which are named trivial matches [8] are heuristically
removed from the set of potential motifs at the end of the discovery.

Although comparatively, many parameters have to be determined, i.e., n, a, w, k, t, s, ran-
dom projection is robust against slight changes of the SAX parameters n and a as well
as the projection size k [8]. Also the number of projections t can be set large enough in
order to create some collisions. However, there are two questions left: How many and in
particularly what kind of motifs do we have to find?

If we set w and s too large on the one hand, then we may not find lots of “short” motifs.
On the other hand, we will get completely different results if we set w and s too small.
Then we will probably find many random consensuses that do not correspond to any real
motif. Therefore, the choice of these two parameters should be made carefully. Expert’s
knowledge may help in such a situation.

As a side remark, we would like to mention that Yankov et al. [10] extended time series
random projection to a non-Euclidean distance measure, i.e., uniform scaling. With this
method one can find motifs that are not exactly w time stamps long. This approach is
indeed limited such that w must be chosen based on the respective application.

3.1 Subdimensional Motifs

The random projection to find time series motifs [8] was originally only designed for one-
dimensional datasets. If we deal with multivariate time series, then there exist several



ways how to tackle this problem.

The simplest idea is to map the p dimensions down onto one and then use random pro-
jection. For instance, Tanaka et al. [11] have transformed the input dimensions by means
of principal component analysis (PCA) into solely the first principal component. Finally,
the approach from Chiu et al. [8] could be applied to the new univariate time series.

A first approach of Minnen et al. [12] is founded on the idea that p dimensions also
generate p SAX words. These SAX words are then concatenated and treated like a SAX
representation of a long univariate time series. As a consequence, the method from Chiu
et al. [8] can be applied in this case as well.

Though notice that both approaches can only discover motifs that span all dimensions.
This will be problematic in particular if we a priori do not know in which of the dimen-
sions we can observe any motif. In practice it can also happen that a time series motif’s
attributes can differ quite from another one’s attributes. Such multivariate time series
motifs that do not span all dimensions are called subdimensional.

Formally, we denote a multivariate sequence as w × p matrix which stores w real values
for each of the p attributes. We define the distance dmult of two multivariate sequences
Q = [Q1, . . . , Qp] and C = [C1, . . . , Cp] by the Euclidean norm

dmult(Q,C) = ||d||2 =

√√√√ p∑
j=1

|dj|

whereas d = (d1, . . . , dp) and dj ≡ d(Qj, Cj) corresponds to the Euclidean distance (1)
between Qj and Cj for 1 ≤ j ≤ p.

According to our literature research, there is so far only one approach that tries to discover
subdimensional motifs. Minnen et al. [13] improve their original idea to concatenate the
SAX words of every dimension. They increment the collision matrix M per attribute at
the appropriate entry for every projected SAX word that matches another one.

Afterwards all elements of M that are greater than s are picked out and must be examined
further. Note that although we have two positions for each pair of sequences, nonetheless
we do not know its relevant dimensions. Furthermore, there is not any assignment of the
pairs of sequences to the potential motifs yet.

Before we can perform this assignment, we have to extract the subdimensions of the
sequences by means of the following naïve idea. For every pair of sequences we sort all
distances d1, . . . , dp in an ascending order. Then the distance is accumulated in that order
for every single dimension until a certain threshold rmax is exceeded. The attributes of the
smallest distances thus correspond to the pair of sequences’ relevant subdimensions.

These heuristics can be also improved by not regarding attributes having smallest dis-
tances, but using only probably relevant attributes to compute the distance [13]. There-
fore one estimates the empirical frequency distribution P (dj) over the distances between
some non-trivial matches for every dimension 1 ≤ j ≤ p by random sampling. Later on
the distances d∗1, . . . , d

∗
p are computed for every entry M(i, j) ≥ s. If the value of the

cumulative distribution function P (dj ≤ d∗j) is smaller than the dimension relevance rrel

which is specified by the user, then the j-th dimension be relevant.



Determined all pairs of subdimensional sequences, the trivial matches have to be elimi-
nated as it was done in the univariate case of motif discovery. With this idea [13], motifs
do not need to span all dimensions. This would an asset compared to [11, 12] when the
set of attributes does contain, e.g., very noisy signals, uninformative dimensions.

Disadvantages of this method for subdimensional motif discovery are the threshold pa-
rameter rmax and rrel, respectively. Both extremely depend on the sequence length w. So,
if domain knowledge is present, then it is suitable to use rmax as threshold. Otherwise one
must estimate the distribution P (d) and handle with rrel.

4 Labeling Discovered Motifs

Having identified a set of subdimensional motifs, we merely found multivariate time se-
ries sequences of certain length w that recur at least twice. Note that we can find random
motifs accidentally as well. Thus it is probable that a motif which recurs only twice might
not be what we are looking for.

Yet, motifs that recur more often should be labeled meaningfully from mainly experts who
designed the experiments. They usually possess the necessary knowledge to interpret both
simple and complex curve progressions. This labeling can be done, e.g., by means of the
test criteria.

If there is no expert’s knowledge available, then one can fall back on methods from fuzzy
set theory (FST) [14]. In FST one tries to model imprecise, vague or even uncertain
concepts, e.g., sensor measurements, such that the human being obtains a better under-
standing of these concepts.

For instances, every attribute can be regarded as linguistic variable [15]. In doing so, the
attribute’s range of values is separated into a so-called fuzzy partition. Every partition is
described by a fuzzy set A. Thus every value x can be assigned to a membership degree
µA(x) ∈ [0, 1] of the fuzzy set A.

We consider the measured velocity v as an illustrating example. The velocity can be de-
scribed by some linguistic terms, e.g., fast, medium, slow. Every expression corresponds
to a fuzzy partition which then again is described by a fuzzy set, i.e., Afast, Amedium, Aslow.

If we want to assign a discovered motif to a linguistic term, for example we can compute
the mean v̄ of all velocity values in the respective sequence. The linguistic term with the
highest of the three membership degrees µAfast(v̄), µAmedium(v̄) and µAslow(v̄) is then labeled
to the motif.

If the experiments are designed thoroughly (i.e., they do not contain contradictory lin-
guistic terms), then it is assumed that a time series which contains the labeled motif can
be labeled in the same way. If this is not the case, we can firstly compute the relative
frequencies of labeled motifs in a time series, and secondly assign several labels to this
time series to a certain degree.

Every labeled motif and its linguistic term can thus represent the antecedent and the con-
sequent of a rule, respectively. We can further hope that such a consequent corresponds
to a test criterion. From the monitored experiments we finally obtain a set of rules which
can be interpreted in terms of natural language by more or less great efforts.



5 Matching Labeled Motifs

So far we solely considered the data coming from the field tests. The assumption in
Section 1 was that these trials are designed and performed very thoroughly. The system
that needs to be tested may behave completely different in a real-world environment, e.g.,
when it is utilized by an end user. In this situation we face the problem that systems under
real-world loads might not follow any designed schedule model.

Usually the only thing what remains to evaluate these systems is monitored sensor data
that hopefully contains motifs similar to the ones from the experiments. These real-world
data is foremost approximated memory-efficiently (see Section 2) before we try to find
motifs in the data (cf. Section 3). Now we can try to label the newly discovered motifs
with similar linguistic terms by means of the already labeled motifs from the field tests.
In machine learning, this would correspond to classification that is based on unsupervised
learning.

Remember that it is very important to choose an adequate distance measure in order to
compare two motifs. For example Lin und Keogh [6] have developed not only SAX but
the so-called MINDIST function which computes the distance between two SAX words.
It is preferable to use this function since the sequences are stored as SAX words anyway.
Of course, other distance measures, e.g. (1), could be used as well.

No matter which measures we choose, eventually every real-world time series can be
matched with previously unknown criteria. Taking everything into account, we can state
that a classification into different criteria is thus a trivial consequence. Nevertheless,
we have to consider that this classification should be carried out rather fuzzy than crisp.
Accordingly, the usage of fuzzy clustering methods [16] seems to be desirable.

6 Adjusting the Experiments

Having finally discovered all motifs of the real-world data and labeled them to the already
existing ones, experts should have a closer look at the results of the matching. The goal
should be to adjust the original experiments such that they will resemble the time series
more than before.

In total, three different possibilities have to be distinguished. If an unseen motif (coming
from any real-world case) could be matched easily with a motif from a field test, then we
can assume that we found some important feature of the system behavior. At any rate,
such characteristics should be kept in all experiments in the next generation of system
tests.

Experts would probably react differently in the case that a motif is exclusively discovered
in field tests and not in real-world case. Such a feature should most likely be removed
from the experiments after expert opinion. It is clear that this type of motif does not
matter at all.

If there are in turn motifs in unseen time series that do manifest themselves in any trial,
then experts have to adjust at least one trial. After all, this motif seems to be a recurrent
feature of the system which occurred either never or not often enough in the field tests.



When all motifs are examined and the test design is improved, the next generation of
experiments can be performed. The gained knowledge about, e.g., loading, service live,
which results from the tests should consequently be more consistent with the serial prod-
uct used in the reality. Finally, these experiences can possibly provoke enhancements of
the systems.

7 Conclusions and Future Work

In this paper, we dealt with the question how field tests of systems that are produced
in series might be adjusted to real circumstances. We especially pursued the efficient
analysis of multivariate time series. This is due to the fact that in practice there is usually
nothing but monitored data from many sensors available.

We argue that symbolic representations (in particular SAX) are comparatively superior in
the data analysis of time series. Furthermore we can find very efficient methods which
allow us to find recurrent sequences, i.e., motifs, in multivariate time series very fast. Un-
fortunately, there is not any satisfying heuristics to handle the vast number of parameters
which influence the search and thus the success of the application.

Some unseen time series can be matched with the field trials by means of linguistic terms
and discovered motifs in both the tests and real-world cases. The linguistic terms may
either result from human experts or be generated from temporal sequences. After the
clustering of all time series, the same experts might adjust the original tests to the observed
reality.

In our work, we did not cover the discovery of errors and anomalies [5] in the measured
data. We are rather concerned how to support the optimization of test procedures. While
we are looking for frequent patterns, anomalies and errors usually occur highly infrequent.

The idea was born during an external funded project that we are working on with an
industrial partner. This partner supplies us with much data from experiments and matched
test criteria which shall describe the experiments. Usually in the industry one-dimensional
load spectra are used to compare experiments with the reality. Our work is meant as
addition to existing methods for data analysis.

So far we proceeded in our efforts to the discovery of some meaningful motifs. Though
given the nondisclosure of the project, we are not allowed to publish either a name, or
results, or some visualization of the data.

The next step will be the application of fuzzy clustering methods to all found subdimen-
sional motifs in order to generate rules for some of the time series. This should help us
to analyze unseen time series. Moreover, we plan both to automate the labeling of motifs
with the linguistic terms and to verify them with the given test criteria. In order to do so,
we will not only restrict ourselves to local trends in sequences (e.g., mean values) but we
will consider the variability and the length of a motif as well.

The latter measure will probably be hard to obtain since the length of any motif is un-
known in principle. If we can develop an algorithm that discovers motifs of different
lengths, then we could focus on the next challenge in this field. Approaches from [17, 10]
may be helpful to solve this task.
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