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Zusammenfassung

In nahezu allen Bereichen von Handel, Dienstleistung, Industrie und For-

schung werden große Mengen von Daten gesammelt. Der Grund dafür liegt

meist in dem Wunsch, das Verhalten von Kunden zu verstehen sowie techni-

sche oder natürliche Phänomene beschreiben bzw. vorhersagen zu können.

Neben der Größe solcher Datensätze, die eine Analyse ohne Unterstüt-

zung von Computern unmöglich macht, stellt die Anzahl der Attribute, die

ein Datenobjekt beschreiben, eine Herausforderung dar. Während Datenob-

jekte, die durch zwei oder drei Attribute beschrieben sind, einfach graphisch

dargestellt werden können, ist die Visualisierung hoch-dimensionaler Daten

– also Daten, die durch sehr viele Attribute beschrieben werden – nicht trivi-

al.

Das Forschungsgebiet Data Mining umfasst die Entwicklung geeigneter

Methoden zur Datenaufbereitung und Datenanalyse vor dem Hindergrund

wachsender Datenbanken mit komplexen Datensätzen. Diese Arbeit liefert

einen Beitrag auf dem Gebiet der Methodenentwicklung zur Dimensions-

reduktion und Ausreißererkennung. Ein wesentlicher Beitrag besteht in der

Visualisierung komplexer Daten, sowie der Visualisierung von Ergebnissen

verbreiteter statistischer Analysemethoden, wie Clustering oder Fuzzy-Klas-

sifikatoren.

Am Beispiel der Analyse von Flug- und Wetterdaten vom Flughafen Frank-

furt wird deutlich, welche Stärken und welche Grenzen die in dieser Arbeit

vorgestellten Methoden charakterisieren. In diesem Beispiel soll der Einfluss

des Wetters auf die Flugzeit ankommender Flugzeuge am Frankfurter Flug-

hafen bestimmt werden. Dadurch soll die Vorhersage von Flugzeiten mög-

lich werden, was die Optimierung verschiedener Abläufe am Flughafen zu-

lässt.





Abstract

Almost all branches of commerce, industry and research put great efforts in

collecting data with the objective to describe and predict customer behaviour

or both technical and natural phenomena.

Besides the size of such data sets, which make manual analysis impracti-

cal, data analysis becomes challenging due to a large number of attributes

describing a data object. Whereas a graphical representation of data objects

that are described by means of two or three attributes can be realized easily,

the visualization of high-dimensional data – data that is described through

many attributes – is not trivial.

The data mining research area comprises the development of suitable tech-

niques for data preprocessing and data analysis to cope with the problem of

aggrandizing databases including complex data sets. This thesis contributes

to the domain of methodology development, dimensionality reduction and

outlier treatment. Another major focus is set on the visualization of complex

data as well as the visualization of complex results obtained from common

data mining techniques, e.g. clustering and fuzzy classifiers.

The characteristics of the proposed techniques become evident on the ex-

ample of the analysis of flight data and weather data measured at Frankfurt

Airport. The objective of this application is the research of weather factors

that affect the flight duration of aircraft approaching Frankfurt Airport. Un-

derstanding the interrelationship between weather and flight duration per-

mits the optimization of various processes at the respective airport and may

save time and money of customers and companies.
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1 Introduction

Nowadays, data collecting is practiced in almost every domain of business

and science. Data mining or knowledge discovery is the hidden agenda be-

hind this process. Ideally, one would input all the collected data into a black

box which outputs all the knowledge that comprehends the data. Unfor-

tunately, this is not available until now. Indeed, the process of knowledge

extraction is all but trivial. First problems arise when experiments or mea-

surements produce data of low quality. Data mining algorithms must thus

be able to deal with uncertainty or imprecision.

Most classical data mining methods expect a homogeneous input. In many

modern applications, however, the data to be analyzed come from heteroge-

neous information sources. We certainly cannot expect to find data mining

algorithms that are generally applicable to all kinds of information sources.

Due to his excellent capability of visual pattern recognition, a human can

easily group data into clusters or classify different phenomena simply by

viewing them on a sheet of paper or on a computer screen. This hypothesizes

admittedly that the nature of the problem representation is 3-dimensional

at most. However, the problems we focus in this work are naturally high-

dimensional in a virtual feature space and thusly not analyzable directly by

viewing only.

On the one hand, the issue of this work will be the visualization of prob-

lems that can be represented in a high-dimensional feature space. But we

will also provide some improvements to common techniques that mine in-

formation from suchlike data.

1



2 1 Introduction

1.1 Data Mining and Visualization

The analysis of collected data is not a new activity. Statisticians have been

defining mathematical descriptions of data for many years. Research work

in statistical analysis, pattern recognition and machine learning all contribute

to data mining. Often the available data comprise only a sample from the

complete population. The aim may be to generalize from the sample to the

population. Such generalizations may not be achievable through standard

statistical approaches because often the data are not random samples, but

rather represent a biased subsample [39].

According to [28] data mining is the mechanized process of identifying or

discovering useful structures in data. The term structure refers to patterns,

models or relations over the data. A pattern is described as a description of

a subset of data points. A model is a description of the entire data set. A

relation is an accurate, convenient and useful summary of some aspect of

the data specifying some dependency between attributes over a subset of the

data. Typically favoured requirements of relations we seek are, of course,

novelty, but also simplicity. Relationships must be understandable to be ac-

cepted by a user.

Two general categories in data mining are prediction and knowledge dis-

covery. Prediction involves using some variables to predict unknown or fu-

ture values of other variables of interest. Prediction will be commonly dis-

tinguished between classification, which implies the prediction of discrete

variables, and regression that works on continuous variables [16]. Knowl-

edge discovery focuses on finding interpretable patterns describing the data.

It has been defined as the nontrivial extraction of implicit, previously un-

known, interesting and potentially useful information from data.

Visual methods are important in data mining because they help to provide

comprehension of unexpected relationships. The goal is to reduce complex-

ity while capturing important information. Visualizations can be used to ex-

plore data, to confirm or deny a hypothesis or to emphasize certain aspects

of the data to the viewer. In exploratory visualizations the user is searching
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Figure 1.1: The data mining process

for structure or trends attempting to formulate some hypotheses. Visualiza-

tion can be static, animated or interactive. Without the proper visualization

techniques, data mining models may not give us the desired insight to help

humans understand the phenomena of interest [28]. A detailed survey of

visualizations is given in [42].

The data mining process consists of different stages that are visualized in

figure 1.1 and summarized in the following. The problem definition stage in-

cludes the description of the form of input and output, but also costs and

the appropriateness of using data mining. Data collection is concerned with

deciding which data to collect and how to collect them. The data preprocessing

task assures that data conforms to a certain format and duplicates or outliers

are treated appropriately. Selecting an appropriate mining method consists of se-

lecting an algorithm, e.g. regression, clustering, etc., and of setting algorithm
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parameters, such as the number of prototypes for the clustering. Training and

testing the data means the training of the mining algorithm and testing it using

an evaluation set of data in the trained architecture. A detailed examination

of the data mining process can be explored in [16, 39, 90].

This work will mainly contribute to the data preprocessing stage, the model

selection stage and the training and testing stage. For that purpose we will

describe some techniques for outlier treatment and visualization techniques

that help to select suitable mining methods. Further we contribute to the

visual evaluation of clustering algorithms and to the visual presentation of

fuzzy rules.

1.2 Improving Air Traffic Management with

Data Mining

Air traffic growth has been stated in the past decades neglecting a temporary

decrease in 2001–2002. Likewise traffic forecast estimates an increase of about

4% yearly for Europe [73]. The big effort that is made to lower the delay of

aircraft emphasizes that often airports already operate at their limit [1, 2, 26].

A serious problem is that heavy aircraft induce wake vortices1 that constrain

separation to succeeding aircraft. Inventing procedures to reduce separation

is subject of current research. Studies have shown that delay is also caused

to a big extent by bad weather [13, 26, 40, 71, 93]. Thunderstorms must be

dodged, heavy headwind reduces flight speed and iced aircraft must be de-

iced – just to mention some reasons for that. Besides the weather forecast

that is usually released by meteorological services also the prediction of the

delay under given weather conditions might improve the airport efficiency.

Of course, the impact of weather on air traffic cannot be generalized for all

airports since local particularities vary naturally. Predicting the delay that an

aircraft may have allows to retard flights on other airports that depart to the

airport but also to coordinate ground activities such as baggage handling.

1Wake vortices are small tornadoes, counter-rotating, being generated at the end of the

wings of an aircraft.
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Analyzing a weather data set with the objective to predict aircraft delay will

be a thread in this thesis.

In [40] arriving flights at Los Angeles International Airport (LAX) are fo-

cused. A metric – the Daily Flight Time Index (DFTI) – is developed that

captures the daily variation in flight times for LAX arrivals. The day-to-day

variation in DFTI is analyzed relating it to weather, demand, and average

delays at origin airports. A linear regression model is applied to data which

describes several weather factors, traffic information and an origin airport

delay variable. The model explains 75% of the variation in DFTI. Several

other models are estimated and compared to this baseline model.

The impact of thunderstorms at Frankfurt Airport has been studied in [93].

Thunderstorm days were compared with adequate reference days with nor-

mal weather conditions. The difference in the delay times between a thun-

derstorm day and the reference day was determined on an hourly basis. A

significant increase in delay was observed. Since the total delay depends on

the intensity and duration of the thunderstorm event and the instant capac-

ity of the airport, delay is varying strongly. In a period of two years delay

factors ranged between 0.1 and 12.7.

1.3 Data Presentation

Studies in this thesis are based either on some synthetic data sets, on well

known benchmark data sets and on two combined data sets coming from an

industrial application. The last contains on the one hand the weather con-

ditions at Frankfurt Airport and the complete traffic data for the same time

period on the other hand. Details of the synthetic data and the benchmark

data will be given later. A brief description of the weather data and the traf-

fic data will be given in the following. For detailed information on both data

sets we refer to [61, 78].



6 1 Introduction

Weather Data

The weather data originate from the ATIS2 weather data set of the year 1998:

different sensors present at the airport capture several weather characteristics

and form a weather report. Such a report is released every thirty minutes

(in case of rapidly changing weather, the frequency is increased); this corre-

sponds to over 18000 data. Each weather report contains information such

as the temperature, the air pressure and precipitation information, e.g. the

presence of snow, rain or hail.

Traffic Data

In addition to the weather data set, information about the traffic is avail-

able, through a data set that contains the arrival times of all aircraft at Frank-

furt Airport for the observed time period. Since the delay is of interest that

is caused by the weather factors in the vicinity of the airport, the point in

time of the aircraft’s entrance in the airport vicinity (the so-called Terminal

Area, TMA) and the time when the corresponding aircraft is landing are con-

sidered. The difference between these two times corresponds to the travel

time in the TMA. This quantity is independent of delay that might have been

caused at the departure airport or during the flight. In average, the TMA

travel time is about thirty minutes.

Whereas the studies in [61, 76, 77, 78] aimed at analyzing the effect of cer-

tain weather factors to flight durations, we will demonstrate the efficiency of

our techniques by means of these data sets.

1.4 Data Preprocessing

Advances in data collection and storage capabilities during the past decades

have led to an information overload in most sciences. In most of the cases

when it is to solve a task one gets raw data that have to be prepared for

2ATIS (Automatic Terminal Information Service) is a continuous broadcast of recorded in-

formation in airports. ATIS broadcasts contain essential weather information but also the

active runway and other information required by the pilots.
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concrete learning processes. Before a data set will be formatted to conform to

a certain analysis tool it is essential to determine appropriate data structures

and then the data preprocessing method. Some important aspects in this

regard are:

• data cleaning

• data transformation

• data reduction.

Alike the weather data set requires all these preprocessing steps.

Data cleaning covers the handling of missing values, the identification and

processing of outliers and resolving inconsistencies. These steps are impor-

tant since outliers as well as inconsistencies have a bad impact on a multitude

of learning methods. In the recent years, much work has been done to cope

with the outlier problem [3, 4, 12, 38, 52, 53]. Data cleaning is far from triv-

ial since suchlike (missing) data can be the result of erroneous measurement

but it can also comprehend important information [4, 96]. Missing data can

be filled in using imputation-based or model-based techniques. Replacing

missing values without capturing the information that they were missing ac-

tually removes information from the data set. The most predictive variable

in a data set could be the missing value pattern. For an extensive discussion

of missing value treatment we refer to [97]. Thus, the traffic data set needs to

be cleaned because of some outlying values due to very heavy traffic and due

to accidents in two cases during the observed time period. The weather data

set contains missing values when certain weather conditions are fulfilled but

also in case of the malfunction of different sensors.

Data transformations are needed for different reasons, amongst others for

aggregation and normalization. Often it may be sufficient to classify data by

means of linguistic terms, e.g. travel time is low, medium or high. In most of

the cases different attributes vary in range. Normalization is then advisable

in order not to affect learning methods in an unjustified way. As a matter of

fact, not all learning methods process every type of data. Transformations,

e.g. dichotomization or binarization of nominal attributes will be necessary
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to process data. Actually, the weather data set contains a nominal attribute

which describes precipitation by one or more facts, e.g. RASH which means

rain shower whereas RA simply indicates rain. Constructing new features in

such cases inflates the data set’s complexity drastically.

Data reduction and dimensionality reduction may be essential to be able to

analyze data within an acceptable timeframe under maintainable resources.

Moreover, not all the measured variables are important for understanding

the underlying phenomena of interest. Thus, the problem is to identify rele-

vant features. The goal is to reduce complexity while losing the least amount

of information. Commonly used methods like principal component anal-

ysis or multidimensional scaling provide dimensionality reduction. Multi-

ple regression, regression trees or feature selection techniques facilitate the

identification of indispensable variables. Sampling, which selects a repre-

sentative subset from a large population of data, is needed when analyzing

large data sets that overextend resources, be it time or memory storage. As

a preprocessing step for data mining, discretization consists of splitting the

values of a continuous variable into a small list of intervals. Each interval

is then treated as a discrete value by the data mining algorithm. An effect

of discretization is to speed up the execution of several algorithms, e.g. rule

induction algorithms [16].

1.5 Outline

In this work we advance the methodology regarding data visualization and

data mining of high-dimensional data. Regarding the data mining process,

we will mainly contribute to the stages of data preprocessing, mining al-

gorithms and model evaluation. In chapter 2, we review multidimensional

scaling and focus on three own techniques. We apply our methods to syn-

thetic data and on real weather data as well to visualize them on the plane.

Chapter 3 deals with the improvement of fuzzy clustering and the visualiza-

tion of fuzzy partitions. Concerning clustering we aim at making existing

techniques more robust. Validity of fuzzy partitions is difficult to determine.
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Our visualizations target to identify single clusters. In chapter 4, we review

the concept of fuzzy rules and describe a way to visualize high-dimensional

data in relation to their representing rule base. Finally, we conclude with

chapter 5.





2 Multidimensional Scaling and Data

Navigation

Multidimensional scaling (MDS) is a family methods that seek to present the

important structure of the data in a reduced number of dimensions3. For this

purpose MDS estimates the coordinates of a set of objects Y = {y1, . . . , yn}
in a feature space of specified (low) dimensionality that come from data

X = {x1, . . . , xn} ⊂ R
p trying to preserve the distances between pairs of

objects. Different ways of computing distances and various functions relat-

ing the distances to the actual data are commonly used. These distances are

usually stored in a distance matrix

Dx =
(

dx
ij

)

, dx
ij =

∥

∥xi − xj

∥

∥ , i, j = 1, . . . , n.

The estimation of the coordinates will be carried out under the constraint,

that the error (or stress) between the distance matrix Dx of the data set and

the distance matrix Dy =
(

d
y
ij

)

, d
y
ij =

∥

∥yi − yj

∥

∥ , i, j = 1, . . . , n of the corre-

sponding transformed data set will be minimized.

2.1 Sammon’s Mapping

Different error measures to be minimized were proposed, e.g. the absolute

error, the relative error or a combination of both. A commonly used error

measure, the so-called Sammon’s mapping

E =
1

n

∑
i=1

n

∑
j=i+1

dx
ij

n

∑
i=1

n

∑
j=i+1

(

d
y
ij− dx

ij

)2

dx
ij

(2.1)

3Principal component analysis can be regarded as a basic form of multidimensional scaling.

11
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Algorithm 1 Sammon’s mapping

Given the data set X = {x1, . . . , xn} ⊂ R
p

Define projection dimension q ∈ {1, . . . , p− 1}
Define step size α and the threshold value E∗

Compute dx
ij, i, j = 1, . . . , n

Initialize Y = {y1, . . . , yn} ⊂ R
q

repeat

Compute d
y
ij, i, j = 1, . . . , n

Compute ∂E/∂yk, k = 1, . . . , n

yk = yk − α · ∂E
∂yk

, k = 1, . . . , n

until ∑
n
k=1 (∂E/∂yk)

2
< E∗

Output projected data set Y = {y1, . . . , yn} ⊂ R
q

describes the absolute and the relative quadratic error [91]. To determine the

transformed data set Y by means of minimizing error E a gradient descent

method can be used. By means of this iterative method, the parameters yk to

be optimized, will be updated during each step proportional to the gradient

of the error function E. Calculating the gradient of the error function leads to

∂E

∂yk
=

2
n

∑
i=1

n

∑
j=i+1

dx
ij

∑
j 6=k

d
y
kj − dx

kj

dx
kj

yk − yj

d
y
kj

. (2.2)

After random initialization for each projected feature vector yk a gradient

descent is carried out and the distances d
y
ij as well as the gradients

∂d
y
ij

∂yk
will be

recalculated again. Algorithm 1 that shows the procedure with pseudo code

terminates when E becomes smaller than a certain threshold E∗.

The complexity of MDS is O(c · n2), where c is the (unknown) number of it-

erations needed for convergence of the gradient descent scheme. Thus, MDS

is usually not applicable to larger data sets. Another problem of MDS is that

it does not construct an explicit mapping from the high-dimensional space to

the lower dimensional space, but just tries to position the lower dimensional

feature vectors in a suitable way. Therefore, when new data have to be con-
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sidered, they cannot be mapped directly to the lower dimensional space, but

the whole MDS procedure has to be repeated.

2.2 Modern Multidimensional Scaling

In the past decade much research work has been done to improve multidi-

mensional scaling. Most effort has been accomplished to reduce the time

complexity of the algorithm in order to permit the application of MDS to

larger data sets. There are too many approaches to review them all here, but

we will give a brief overview on some important representatives.

Chalmers proposed in [14] a stochastically-based algorithm of linear com-

plexity per iteration to produce low-dimensional layouts. Instead of doing

all the possible pairwise gradient calculations as in Sammon’s mapping, this

method carries out gradient calculations between feature vector xi and the

members of two sets whose size is bounded by a constant. One set contains

a dynamically maintained list of references to neighbour objects. Entries in

this set are stored in order of distance in the high-dimensional space. This

neighbour set is carried over between iterations. The second set, which is a

randomly chosen subset of all objects, is constructed anew each iteration and

has no member of the neighbour set. Candidate elements for the second set

will be inserted to the neighbour set instead if the distance to feature vector

xi is lower than the distance of one or more of the current neighbours. In this

way, the neighbour set becomes more representative of the most similar ob-

jects to xi over successive iterations. Stress calculation is performed every
√

n

iterations. With this method Chalmers reports the applicability to larger data

sets. The overall costs of this approach are O(n2) because the total number

of iterations depends on the data set size as given in [14].

FastMap [27] approaches multidimensional scaling through the projection

of objects on a carefully selected arbitrary low-dimensional hyper-plane. The

key idea is to assume that the data are in some unknown high-dimensional

space. Only a distance matrix is given. A heuristic strategy is used to de-

termine a line between two pivot objects which allows projections with little
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information loss. Thus, the task is to find a line on which the projections are

as far apart from each other as possible. To achieve this, pivot objects are

chosen such that the distance between them is maximized. The proposed

heuristic strategy is linear in the number of objects alike the projection on

lower dimensions since distance preservation is only arranged to pivot ob-

jects. FastMap achieves significant time savings over MDS at the expense of

higher stress for a given target dimensionality. To obtain low stress FastMap

has to map the data set to a fairly higher feature space than conventional

MDS.

In [67] an improvement of Chalmers’ algorithm is proposed which has

O(n
√

n) time complexity. In this work a
√

n sample of the data set is taken

to build Chalmers’ model. The complete layout of the entire data set is per-

formed by means of an interpolation strategy. The placement of an object

begins with finding the most similar member of the initial layout and then

finding the best position on the circumference of the circle whose radius is

defined by the original distance between the object to place and the most

similar member. This position is then refined by iteratively adding gradients

from a subset of the data, moving the object until its final location. Further

refinements have been proposed in [66].

The MDSteer algorithm, proposed in [99], iteratively alternates between a

layout stage in which a sub-selection of points are added to the set of active

points affected by the MDS iteration, and a binning stage which increases

the depth of the bin hierarchy and organizes the currently unplaced points

into separate spatial regions. This binning strategy allows to select regions

of the layout to focus the MDS computation into the areas of the data set

that are assigned to the selected bins. The authors emphasize the steerability

to MDS. The complexity of MDSteer is comparable to Chalmers’ approach.

The main benefit is the ability of interactive investigation of data sets with

high-dimensionality.

In [69, 70] an approach is proposed that reduces computational complexity

by means of using Sammon’s mapping to map only some representatives of

the data set which are obtained using a clustering algorithm. The remaining
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data points are mapped using a relative MDS procedure that considers only

distances between the cluster centres and the data points leading to a reduced

number of computations.

Many other approaches related to multidimensional scaling have been pub-

lished in the recent years for which we refer to the literature [10, 23, 24, 43,

95, 103].

2.3 MDSpolar

MDSpolar, a new approach that we have first described in [80], is about the 2-

dimensional projection of a p-dimensional data set X. MDSpolar tries to find

a representation in polar coordinates Y = {(l1, ϕ1), . . . , (ln, ϕn)}, where the

length lk of the original vector xk is preserved and only the angle ϕk has to be

optimized. Thus, our solution is defined to be optimal if all angles between

pairs of data objects in the projected data set Y coincide as good as possible

with the angles between data objects X in the original feature space.

A straight forward definition of an objective function to be minimized for

this problem would be

E =
n

∑
k=2

k−1

∑
i=1

(|ϕi − ϕk| − ψik)
2 (2.3)

where ϕk is the angle of yk, ψik is the positive angle between xi and xk, 0 ≤
ψik ≤ 180◦. E is minimal, if the differences of the angles of all pairs of vectors

of data set X and the corresponding two vectors in data set Y are zero. The

absolute value is chosen in equation (2.3) because the order of the minuends

can have an influence on the sign of the resulting angle. The problem with

this notation is that the functional E is not differentiable, exactly in those

points we are interested in, namely, where the term |ϕi − ϕk| becomes zero.

Another meaningful approach would be

E =
n

∑
k=2

k−1

∑
i=1

((ϕi − ϕk)
2 − ψ2

ik)
2. (2.4)

In this case the derivative can be easily determined, however, resulting in a
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system of nonlinear equations for which no analytical solution can be pro-

vided.

In order to overcome these difficulties, we propose an efficient method

that enables us to compute an approximate solution for a minimum of the

objective function (2.3) and related ones. In a first step we ignore the absolute

value in (2.3) and consider

E =
n

∑
k=2

k−1

∑
i=1

(ϕi − ϕk − ψik)
2 (2.5)

instead. When we simply minimize (2.5), the results will not be acceptable.

Although the angle between yi and yk might perfectly match the angle ψik,

ϕi − ϕk can either be ψik or −ψik. Since we assume that 0 ≤ ψik holds, we

always have (|ϕi − ϕk| − ψik)
2 ≤ (ϕi − ϕk − ψik)

2. Therefore, finding a min-

imum of (2.5) means that this is an upper bound for the minimum of (2.3).

Therefore, when we minimize (2.5) in order to actually minimize (2.3), we

can take the freedom to choose whether we want the term ϕi − ϕk or the

term ϕk − ϕi to appear in (2.5). Before we discuss techniques to minimize

(2.5) with the freedom of reordering, we have to preprocess the data in order

to fit them best to our approach.

2.3.1 Data Preprocessing

Figure 2.1 illustrates an important problem by means of a simple data set.

The table next to the graphics contains the values of the angles between the

three feature vectors.

Even though, this feature space has only two dimensions and therefore an

exact reproduction of the data set should be possible, this cannot be achieved

without additional preprocessing. Since we only want to preserve the angles

between data vectors, it is obvious that any solution will be invariant with

respect to rotation of the data set. Thus, assuming without loss of generality

ϕ1 = 0 enforcing ϕ2 = 135, then according to our objective function (2.3)

ϕ3 = 180 leads to the optimal solution, which is obviously not what we

are looking for. This problem is caused by the fact that ψik is defined as a
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ψ x1 x2 x3

x1 0 135 135

x2 135 0 90

x3 135 90 0

Figure 2.1: A preprocessing step for MDSpolar

positive angle which satisfies ψik ≤ 180◦. This problem can be solved easily

by translating all feature vectors into the first quadrant. More generally, for a

high-dimensional data set we apply a translation that makes all components

of data vectors non-negative. For this we only have to determine for each

component the largest negative value occurring in the data set and using

this as a positive value of the corresponding component of the translation

vector. Note that, when the data set is normalized, i.e. all components are

between 0 and 1, no further preprocessing is required.

Thus, doing this kind of preprocessing, we actually do not preserve the

original data properties but those after the transformation. Of course, rota-

tion and translation is not changing any inter-data properties. The transla-

tion vector has to be stored so that for incremental adding of new objects the

transformation can be performed accordingly. For most of the new objects

the transformation will be as requested. It may occur that for new objects

which have one or more extreme components the translation will not be suf-

ficient to eliminate the negative components. In such a case, which is rather

rare if the previous data is representative, the mapping of the respective ob-

ject is still working, but might lead to non-optimal solutions.
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2.3.2 Approximation of MDSpolar

When we are free to choose between ϕi − ϕk and ϕk − ϕi in (2.5), we take the

following into account

(ϕk − ϕi − ψik)
2 = (−(ϕk − ϕi − ψik))

2 = (ϕi − ϕk + ψik)
2.

Therefore, instead of exchanging the order of ϕi and ϕk, we can choose the

sign of ψik, leading to

E =
n

∑
k=2

k−1

∑
i=1

(ϕi − ϕk − aikψik)
2 (2.6)

with aik = {−1, 1}. In order to solve this modified optimization problem of

equation (2.6) we take the partial derivatives of E, yielding

∂E

∂ϕk
= −2

k−1

∑
i=1

(ϕi − ϕk − aikψik). (2.7)

Thus, on the one hand, neglecting that we still have to choose aik, our solution

is described by a system of linear equations which means its solution can be

calculated directly without the need of any iteration procedure. On the other

hand, as described above, we have to handle the problem of determining the

sign of ψik in the form of the aik-values.

To fulfil the necessary condition for a minimum we set equation (2.7) equal

to zero and solve for the ϕk-values, which leads to

ϕk =
∑

k−1
i=1 ϕi −∑

k−1
i=1 aikψik

k− 1
. (2.8)

Different optimization strategies are conceivable. Of course, an important

condition is the computational complexity of the respective approximation

algorithm. In this work we describe a number of different strategies, starting

with a greedy algorithm which is quadratic with the number of data objects

in time, but is linear in space. Later on, we propose an algorithm that can

even reduce the complexity to O(n · log n).
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2.3.3 A Greedy Algorithm for the Approximation of

MDSpolar

As mentioned above, the solution of MDSpolar is described by a system of

linear equations. Since the minimization problem (see equation 2.6) is rota-

tion invariant, i.e. any rotation of a solution will also minimize (2.6), ϕ1 can

be set to any value, e.g. ϕ1 = 0. By means of a greedy algorithm we choose

aik ∈ {−1, 1} such that for the resulting ϕk the error E of the objective func-

tion (2.6) is minimal. For ϕ2 the exact solution can always be found, since a12

is the only parameter to optimize. For the remaining ϕk the greedy algorithm

sets aik in turn either−1 or 1, verifying the validity of the result, setting aik to

the better value immediately and continuing with the next aik until all k− 1

values for aik are set.

Algorithm 2 describes in a simplified way the greedy method. When im-

plementing the method, it can be optimized in that way, that the first ϕk in

the f or-loop has not always to be recalculated if in step i − 1 the parameter

aik has not been changed to −1. In such cases ϕk keeps the value from the

previous step.

As mentioned above, ϕ1 can be set to any value and ϕ2 can always be

chosen in such a way that the angle ψ12 is preserved exactly. For the remain-

ing angles ϕk no guarantee can be given that the greedy algorithm finds the

optimal solution. Incremental adding of feature vectors can be achieved by

simply extending the outer f or-loop by another iteration for each new object.

The angle ϕk will be computed analogously as for previous feature vectors.

For more accurate transformations (accepting higher calculating times) the

inner f or-loop can be encapsulated be another loop that enables the algo-

rithm to find better sign configurations that are ignored in the previous loop

due to the greedy heuristic. A suchlike loop should be limited by an ap-

propriate constant and can be cancelled immediately if no sign has changed

during the last loop. By means of this extension the algorithm is still greedy

and yields significantly improved local minimum solutions.
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Algorithm 2 Greedy MDSpolar

Given the data set X = {x1, x2, . . . , xn}
Let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)

ϕ1 = 0

for k = 2 to n do

aik = 1 for all i = 1 . . . k− 1

for i = 1 to k− 1 do

ϕk =
∑

k−1
j=1 ϕj−∑

k−1
j=1 ajkψjk

k−1 ek = ∑
k−1
j=1 (ϕj − ϕk − ajkψjk)

2

t = ϕk

aik = −1

ϕk =
∑

k−1
j=1 ϕj−∑

k−1
j=1 ajkψjk

k−1 fk = ∑
k−1
j=1 (ϕj − ϕk − ajkψjk)

2

if ek < fk then

aik = 1

ϕk = t

end if

end for

end for

2.3.4 Relative MDSpolar

As for conventional MDS, also for MDSpolar different approaches regarding

the objective function are feasible. The solution described above minimizes

the absolute differences of pairwise angles of the original data set and the

transformed data set. Large angles, which cause in tendency a large E may

affect the solution in that way, that the transformation will represent vectors

with small angles to others less correctly. Considering the relative error leads

to

E =
n

∑
k=2

k−1

∑
i=1

(

ϕi − ϕk − aikψik

ψik

)2

(2.9)

∂E

∂ϕk
= −2

k−1

∑
i=1

(

ϕi − ϕk − aikψik

ψik

)

1

ψik
. (2.10)
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The greedy algorithm 2 can be applied only modifying the calculation speci-

fication for ϕk

ϕk =
∑

k−1
i=1

ϕi

ψ2
ik

−∑
k−1
i=1 aik

1
ψik

∑
k−1
i=1

1
ψ2

ik

. (2.11)

Because of the different objective functions the validity of solutions with the

absolute MDSpolar and the relative MDSpolar cannot be compared by means

of E.

2.3.5 Weighted MDSpolar

In certain cases the objective when transforming data is to preserve relations

of feature vectors of the original feature space in the target feature space.

Thus, feature vectors that form a cluster should be represented as exact as

possible in the target feature space, too. The transformation of feature vec-

tors with a large distance to the respective feature vector can have a lower

accuracy. An approach to achieve this goal is the introduction of weights wik

to our objective function

E =
n

∑
k=2

k−1

∑
i=1

wik(ϕi − ϕk − aikψik)
2. (2.12)

Determining the partial derivative leads to

∂E

∂ϕk
= −2

k−1

∑
i=1

wik(ϕi − ϕk − ψik) (2.13)

and solving for ϕk to

ϕk =
∑

k−1
i=1 wik(ϕi − aikψik)

∑
k−1
i=1 wik

. (2.14)

Note that this is a generalization of relative MDSpolar. For relative MDSpolar

we simply choose the weights as wik = 1/ψ2
ik.

Since our transformation preserves the length of each data vector, it is

guaranteed that vectors with a large difference in length will not be mapped
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to close points in the plane, even though their angle might not be matched at

all. Therefore, we propose to use a small or even zero weight for pairs of data

vectors that differ significantly in their length. The weight could be defined

as a function of the difference between the length values li and lj of two data

vectors:

wik = w(li, lk) = w(z). (2.15)

We can use the absolute difference for z, i.e.

z = za = |li − lk| .

This might be useful if certain information about the structure of the data is

known in advance. The argument zr for relative weighting functions

z = zr = min

{

li
lk

,
lk

li

}

might be useful if a certain threshold value can be specified, whose excess ex-

cludes the calculation of the angle ϕk between the respective pair of vectors.

To decrease the computational complexity, weights should be chosen in such

a way, that for feature vectors with a certain (large) distance the respecting

weights become zero. The following function describes a simple weighting

function, which is the function shown in Figure 2.2(b):

w(zr) =







√

(

zr−ϑ
1−ϑ

)

, if zr ≥ ϑ

0 , otherwise
(2.16)

where ϑ ∈ [0, 1].

With the threshold ϑ one can control indirectly the fraction of the data that

will be used to determine the respective angle ϕk. Thus, small values for ϑ

lead to many weights w 6= 0 which is associated with high computational

complexity. Values near 1 for ϑ lead to a quickly decreasing weighting func-

tion and to low computational complexity, respectively. Any other function

can be used as weighting function. For reasons of an easy implementation

and low computational complexity a decreasing function which leads to a

more or less large fraction of zero weights should be used.
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For an efficient implementation it is useful to sort the feature vectors by

means of their length. Note that this can be achieved with O(n · log n) time

complexity. When determining the weights for the calculation of ϕk it is suf-

ficient to consider the feature vectors starting from index k. Weights will

be calculated stepwise. With every step the weights become smaller until a

weight becomes zero. Since the weighting function is decreasing, a further

iteration would lead to zero, too. Thus, the calculation of weights stops at

this point. In cases where clusters with a large amount of data are expected

in a data set, it might rather be useful to limit the maximum number of it-

erations for the calculation of the weights than setting a larger threshold. In

this case, the projected vectors will be forced to a proper position already by

a significantly large fraction of other feature vectors in the data set. It might

also be useful to reduce ϑ locally, when only few vectors satisfy the condition

in equation (2.16).

With a limitation of the number of weights w > 0 and a moderate ϑ at

the same time, it can be achieved that the number of weights considered for

the calculation of ϕk does not differ too much for different ϕk and limited

computation time can be guaranteed. Instead of considering the angles of

all feature vectors with the greedy algorithm 2 it might be useful to consider

only few feature vectors and calculate the exact solution of the sign problem.

Using a weighting function enables the user of MDSpolar to set a certain bin

size which indicates the number of feature vectors that will be considered

when calculating the desired ϕk. By means of this one can reduce the com-

putation time and reinvest it in finding the exact solution of the sign problem.

Solving the sign problem with the greedy strategy for a given maximum bin

size b and using a certain number c of iterations accounts with O(n · b · c) to

the algorithm complexity. Thus, the upper bound for the complexity of our

algorithm is O(n · log n) due to sorting the data.

Similar to the idea of stress for standard multidimensional scaling, an eval-

uation of the transformation can be done by determining the average devia-

tion from the original angles. In general this can be obtained by dividing E by

the number of terms summed up. For the error function (2.6) one has to di-
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(a) (b)

(c) (d)

Figure 2.2: Different weighting functions for MDSpolar

vide by n2+n
2 . With this measured value one can compare different mappings

even if they vary in the number of objects.

2.3.6 Illustrative Examples

Figure 2.4 shows some results of MDSpolar in comparison with Sammon’s

mapping. In favour of an easy verification of the results we applied MDSpolar

to some 3-dimensional data sets. The validity of the solution can be evalu-
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(a) Cube data set (b) Coil data set

Figure 2.3: Two synthetic data sets

ated by visual inspection. The Cube data set (see figure 2.3(a)) is about a

synthetic data set, where data points scatter around the corners of an imag-

inary 3-dimensional cube. Thus, the Cube data set contains eight well sep-

arated clusters. The Coil data set (depicted in figure 2.3(b)) is comparable

to a serpentine. As figures 2.4(b) and 2.4(c) show, the transformations of

MDSpolar are similar to these of conventional MDS (figure 2.4(a)). Whereas

MDS needs some thousand iterations until convergence, MDSpolar finds an

explicit solution after solving the system of equations and some hundreds

sign adjustments. Figure 2.4(d) shows the Sammon’s mapping of the Coil

data set. The transformations in figure 2.4(e) and 2.4(f) result from weighted

MDSpolar with weighting functions where at most twelve weights got val-

ues greater than zero. Thus, the transformation is based only on a relatively

small number of angle comparisons. Therefore, locally these transformations

are very accurate, but generally the loss of information is sometimes higher.

Since the value of ϕk is calculated from all preceding ϕ1 . . . ϕk−1 according

to equation (2.8) or equation (2.11) respectively, a solution with MDSpolar,

either absolute or relative, depends to some degree on the order of the data

set. Our tests have shown that in such cases only few feature vectors lead to

higher errors, while others will not. Thus, not the complete transformation

will be wrong, but only some feature vectors. Initialization is also a crucial

step for conventional MDS.
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(a) Sammon’s mapping (b) relative MDSpolar

(c) weighted MDSpolar (d) Sammon’s mapping

(e) relative MDSpolar (f) weighted MDSpolar

Figure 2.4: Different transformations of synthetic data with MDSpolar
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Figure 2.5: Mapping of the weather data with MDSpolar

2.3.7 Visualizing Weather Data with MDSpolar

Figure 2.5 shows a mapping of non-cloudy weather using relative MDSpolar

with a bin size of 200. In order to examine the relationships between the

weather factors and the flight duration, three classes of travel times are de-

fined: one class represents weather data associated with short travel times

with up to one minute more than the average travel time. It is represented

in green. A second class, represented in blue, corresponds to medium travel

times with up to eight minutes delay compared to the average travel time

value. The last class, in red, stands for weather data associated with even

later flights. Early flights prevail, less than 10% of the flights are more than

eight minutes later than the average. The figure shows clearly that the three

classes overlap to some degree. Whereas the green class is spread all over

the feature space, the blue class and the red class take the upper right re-

gion of the feature space mainly. Figures A.1–A.5 in appendix A show some

mappings of the weather data set using various bin sizes.
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2.4 POLARMAP

In this section we discuss another approach for dimension reduction that we

have presented in [82]. This approach - POLARMAP - is a modification of

MDSpolar. As for MDSpolar, this algorithm transforms high-dimensional fea-

ture vectors into 2-dimensional feature vectors under the constraint that the

length of each vector is preserved and the angles between vectors approxi-

mate the corresponding angles in the original space as good as possible. As

an improvement of MDSpolar, we will describe an algorithm that learns a

function that enables the user to map even new feature vectors to the target

space. Finally, we will describe a technique to learn such mappings from

data with O(n · log n) time complexity.

As an extension of MDSpolar, POLARMAP is a method that learns a func-

tion f that provides for any p-dimensional feature vector xk the correspond-

ing angle ϕk that is needed to map the feature vector to a 2-dimensional fea-

ture space. As for MDSpolar the length of vector xk is preserved. With the

obtained function also angles for new feature vectors can be computed. A

2-dimensional scatter plot might not be suitable, when visualizing mappings

for large data sets. With the computed function it is simple to produce infor-

mation murals, which allow more comprehensive visualizations [46].

Analogous to functional (2.3) we define our objective function E as follows:

E =
n−1

∑
i=1

n

∑
j=i+1

(∣

∣ f (xi)− f (xj)
∣

∣− ψij

)2
. (2.17)

E is minimal, if, for each pair of feature vectors, the difference of the two

angles, which are computed by the respective function f is equal to the mea-

sured angle ψij of the two vectors in the original space. Since functional (2.17)

is not differentiable, we propose analogous to the procedure for MDSpolar to

minimize the following differentiable objective function

Ẽ =
n−1

∑
i=1

n

∑
j=i+1

(

f (xi)− f (xj)− ψij

)2
. (2.18)
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Since we have always ψij ≥ 0 according to our definition, it is obvious that

Emin ≤ Ẽmin. Thus, a minimum of Ẽ might not be the minimum of E, but it

can be used as a conservative estimation. Albeit, f might be any function, we

discuss in this work only the following function style

f (x) = aT · x̃ (2.19)

where a is vector whose components are the parameters to be optimized and

x̃ is feature vector x itself or a modification of x. In the simplest case we use

x̃ = x (2.20)

a = (a1, a2, . . . , ap)
T

where f describes in fact the linear combination of the components of x. As-

suming that a certain component of x affects the transformation not linearly

but quadratically or exponentially, it may be useful to compute some addi-

tional components from x with the objective to gain more coefficients, which

could improve the transformation. An example for quadratic components

derived from x is described by the following choice:

x̃ = (x1, . . . , xp, x1x1, . . . , x1xp,

x2x2, . . . , x2xp, . . . , xpxp)
T (2.21)

a = (a1, . . . , ap, a11, . . . , a1p,

a22, . . . , a2p, . . . , app)
T. (2.22)

Similar to kernel methods POLARMAP can implicitly represent the data in a

new feature space to improve the transformation [41, 94].

Replacing term f by the respective function we obtain

Ẽ =
n−1

∑
i=1

n

∑
j=i+1

(

aT x̃i − aT x̃j − ψij

)2
(2.23)

=
n−1

∑
i=1

n

∑
j=i+1

(

aT(x̃i − x̃j)− ψij

)2
. (2.24)

For a better readability we replace x̃i − x̃j by x̃ij and obtain

Ẽ =
n−1

∑
i=1

n

∑
j=i+1

(

aT x̃ij− ψij

)2
. (2.25)
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The derivative of Ẽ w.r.t. a can be easily obtained as

∂Ẽ

∂a
= 2

n−1

∑
i=1

n

∑
j=i+1

(

aT x̃ij− ψij

)

x̃ij. (2.26)

Setting equation (2.26) equal to zero to fulfil the necessary condition for a

minimum we infer

0 =
n−1

∑
i=1

n

∑
j=i+1

(

aT x̃ij − ψij

)

x̃ij (2.27)

which results in a system of linear equations in a = (a1, a2, . . . , ap)T.

As mentioned already, angles computed by f (xi)− f (xj), might be posi-

tive or negative, while ψij is always positive by definition. Thus, in the case

where aT x̃ij < 0 holds, Ẽ might be minimal, but our original objective func-

tion E might not be minimal. We discussed this issue already with MDSpolar

in section 2.3 where an analogous problem arises as well. Hence, replacing

x̃ij by −x̃ij in this case might lower the error. Consequently, finding the ap-

propriate sign for x̃ij is a crucial step when minimizing Ẽ. For usual data sets

determining the exact solution for this problem is too expensive regarding

computation time. In the following section we describe a greedy strategy

that approximates a relaxation of this problem.

2.4.1 A Greedy Algorithm for the Approximation of

POLARMAP

Determining the sign for each x̃ij requires exponential need of computation

time in the number of feature vectors. For real-world data sets this is un-

acceptable. When relaxing the problem in favour to an approximation of

the exact solution one can reduce the time complexity down to O(n · log n).

In this section we begin with a very fast greedy algorithm that finds rather

poor approximations of the exact solution, which are suitable for initializa-

tion purposes for more complex approximation schemes.

In the following we use an n× n-matrix Θ with θij = 1 when the sign for

x̃ij is positive and θij = −1 when the sign for x̃ij is negative4. As algorithm 3

4Implementation aspects to improve efficiency we consider later.
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Algorithm 3 Greedy POLARMAP 1

Given the data set X̃ = {x̃1, x̃2, . . . , x̃n}
Let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)

Let Θn×n be a matrix where θij = 0, ∀i, j

a← solve
(

∑
n−1
i=1 ∑

n
j=i+1

(

aT x̃ij − ψij

)

x̃ij = 0
)

Compute Ẽ

repeat

Ẽ′ ← Ẽ

for i = 1 to n− 1 do

for j = i + 1 to n do

if θija
T x̃ij < 0 then

θij ← 1− θij

end if

end for

end for

a← solve
(

∑
n−1
i=1 ∑

n
j=i+1

(

θija
T x̃ij− ψij

)

x̃ij = 0
)

Compute Ẽ

until Ẽ′ ≤ Ẽ

shows this greedy algorithm does not change these signs for the respective

x̃ij until θija
T x̃ij < 0 is satisfied and computes afterwards the updated com-

ponents of a by solving the revised system of linear equations. Usually, this

algorithm converges after a few iterations. This approach is very efficient

and simple at the same time.

Algorithm 4 shows another greedy algorithm. Always, when θij changes,

a will be recomputed immediately and the next iteration starts. Θ changes

during one iteration at most in one point – namely θij, otherwise the algo-

rithm ends without changing any θ. Thus, the algorithm greedily changes

the first θij, when condition θija
T x̃ij < 0 is satisfied. From this it follows that

the algorithm only finds a local minimum of Ẽ, which is the reason why we

speak about a relaxation of the problem.

It is advisable to initialize Θ with algorithm 3. Otherwise, too many it-

erations will be needed until convergence. With algorithm 4 very accurate

transformations will be found – indeed computational costs are fairly high.
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Algorithm 4 Greedy POLARMAP 2

Given the data set X̃ = {x̃1, x̃2, . . . , x̃n}
Let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)

Let Θn×n be a matrix where θij = 0, ∀i, j

a← solve
(

∑
n−1
i=1 ∑

n
j=i+1

(

aT x̃ij− ψij

)

x̃ij = 0
)

Compute Ẽ

repeat

Ẽ′ ← Ẽ

for i = 1 to n− 1 do

for j = i + 1 to n do

if θija
T x̃ij < 0 then

θij ← 1− θij

a← solve
(

∑
n−1
i=1 ∑

n
j=i+1

(

θija
T x̃ij− ψij

)

x̃ij = 0
)

Compute Ẽ

GOTO: check

end if

end for

end for

LABEL: check

until Ẽ′ ≤ Ẽ

In the following subsection, we describe a technique that reduces the com-

putation costs drastically.

2.4.2 Generalization of POLARMAP

Although the above greedy algorithm is efficient, for large data sets too many

iterations will be needed until convergence. Its time and space complex-

ity are also quadratic in the number of data, so that it is not applicable to

larger data sets. In order to evaluate the objective function, all x̃ij- and all

ψij-values must be computed in advance, causing already the quadratic com-

plexity. The greedy algorithm must also compute many (again quadratic in

the number of data) scalar products aT x̃ij that contribute not or only little

to the quality of the transformation. Thus, if we had a measure to decide
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whether an adaptation of θij might be target-oriented or not, we could save

computation time by skipping the computation of nonessential scalar prod-

ucts.

As a matter of fact, the computation of the error Ẽ accounts for most of the

computation resources. In the following we will discuss the problem how to

reduce computation time due to dropping hopefully dispensable terms. As

for MDSpolar we provide for POLARMAP a generalization by introducing

weights wij for our objective function Ẽ, that results in

Ẽ =
n−1

∑
i=1

n

∑
j=i+1

wij

(

aT x̃ij− ψij

)2
. (2.28)

Again, we obtain the following system of linear equations after taking partial

derivatives of Ẽ

∂Ẽ

∂a
= 2

n−1

∑
i=1

n

∑
j=i+1

wij

(

aT x̃ij− ψij

)

x̃ij (2.29)

and setting equation (2.29) to zero to fulfil the necessary condition for a min-

imum which leads to

0 =
n−1

∑
i=1

n

∑
j=i+1

wij

(

aT x̃ij− ψij

)

x̃ij. (2.30)

The introduction of weights opens new ways to define and handle the objec-

tive function. We cannot only assign a weight to individual errors, control-

ling in this way how much influence single errors have on the final result.

We can also consider relative instead of absolute errors. For example, choos-

ing wij = 1/ψ2
ij corresponds to minimizing the relative error, similar as in

the case of MDSpolar. The difference between the angle in the original space

and the corresponding angle in the target space will not account directly to

the computation of the parameter a but weighted with wij. Weights can be

chosen in such a way, that only feature vectors, which are similar to a certain

degree, will be taken into account, when computing θij.

Since our transformation preserves the length of each data vector, it is

guaranteed that vectors with a large difference in length will not be mapped
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to close points in the plane, even though their angle might not be matched

at all. Therefore, we propose to use a small or even zero weight for pairs

of data vectors that differ significantly in their length. We skip the discus-

sion of defining appropriate weights here since we explained the use of suit-

able weighting control functions in section 2.3.5 already in conjunction with

MDSpolar.

Algorithm 5 is a modification of the previous algorithm considering the

mentioned aspects. Besides sorting X, the inner f or-loop now contains the

condition to terminate the loop if the weighting function indicates that for

the given i no further x̃ij has to be considered.

Note that we reduce computation time drastically, if we choose an appro-

priate weighting function. Instead of O(c · n2) with c as number of iterations,

we obtain O(c · n ·m) where m is the maximum bin size. Since sorting is es-

sential for the binning approach, the costs for sorting have to be added. The

bin size for a feature vector xi refers to the number of non-zero weights wij.

With this binning strategy we do not only reduce the number of pairs x̃ij to

be considered, much more important is the effect on the computation of a

and Ẽ. With algorithm 5 we introduce the array ni, i = 1 . . . n, that is initial-

ized with ni = min(i + maxbinsize, n), ∀i. When computing a and Ẽ, it is no

longer necessary to sum up the difference between the target angle and ψij

for all vectors that are out of the bin, since they be weighted with wij = 0. Of

course, if the bin size is only limited by a weighting function that only leads

to few weights wij = 0, the gain of computation time tends to zero. Further,

a threshold w∗ is set which ensures that the bin size can be reduced locally,

if, for a given feature vector, the number of similar feature vectors is smaller

than the bin size.

The major part in terms of memory usage attributes to the sign matrix Θ

since conventional programming languages do not support bit variables or

arrays of bits. Using a byte variable to code a single sign would mean eight-

fold memory wastage. In order to reduce the space complexity it is recom-

mendable to code the sign matrix binary which allows an optimal resource

management.
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Algorithm 5 Greedy POLARMAP 3

X̃ = {x̃1, x̃2, . . . , x̃n}
Sort X

Set maxbinsize

Set w∗

Initialize ni

Let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)

Let Θn×n be a matrix where θij = 0, ∀i, j

a← solve
(

∑
n−1
i=1 ∑

ni
j=i+1 wij

(

aT x̃ij− ψij

)

x̃ij = 0
)

Compute Ẽ

repeat

Ẽ′ ← Ẽ

for i = 1 to n− 1 do

for j = i + 1 to ni do

wij ← w(li, lj)

if wij > w∗ then

ni ← j− 1

GOTO: check1

end if

if θija
T x̃ij < 0 then

θij ← 1− θij

a← solve
(

∑
n−1
i=1 ∑

ni
j=i+1 wij

(

θija
T x̃ij− ψij

)

x̃ij = 0
)

Compute Ẽ

GOTO: check

end if

end for

LABEL: check1

end for

LABEL: check

until Ẽ′ ≤ Ẽ
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(a) Algorithm 3 (x̃ = x) (b) Algorithm 3 (x̃ according to eq. (2.21))

(c) Algorithm 4 (x̃ = x) (d) Algorithm 5 (x̃ = x)

Figure 2.6: Results of POLARMAP on the Cube data set

2.4.3 Illustrative Examples

In this section we discuss the results of POLARMAP on two synthetic 3-

dimensional data sets that we already showed in figure 2.3. Furthermore,

we apply POLARMAP on the well known Iris data set and the Wine data

set. A Sammon’s mapping of the 4-dimensional Iris data set is shown in fig-

ure 2.8 (a). We split this data set into a training data set and a test data set

to demonstrate the capability of POLARMAP to generalize. The Wine data

set results from a chemical analysis of wines grown in the same region in

Italy but derived from three different cultivars. The analysis determined the

quantities of 13 constituents found in each of the three types of wines. A
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Sammon’s mapping of the 13-dimensional Wine data set is shown in figure

2.8 (c).

Our tests have shown, that algorithm 3 is a good initialization for algo-

rithm 4 and 5. Since algorithm 4 and 5 compute the actual coefficients imme-

diately after changing one sign, without initialization, many iterations would

be needed for large data sets until convergence. For that reason it is advisable

to initialize algorithm 4 and 5 with algorithm 3. Note that algorithm 3 does

not have exponential complexity, when we introduce corresponding weights

leading to moderate bin sizes. The following transformations result from this

procedure.

Figure 2.6 shows some results on the Cube data set. The greedy algorithm 3

converges already after three iterations if using x̃ according to equation (2.20)

(see figure 2.6(a)). Similarly, greedy algorithm 3 converges after five itera-

tions, when using x̃ according to equation (2.21) (see figure 2.6(b)). For the

relatively simple Cube data set it is not of much importance, to generate addi-

tional components for x̃ and additional components a, respectively. Figures

2.6(c) and 2.6(d) result from applying algorithm 4 and algorithm 5, respec-

tively. These transformations are based on the choice x̃ = x for the Cube

data set. Obviously, a linear function with three coefficients a is sufficient to

map the Cube data set to a 2-dimensional feature space. The eight clusters

are clearly separated in the target space, too. Using weights according to

algorithm 5 and the following weighting function

w(za) =

{

1 if za < w∗

0 otherwise

with c = 1
4n leads to the transformation shown in figure 2.6(d). Note, as the

histogram depicts (see figure 2.9) roughly four groups of vector lengths are

present in the Cube data set. Since the Cube data set contains eight clusters,

each one composed of twenty points, the chosen bin size c guarantees that

each bin comprehends data from at least two clusters. This has the effect that

vectors, whose lengths are similar, will be considered for the adaptation of

the angles. The results with algorithm 4 and algorithm 5 are quite similar for

the Cube data set, even though algorithm 5 needs less computation time.
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(a) Algorithm 3 (x̃ = x) (b) Algorithm 3 (x̃ according to eq. (2.21))

(c) Algorithm 5 (wij = 1) (d) Algorithm 5 (wij = 1/ψ2
ij)

Figure 2.7: Results of POLARMAP on the Coil data set

The results for the Coil data set are shown in figure 2.7. Again, figure 2.7(a)

results from algorithm 3 with x̃ = x and figure 2.7(b) results from x̃ accord-

ing to equation (2.21). The results for both representations of the data set are

similar regarding a majority of the characteristics. Algorithm 3 converges af-

ter few iterations for both data sets. Figures 2.7(c) and 2.7(d) show the results

of algorithm 5 on the data set (x̃ = x) without initializing Θ other than 1. Fig-

ure 2.7(c) results from using a bin size of 10. Figure 2.7(d) results from using

wij = 1/ψ2
ij for all wij inside the bin of size 10. Choosing maximum bin size

10 leads to the fact that no sign will be changed and thus the algorithm stops

after one iteration. Designing the weighting function such that a larger bin
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(a) Sammon’s mapping of the Iris data set (b) Mapping with POLARMAP of the Iris

data set

(c) Sammon’s mapping of the Wine data set (d) Mapping with POLARMAP of the Wine

data set

Figure 2.8: Results of Sammon’s mapping and POLARMAP on the Iris data set and

the Wine data set

size has to be taken into account, one can observe that already after only three

signs have changed, the transformation gets the major characteristics as the

one in figure 2.7(a). Even if this transformation is very simple, some require-

ments, e.g. preserving distances between feature vectors approximately, are

fulfilled.

Since a function is learned by POLARMAP it becomes possible to map

new vectors to the target space. To demonstrate the power of POLARMAP

in this regard, we applied it on the well known Iris data set. Figure 2.8(a)
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Figure 2.9: Histogram of vector

lengths of the Cube data

set

Figure 2.10: The effect of the bin

size on POLARMAP and

Sammon’s mapping

shows the Sammon’s mapping of the Iris data set. The different classes are

represented by different symbols (class 1: +, class 2: 2, class 3: 3). Figure

2.8(b) shows the transformation with POLARMAP. For this example, the Iris

data set is split into a training data set and a test data set. The training data

set consists of 80% of each class. This part of the data is used to learn the

desired coefficients. The test data set that contains the remaining 20% of the

data, is mapped to the target space by means of the learned function. The

mapping of the training data set is plotted with the different symbols again,

each for the corresponding class. The mapped feature vectors of the test data

set are additionally marked with a circle around the corresponding symbol.

As the figure shows, the learned function maps the feature vectors according

to our intuition.

Figure 2.8(c) shows the Sammon’s mapping of the Wine data set. The three

classes are marked with different symbols again. Based on the Sammon’s

mapping, the three classes cannot be separated linearly. Notably class 2 and

class 3 cannot be distinguished. The transformation of the Wine data set

with POLARMAP is shown in figure 2.8(d). Both transformations are similar

regarding the scattering of the different classes. The mapping of the test data

(marked with a circle around the respective symbol) meets the expectations

from the mapping of the training data set.

Figure 2.10 shows the effect of the bin size on the transformation accuracy
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according to the POLARMAP criterion (solid line) and the Sammon criterion

(dashed line) on the Wine data set5. Both measures indicate a better mapping

with increasing bin size at the beginning. This is what we expect indeed. For

larger bin sizes the error is increasing slightly again. The probability to get

stuck in a local minimum seems to increase with larger bin sizes. As the

figure reveals as well, the error is not decreasing linearly. Thus, using the

binning technique, the user has to make the compromise between transfor-

mation quality and computation/space complexity. In many cases it may be

sufficient to use a small bin size to get an overall view of the data. As for the

Wine data set, the error can be reduced drastically, investing resources in the

consideration of a higher bin size.

2.4.4 Visualizing Weather Data with POLARMAP

Recently, we have published a study concerning the prediction of aircraft

flight durations [61, 78]. The study is based on two combined data sets, con-

cerning the weather conditions and the traffic, respectively, at Frankfurt Air-

port. A brief description of the data sets was given in section 1.3.

POLARMAP is applied to the data to visualize the relationships between

flight duration and weather factors. An earlier study has shown that the

weather can be easily divided into cloudy and non-cloudy weather since the

data form two distinct clusters that can be separated almost linearly [78]. For

the purpose of visualization this procedure is followed and both subsets of

data are transformed separately. For illustration purposes, we discuss in this

work just the non-cloudy weather. In the mentioned study, a strong effect

of the traffic on the travel time could be determined. Therefore, this section

shows visualization results of the weather data, both, including the traffic

attribute and excluding it.

Figure 2.11(a) shows a mapping of the non-cloudy weather including the

5The error in the figure is without a unit. Actually, both measures cannot be used directly

for comparison of the two methods since both optimization criteria are quite different.

Of course, the Sammon stress for a POLARMAP transformation is quite higher than for

Sammon’s mapping and vice versa. Thus, the normalized error in the figure only reflects

the behaviour of both techniques varying the bin size.
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traffic attribute using POLARMAP. The colouring that is used here to visual-

ize the distribution of different flight duration classes has been already dis-

cussed in section 2.3.7. As for the mapping with MDSpolar, the figure shows

clearly that the three classes overlap to some degree. Whereas the green class

(flights with short flight durations) is spread all over the feature space, the

blue class (flights with medium flight durations) and the red class (flights

with long flight durations) take the upper right region of the feature space

mainly. This effect is mainly due to the traffic information. Figure 2.11(b)

shows the transformation of the same data set excluding the traffic informa-

tion. This figure reveals that, without traffic information, the different classes

are even harder to distinguish.
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(a) Transformation with POLARMAP of the non-cloudy weather

data including traffic information

(b) Transformation with POLARMAP of the non-cloudy weather

data excluding traffic information

Figure 2.11: Mapping of the weather data set with POLARMAP
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2.5 Density-Based Mappings

The idea of density-based visualization is to reflect density variations of high-

dimensional data sets. We have presented this approach in [88]. In the fol-

lowing we formalize the problem of density preservation by means of an

objective function that can be minimized through a gradient descent tech-

nique.

For each data object in the original data space a multivariate Gaussian dis-

tribution is defined that represents a data point’s potential energy. When

adding those single potentials we get a sort of multidimensional potential

mountains. Summits of the mountains can be found where many data objects

are located. Accordingly, valleys can be found in areas of low data density.

Similarly, one can reproduce the mountains in the low-dimensional feature

space (usually two or tree dimensions). For this purpose each data object of

the original space will be placed in the projection space. Over every single

data point a potential (in form of a two- or three-dimensional Gaussian dis-

tribution) will be applied. The criterion for the mapping is that the potentials

in the original space coincide as good as possible with the potentials at the

corresponding points in the target space.

Given the data set X = {x1, . . . , xn} ⊂ R
p we seek for the mapped data set

Y = {y1, . . . , yn} ⊂ R
k with k = 2 or k = 3 with the following potential for

xi:

fi(x) =
1

c
exp



−1

2

p

∑
t=1

(

x(t) − x
(t)
i

σ

)2


 (2.31)

with

c =
1

σp
√

(2π)p
.

By x(t) and x
(t)
i we denote the tth attribute of data object x and xi, respec-

tively. Function fi simply describes the density of a p-dimensional Gaussian

distribution with mean value xi and variance σ2 in each dimension. The pa-

rameter σ must be fixed for the entire procedure. If σ is rather small, then the
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potentials do rarely overlap. For very large σ the potential landscape will be

blurred completely with little variance in height.

Therefore, it is useful to define σ according to the diameter d of the data

space, the average distance between data points, the number n of data and

the dimensionality p. A straight forward approach would be to assume that

the data is uniformly distributed in a hyper-cube or hyper-sphere. In this

case the potentials would have approximately the same height. Of course,

this assumption is fairly theoretical. In practice mountains will be formed

due to the heterogeneous structure of the data. However, under this assump-

tion the average density can be computed and the potentials on and between

data points can be determined. The larger the variance σ2, the smaller the dif-

ference in the potentials. For small data sets the density is low and therefore

a larger σ should be chosen.

Similar to Sammon’s mapping we seek the projected data points Y =

{y1, . . . , yn} ⊂ R
k. Over each data point we apply a potential (in this case

a k-dimensional Gaussian distribution) as for the original space:

gi(y) =
1

c̃
exp



−1

2

k

∑
t=1

(

y(t) − y
(t)
i

σ̃

)2


 (2.32)

with

c̃ =
1

σ̃k
√

(2π)k
.

Then the objective is to place the feature vectors such that the potentials co-

incide at least in these points with those in the original space. Note, σ̃ should

be chosen similarly to σ. In the ideal case we have approximately the same

diameter d in the target space, too. However, the area (or the volume) of the

target space will be much smaller compared to the hyper volume of the orig-

inal space (k � p). This means that the density in the target space is also

higher for the same size of the data set. Thus, σ̃ should be chosen smaller

than σ. Still the potentials in the target space might not match the potentials

in the original space yet. It should be assured that the maximum height of

the single potentials in the original space and in the target space match, i.e.
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the respective maxima of the Gaussian distributions should be:

fi(xi) ≈ gi(yi).

Since normally this will not be the case we introduce a constant a:

a · fi(xi) = gi(yi)

which can be derived from equations (2.31) and (2.32):

a =
σp

σ̃k

√

(2π)p−k.

Now we can formulate our objective function. The accumulated modified

potential in the original space at xi is

n

∑
j=1

a · f j(xi)

and in the target space at yi
n

∑
j=1

gj(yi).

In the ideal case, both potentials should be equal. Hence, we define the ob-

jective function as follows:

Edensity =
n

∑
i=1

(

n

∑
j=1

gj(yi) −
n

∑
j=1

a · f j(xi)

)2

=
n

∑
i=1

(

n

∑
j=1

(

gj(yi)− a · f j(xi)
)

)2

. (2.33)

Now, we only have to determine the gradient for each component s:

∂Edensity

∂yls
= 2

n

∑
i=1

n

∑
j=1

(

gj(yi)− a · f j(xi)
)

· ∂

∂yls
gj(yi). (2.34)

∂
∂yls

gj(yi) is only zero when we have l = i or l = j. For both cases we derive

from equation (2.34):

∂

∂yls
gl(yi) =

1

c̃
exp



−1

2

k

∑
t=1

(

y
(t)
i − y

(t)
l

σ̃

)2


 · y
(s)
i − y

(s)
l

σ̃
(2.35)
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∂

∂yls
gj(yl) = −1

c̃
exp






−1

2

k

∑
t=1





y
(t)
l − y

(t)
j

σ̃





2





·

y
(s)
l − y

(s)
j

σ̃
. (2.36)

It can be easily seen that for i = j = l we have ∂
∂yls

gj(yi) = 0. Finally we

obtain for the gradient:

∂Edensity

∂yls

=
2

c̃

n

∑
i=1



(gl(yi)− a · fl(xi)) · exp



−1

2

k

∑
t=1

(

y
(t)
i − y

(t)
l

σ̃

)2


 · y
(s)
i − y

(s)
l

σ̃

− (gi(yl)− a · fi(xl)) · exp



−1

2

k

∑
t=1

(

y
(t)
l − y

(t)
i

σ̃

)2


 · y
(s)
l − y

(s)
i

σ̃



.(2.37)

Combining the Sammon gradient Esammon (see equation 2.2) and the density

gradient Edensity through linear combination we finally obtain:

E = α
∂Esammon

∂yl
+ β

∂Edensity

∂yl
. (2.38)

The parameters α and β can be considered as learning rates or weights to

control the impact of the respective mapping strategy. Thus, higher weights α

for the Sammon gradient favour distance-based mappings and larger values

β for the density gradient favour the density approach.

2.5.1 Illustrative Examples

In this section we will discuss some results of the proposed technique on

the Cube data set and on the Wine data set. Figure 2.13 shows a Sammon’s

mapping of the Cube data set. The eight data clusters are well reflected by

the mapping. The transformation with the density-based approach, setting

α = 0 and thusly optimizing the density aspect exclusively, leads to the map-

ping visualized in figure 2.14. It is surprising that already the density as-

pect in the optimization is sufficient in this example to reflect the structure

of the data set. Applying a linear combination of both, the Sammon gradi-

ent and the density gradient, we obtain the mapping depicted in figure 2.15.
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Figure 2.12: Cube data set Figure 2.13: Sammon’s mapping

of the Cube data set

Figure 2.14: Density-based mapping

of the Cube data set

Figure 2.15: Mapping of the Cube data

set (distance-based and

density-based)

Figure 2.16: Sammon’s mapping

of the Wine data set

Figure 2.17: Density-based mapping

of the Wine data set
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Whereas the distance-based approach seams to favour the preservation of

the inter-cluster structure, the linear combination of distance and density as-

pects gives a better overall impression of the data set. Figures 2.16 and 2.17

show transformations of the Wine data set with Sammon’s mapping and

with the density-based approach, respectively. Both transformations show

similar characteristics.

Based on the empirical tests we cannot constitute that the density-based

approach is superior to the distance-based approach. Indeed, the computa-

tional complexity per iteration of the density-based approach is rather higher

since the density gradient has to be computed additionally. Our tests have

shown that the number of iterations can be reduced with density preserva-

tion.

2.6 Navigation Through High-Dimensional Data

In this section we discuss a visualization technique that maps a high-dimen-

sional data set onto a plane without optimizing any objective function or

using an iteration scheme. Thus, our method is linear with the number of

objects.

The method we propose in this work is to map the data set into a 2-dimen-

sional feature space by means of preserving angles to a certain reference vec-

tor. Initially, a reference vector r can be chosen at random out of the original

data set or it can be an appropriately generated vector, e.g. the centre vector

of the data set in the original space. Not only the angle ϕrj to the reference

vector will be preserved but also the length of each feature vector xj. Thus,

for the target vector x̂j we obtain the following simple equation for the trans-

formation

x̂j =

(

cos ϕrj

∣

∣xj

∣

∣

sin ϕrj

∣

∣xj

∣

∣

)

.

Of course, when choosing the reference vector randomly, an adequate trans-

formation can be only obtained by chance. Therefore, it would be advisable

to choose the reference vector by means of an appropriate heuristic. We sug-

gest in this work two different approaches. If there is no further information
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about the data available transformations with any reference vector could be

of interest. Hence, a dynamic visualization that shows transformations of the

data set by means of an animation could reveal interesting data structures.

Such a dynamic visualization would only be helpful if consecutive transfor-

mations are derived from slightly changing reference vectors. Otherwise, the

perspective of the transformation would always change drastically, since the

reference vector jumps from anywhere in the feature space to anywhere else

without any plan. The only problem is how similarity can be ascertained.

An ad hoc approach would be to sort the feature vectors by means of their

length. A sorting like this reflects at least that feature vectors with a short

length are quite different from those with a great length. The fact that feature

vectors with a similar length can have a far distance to each other will not be

recovered by sorting. Clustering could be another technique to choose the

sequence of reference vectors according to their similarity. For a sequence of

visualizations one would choose feature vectors from the original data set to

act as reference vectors beginning with the one that is the closest to the clus-

ter prototype vector going stepwise to the border of the cluster. If all feature

vectors of a certain cluster have served as reference vector, the next cluster

will be processed analogously. For large data sets it might be sufficient to use

the prototype vectors of a clustering partition for the dynamic visualization.

2.6.1 Illustrative Examples

Before we apply our visualization method on a benchmark data set, we dem-

onstrate some qualities on an artificial data set. Figure 2.18(a) shows again

the Cube data set, which was already introduced in section 2.3.6. Thus, the

Cube data set contains eight well separated clusters. Figures 2.18(b)-2.18(d)

show some transformations of the Cube data set. As these figures show, if

the reference vector is randomly chosen, quite different transformations will

be obtained. Figure 2.18(b) shows a transformation that reveals four clusters.

Obviously, some clusters are overlapped by others. Labelling the clusters

and using different symbols or colours for the plot would visualize this ef-

fect. This is what figure 2.18(c) shows. Each of the two clusters in the middle



2.6 Navigation Through High-Dimensional Data 51

(a) (b)

(c) (d)

Figure 2.18: Some transformations of the Cube data set with data navigator

represent again two clusters of the original data set. To distinguish the differ-

ent origin of these points they are drawn by diamonds (�) and squares (2).

Finally, figure 2.18(d) shows a transformation that most suitably preserves

the original cluster structures. The differences in the three transformations

originate from the fact that – depending on the choice of the reference vector

– some feature vectors have approximately the same angle to the reference

vector and similar length. Even if these feature vectors have large distances

to each other in the original space, they will be placed to similar regions in

the target space.
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(a) (b)

(c) (d)

Figure 2.19: Some transformations of the Wine data set with data navigator

Figure 2.19 shows some transformations of the well known Wine data set

that was introduced in section 2.4.3 already . Figure 2.19(a) shows a Sam-

mon’s mapping of the Wine data set. Figures 2.19(b)-(d) show some trans-

formations with the proposed visualization technique. As the figures reveal,

both techniques – Sammon’s mapping and the proposed method – lead to

similar results regarding some aspects. Obviously, the class symbolized by

the diamond (�), can be separated much better from the rest of the data as the

other two classes. The class symbolized by a point and the one symbolized

by the square (2) overlap in both transformations. Different from Sammon’s

mapping, which needs hundreds of iterations for one transformation, our

approach runs only once through the data. This permits to provide interac-
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tive and even dynamic visualizations. By interaction vectors of interest can

be chosen as reference vector.

Of course, a simple transformation without any optimization heuristics

often yields fairly poor results. In contrast to many other techniques aiming

at dimension reduction, see e.g. [54, 60, 62], the proposed technique is very

fast and can thusly give interesting insights to the data.





3 Fuzzy Clustering and Cluster

Visualization

Cluster analysis divides data into groups (clusters) such that similar data ob-

jects belong to the same cluster and dissimilar data objects to different clus-

ters. The resulting data partition improves data understanding and reveals

its internal structure. Partitional clustering algorithms divide a data set into

clusters or classes, where similar data objects are assigned to the same clus-

ter whereas dissimilar data objects should belong to different clusters. In real

applications there is very often no sharp boundary between clusters so that

fuzzy clustering is often better suited for the data. Membership degrees be-

tween zero and one are used in fuzzy clustering instead of crisp assignments

of the data to clusters. The most prominent fuzzy clustering algorithm is

fuzzy c-means, a fuzzification of k-means [7].

3.1 Fuzzy c-means Clustering

Many fuzzy clustering algorithms aim at minimizing an objective function

that describes the sum of weighted distances dij between c prototype vectors

vi and n feature vectors xj of the feature space R
p:

J =
c

∑
i=1

n

∑
j=1

(uij)
mdij. (3.1)

With the fuzzifier m ∈ (1, ∞] one can determine how much the clusters over-

lap. While high values for m lead to overlapping clustering solutions, small

values, m tending to 1, lead to rather crisp partitions. In order to avoid the

trivial solution assigning no data to any cluster by setting all uij to zero and

55
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avoiding empty clusters, the following constraints are required:

uij ∈ [0, 1] 1 ≤ i ≤ c, 1 ≤ j ≤ n (3.2)
c

∑
i=1

uij = 1 1 ≤ j ≤ n (3.3)

0 <

n

∑
j=1

uij < n 1 ≤ i ≤ c. (3.4)

When the squared Euclidian norm

dij = d2(vi, xj) = (xj − vi)
T(xj − vi)

is used as distance measure for distances between prototype vectors vi and

feature vectors xj, the fuzzy clustering algorithm is called fuzzy c-means al-

gorithm. Modifications of the fuzzy c-means algorithm (FCM) by means of

the distance measure, e.g. by using the Mahalanobis distance [63], allow the

algorithm to adapt different cluster shapes. Two common representatives

applying this modification are the algorithms of Gustafson-Kessel (GK) and

Gath-Geva (GG) [33, 36]. The minimization of the functional (3.1) repre-

sents a nonlinear optimization problem that is usually solved by means of

Lagrange multipliers, applying an alternating optimization scheme [6]. This

optimization scheme considers alternatingly one of the parameter sets, either

the membership degrees

uij =
1

∑
c
k=1

(

dij

dkj

)
1

m−1

(3.5)

or the prototype parameters

vi =
∑

n
j=1(uij)

mxj

∑
n
j=1(uij)m

(3.6)

as fixed, while the other parameter set is optimized according to equations

(3.5) and (3.6), respectively, until the algorithm finally converges. Neverthe-

less, the alternating optimization scheme can lead to a local optimum. There-

fore, it is advisable to execute several runs of FCM to ascertain a reliable

partition. With the Euclidian distance measure the fuzzy c-means algorithm

finds approximately equally sized (hyper)-spherical clusters.
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Algorithm 6 Fuzzy c-means clustering

Given the data set X = {x1, . . . , xn} ∈ R
p

Set number of prototypes c ∈ {2, . . . , n− 1}
Set fuzzifier m

Set error E

Set maximum number of iterations tmax

Set iteration counter t = 0

Initialize partition matrix U

repeat

Calculate prototype vectors vi

Update partition matrix Ut

t = t + 1

until ‖U(t) −U(t−1)‖ ≤ E or t ≥ tmax

Output partition matrix U

Output prototype vectors V

3.2 Possibilistic Clustering

For FCM probabilistic membership degrees are used. The sum of all mem-

bership degrees for each datum equals 1. A disadvantage of probabilistic

fuzzy clustering is that values of memberships do not express how typical a

datum is regarding a certain cluster.

For possibilistic c-means (PCM), a variation of FCM, condition (3.3) will be

dropped. Whereas the sum of membership degrees to overlapping clusters

thusly can be > 1, the sum of membership degrees to outliers can be < 1. To

avoid the trivial solution of the optimization problem setting all membership

degrees to zero, the objective function is modified to

J =
c

∑
i=1

n

∑
j=1

(uij)
mdij +

c

∑
i=1

ηi

n

∑
j=1

(1− uij)
m. (3.7)

The first term provides minimization of the distances between feature vectors

and prototype vectors as for probabilistic clustering. The second term is used

to maximize the membership degrees uij. ηi specifies the distance where the

membership degree to cluster i has the value 0.5, in other words the cluster’s
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expected size. According to equation (3.7) the following formula describes

the calculation specification for the membership degrees

uij =
1

1 +
(

dij

ηi

)
1

m−1

. (3.8)

The computation of the prototype vectors is carried out as for FCM. In [57] it

is proposed to determine ηi as follows

ηi = K
∑

n
j=1 um

ij dij

∑
n
j=1 uij

. (3.9)

Usually, K will be set to 1. It is advised to estimate ηi based on a preced-

ing probabilistic partitioning. In contrast to FCM where the characteristic

of partitioning is emphasized and expressed by means of the partition ma-

trix, membership degrees determined by PCM describe how typical a feature

vector is regarding a certain cluster. Figure 3.1 illustrates this property on a

simple example. The figure shows the centre vectors of an FCM-clustering

(blue) and the centre vectors of a PCM-clustering (green) as well. The mem-

bership of two interesting points exposes the difference. The lower left point

is quite distant from any cluster but yields a high membership degree to the

left cluster for the FCM case. Although, this meets not our expectation re-

garding natural membership to the left cluster, a forced decision whether the

point belongs to the left cluster or to the right cluster leads to the noted mem-

bership degrees, since FCM operates exactly like this. We get more intuitive

membership degrees using PCM. Since both points of interest have large dis-

tances to any prototype vector, their membership degrees to any of them is

fairly low.

PCM widely depends on initialization. It is advisable to initialize proto-

types and membership degrees with FCM. Different from probabilistic clus-

tering single prototypes cannot be influenced by other prototypes. It may

occur that some identical clusters will be found with PCM. A common ap-

proach is to initialize PCM with the initial value for ηi obtained from FCM

and then to re-calculate ηi followed by few iterations with the new value of

ηi.
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Figure 3.1: An illustrative example of a 2-cluster-partition with FCM and PCM.

PCM is suitable for outlier detection when the data set comprehends com-

pact and separable clusters. Initialization is a crucial step, anyhow. Due to

its sensitivity to initialization including the chosen number of prototypes and

the value of ηi, it often occurs that too many feature vectors will be regarded

as outliers. Improvements of PCM that overcome the shortcoming of finding

identical clusters are given in [58, 72, 102].

3.3 Fuzzy Clustering with Outliers

This section briefly describes a modified objective function with an addi-

tional weighting factor for each datum [47]. The aim of this approach is

not only to assign fuzzy membership degrees to the data points, but also to

determine a kind of representativeness of each datum. The approach is de-

signed to enable the expert to determine and separate the critical data from

the whole sample data so that the influence of outliers will be reduced. The

objective function of outlier clustering

Joutlier =
c

∑
i=1

n

∑
j=1

1

wr
j

(uij)
mdij (3.10)



60 3 Fuzzy Clustering and Cluster Visualization

differs only in one point – the introduction of the weighting factor wj whose

influence can be controlled with the constant parameter r. Considering the

constraint

n

∑
j=1

wj = w (3.11)

where w is a constant value leads to the following equation for the weighting

parameter

wj =
(∑

c
i=1(uij)

mdij)
1

r+1

∑
n
l=1(∑

c
i=1(uil)mdil)

1
r+1

·w. (3.12)

The membership degrees will be calculated using

ũm
ij =

um
ij

wr
j

. (3.13)

The calculation of the prototypes does not differ from the fuzzy c-means

scheme.

The objective of outlier clustering is to assign small weighting factors wk

to feature vectors fitting well to at least one cluster, increasing their influence

on the clustering result in this way. Outliers are naturally defined as being

points having a large distance to all data clusters or being equally shared

among many clusters. Outlying points get a large weight, so that they have a

small influence on the clustering result. Parameter r influences the clustering

procedure as follows: for r → ∞ all wj → w
n and no outlier treatment is done.

For r→ 0 the weighting influence reaches its maximum.

3.4 Noise Clustering

Fuzzy clustering with the fuzzy c-means algorithm allows, based on the

membership degrees uij, the estimation of the degree of assignment of a fea-

ture vector xj to a prototype vector vi. Since the sum of all membership de-

grees of a feature vector equals one, according to equation (3.3), even outliers

can achieve high membership degrees as we have seen in figure 3.1. Small
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membership degrees occur always due to border regions between two or

more clusters. The treatment of noisy data is often motivated by the fact that

measurements are naturally imperfect. The performance of noise sensitive

clustering methods is strongly affected since the presence of outliers impairs

the assignment of the representative data [15].

The idea of noise clustering (NC) is based on the introduction of an ad-

ditional cluster that is supposed to contain all outliers [18, 19, 20]. Feature

vectors that are about the noise distance δ or further away from any other

prototype vector get high membership degrees to this noise cluster. Hence,

the prototype for the noise cluster has no parameters. Let vc be the noise

prototype and xj the feature vector. Then the noise prototype is such that the

distance dcj, the distance from feature vector xj to vc, is the fixed constant

value

dcj = δ2, ∀j.

The remaining c− 1 clusters are assumed to be the good clusters in the data

set. The prototype vectors of these clusters are optimized in the same way

as mentioned in equation (3.6). The membership degrees are also adapted as

described in equation (3.5). As mentioned above, the distance to the virtual

prototype is always δ. The only problem is the specification of δ. If δ is chosen

too small, too many points will get classified as noise, while a large δ leads

to small membership degrees to the noise cluster, which means that noise

data are not identified and have a strong influence on the prototypes of the

regular clusters.

3.5 Noise Clustering Based Outlier Detection

The specification of the noise distance depends on several factors, e.g. the

maximum percentage of the data set to be classified as noise [48], the distance

measure, the number of assumed clusters and the expansion of the feature

space. The noise distance proposed in [17] is a simplified statistical average
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over the non-weighted distances of all feature vectors to all prototype vectors

δ2 = λ
∑

c−1
i=1 ∑

n
j=1 dij

n(c− 1)

where λ is the value of the multiplier used to obtain δ from the average of

distances. As mentioned above one can show that in this way δ suffers from

the fact that with an increasing number of prototypes δ takes relatively high

values. As a consequence, the placing of the prototypes will be affected by

the outliers, which we intended to avoid.

We proposed in [79, 81] a noise distance which depends primarily on the

number of prototypes used for the clustering process and the expansion of

the feature space. Under the constraint of the preservation of the hypervol-

ume of the feature space, we choose for δ a value which corresponds to the

cluster radius of the hyperspherical cluster. The cluster radius, so δ, will be

chosen such that the sum of the hypervolumes of the c − 1 good clusters

with approximately same size, equals the hypervolume of the feature space.

A uniformly distributed feature space would not have any outliers in this

case. Consequently, if there are regions of high density, some prototypes will

be attracted to these regions. Feature vectors which are located a larger dis-

tance away from any other prototype vector get high membership degrees to

the noise cluster.

So the first step is to estimate the hypervolume of the feature space. A

simple solution for this is shown in Figure 3.2(a). By means of the data set’s

extreme feature vectors the area of the resulting rectangle, or more gener-

ally the hypervolume V of the cuboid in an n-dimensional feature space, can

be easily computed. A closer approximation of the hypervolume V can be

achieved by subdividing the feature space into smaller pieces and summing

up the single volumes of the respective hyperboxes. Figures 3.2(b) and 3.2(c)

show two naive partitions of the feature space. Note that such a grid should

subdivide the feature space into hyperboxes of approximately the same size,

since the fuzzy c-means algorithm searches for approximately equally sized

clusters.
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(a)

(b)

(c)

Figure 3.2: Volume preservation on an illustrative data set
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Assuming that clusters in the data set have approximately the same size,

the cluster radius and the noise distance, respectively, have approximately

the radius r of the hyper-sphere with a hypervolume about V/(c− 1), when

using c− 1 regular prototypes for the clustering. Since our estimation of the

hypervolume is based on a rectangular shape, the radius of a correspond-

ing hyper-sphere would not cover all feature vectors in the hyperbox. Fur-

thermore, huge clusters may be approximated by several prototypes. The

feature vectors in border regions of those prototypes should not get high

membership degrees to the noise cluster. By all means, different applications

require variable definitions regarding outliers. Thus, the noise distance δ can

be tuned by a parameter α. Finally we obtain

δ = αr. (3.14)

Although, any positive value can be chosen for α, our tests have shown that

we achieve good results with α = 1.5. In fact, smaller values for α lead to

more compact clusters with a higher number of outliers. With α → ∞ NC

tends to behave like FCM.

After defining the noise distance we have to specify the minimum mem-

bership degree of a feature vector to the noise cluster in order to classify it as

an outlier. It is obvious that no constant value will be appropriate to cover

all NC partitions. Analogous to the noise distance, also the membership de-

grees mainly depend on the number of prototypes used for the clustering. In

[100] it is already discussed that the probability achieving high membership

degrees with FCM, decreases with an increasing number of prototypes. The

lower bound for highest membership degrees is of course 1/c. Of course,

the noise distance affects the membership degrees to the regular clusters,

too, since a small noise distance forces high membership degrees to the noise

cluster and small membership degrees to the regular clusters. So it makes

sense to define outliers not only depending on the number of prototypes, but

also by the fact which typical high membership degrees occur for a certain

partition, which is naturally affected by the noise distance.

As we have discussed above, an outlier may be defined over the expected

fraction of noise. With a simple method we can define outliers on the basis of
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the feature vector’s probability not belonging to a regular cluster. Therefore,

we estimate the mean value µ and the standard deviation σ of the member-

ship degrees to the noise cluster and consider a feature vector as an outlier,

if its membership degree to the noise cluster deviates more than a certain

factor β from the mean value. Thus, the function isOutlier returns 1 when,

according to this definition, a feature vector is an outlier, otherwise the func-

tion returns zero:

isOutlier(xj) =

{

1 if ucj − β · σ > µ,

0 otherwise
(3.15)

with

µ =
1

n

n

∑
j=1

ucj (3.16)

σ =

√

√

√

√

1

n− 1

n

∑
j=1

(

ucj − µ
)2

. (3.17)

Adjusting parameter β one can finally influence the fraction of outliers.

3.5.1 Illustrative Examples

Figure 3.3(a) shows the results of both NC approaches. This data set obvi-

ously contains two clusters that are surrounded by some noise points. Using

the conventional noise distance for partitioning the data set results in po-

sitioning the prototypes as plotted by squares in the figure. Applying the

isOutlier function with β = 1.4 the data points marked by the small circle

are declared as outliers. The prototypes of the regular clusters are plotted

in the figure with the square symbol (2). Since the conventional approach

tends to overestimate the noise distance, the optimal cluster centres cannot

be found.

When we estimate the noise distance with our volume preserving approach,

we obtain a much smaller value for δ. Now, the prototypes that are plotted

for this run with the × symbol are placed closer to the respective cluster cen-

tre. In this way, two additional data points were identified as outliers, when
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(a) Partitioning with 2 regular prototypes

(b) Partitioning with 4 regular prototypes

Figure 3.3: Noise clustering on an illustrative data set

we use the isOutlier-function again with β = 1.4. The outliers found with

the new δ are marked by the bigger circle in the figure.

Figure 3.3(b) shows the results on the same data set using four regular pro-

totypes for the clustering. Real-life data sets usually contain cluster struc-

tures that differ from our assumption of hyperspherical clusters. Then the

cluster structures must be approximated by several prototypes. A noise clus-

tering technique should be able to deal with such challenges. As the figure

shows, the conventional NC cannot find any outlier in this example. This

is the case, because the noise distance, when estimated by the conventional

approach, will be approximately the same as for the two prototypes. But,

as it can be easily verified by visual assessment, the distance from the pro-

totypes to the representing data points is significantly smaller compared to
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partitioning with only two prototypes. Thus, when the average distance de-

creases with an increasing number of prototypes and the noise distance is

almost constant, or even worse, increasing, then results similar to the one

above will be obtained.

With our volume preserving approach we obtain again the same result as

with partitioning with two prototypes. The noise distance is, according to

equation (3.14), much smaller. Therefore, the cluster centres can be placed

better and distant points will be declared as outliers. The outliers found with

the new δ are marked again by bigger circles in the figure. This noise clus-

tering technique can even be applied, when we are not interested in finding

a cluster structure, but only want to identify outliers.

3.6 Cluster Validity

Fuzzy clustering algorithms as described above need some parameters to be

provided by an expert. A very crucial parameter is the expected number of

clusters c to be found in the data set. Admittedly, this is something we often

do not know in advance. Also the fuzzifier needs to be adjusted depending

on the data set and, of course, depending on the desired fuzziness of the

partition. Finally, fuzzy clustering algorithms only find local minima and

must be run repeatedly to assure a stable result.

For high-dimensional data sets it is not possible to validate a partition by

visual inspection. The objective function itself that is minimized by the opti-

mization scheme is not sufficient to compare partitions with different num-

bers of prototypes. Assuming an optimal placement of the prototype vectors,

an increasing number of prototypes is naturally associated with decreasing

intra-cluster distances and thusly smaller J.

Actually, two kinds of validity measures are commonly used to evalu-

ate clustering partitions, namely global validity measures and local validity

measures. Compatible cluster merging (CCM) [44, 56] is a commonly used

representative for the latter that can be applied on Gustafson-Kessel cluster-

ing partitions and related ones for line detection. The objective of CCM is to
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estimate the optimal number of clusters during the clustering process. CCM

starts with a relatively large number of prototypes and merges clusters that

are compatible according to a compatibility relation. CCM is quite sensitive

to initialization. Merged clusters need some iterations to stabilize. Parame-

ters need to be carefully adjusted to avoid that all clusters will be merged to

one or the other extreme – no clusters will be merged. A robustification of

compatible cluster merging can be found in [30]. While only particular appli-

cations are suitable for local validity measures, global validity measures are

commonly used on a variety of clustering problems. We will briefly discuss

some global validity measures in the following. Many other validity mea-

sures, defined to measure to what degree the data objects are similar inside

one cluster while dissimilar between different clusters, have been described

in the literature, see e.g. [9, 21, 22, 44, 101].

Partition Coefficient

The partition coefficient F is a simple validity measure based on the idea that

good partitions are characterized through clearly assigned feature vectors

[7]. The more crisp the membership degrees the better the partition

F =
1

n

c

∑
i=1

n

∑
j=1

u2
ij.

Good partitions are rated by values tending to F → 1. Week partitions will be

rated about 1/c. In practice the partition coefficient gives only week hints re-

garding the appropriate number of clusters. The main problem is the strong

dependency of F on the number of prototypes used for the clustering. Of

course, an increasing number of prototypes improves the chances to explore

the data set profoundly and high membership degrees can be obtained for

data near the cluster centres. However, the amount of border regions be-

tween clusters increases, too. Prototypes compete there for the data which

results in relatively small membership degrees. This is the reason why F

often rates partitions with many prototypes badly.
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Non Fuzzyness Index

The non fuzzyness index (NFI) is an improvement of the partition coefficient

NFI =
cF− 1

c− 1
.

As mentioned above, the partition coefficient strongly depends on the num-

ber of prototypes used for the clustering. [100] explains in detail why the

expected value of F decreases with an increasing number of prototypes. Ac-

cording to this the probability to obtain high values for F becomes smaller.

The domain is between 1/c and 1. The comparison of different partitions is

thusly only meaningful if the number of prototypes is considered, too. The

non fuzzyness index achieves this by linear transformation of F to a range

between 0 (week partitioning) and 1 (hard partitioning) [89].

Proportion Exponent

Windham proposed in [100] the proportion exponent validity measure

P = − log2





n

∏
j=1





µ−1
j

∑
k=1

(−1)k+1

(

c

n

)

(1− kµj)
c−1









with µj = max1≤i≤c uij. The number of feature vectors is included in the

calculation of P. Therefore, data sets of different size are not comparable

regarding their cluster validity. Already the existence of one single mem-

bership degree near 1 initiates the proportion exponent to state a positive

evaluation even if the remaining membership degrees are rather fuzzy. Since

an increasing number of prototypes naturally increases the probability to ob-

tain at least one high membership degree, P tends to favour partitions that

result from clustering with many prototypes.

3.7 Visual Validation of Clustering Results

The measures above have one thing in common – they condense the clus-

tering result to a single value which is associated with a huge loss of infor-

mation. Moreover, it cannot be derived which part of the data needs to be
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(a) (b)

Figure 3.4: Distribution of membership degrees for two out of nine prototypes clus-

tering the Cube data set

investigated more. Many more measures have been developed so far which

cannot be considered here, see e.g. [9, 31, 33, 44, 101]. In the following we

discuss the visual validation of clustering results.

Visualizing Frequencies of Membership Degrees

An intuitive approach validating fuzzy clustering results is to visualize the

distribution of the membership degrees. Denominate the crisp result as the

ideal case, i.e. each datum is assigned to exactly one cluster with member-

ship degree 1 and to all other clusters with membership degree 0, one would

expect that the relative frequency of the membership degree 1 should be 1/c

and accordingly the relative frequency of the membership degree 0 should be

(c− 1)/c. The chart diagram for the ideal case of crisp membership degrees

shows a distribution of membership degrees as follows: a value of (c− 1)/c

on the left side and 1/c on the right side and zero values in between.

Figure 3.4 shows the distribution for two kinds of prototypes that will be

obtained when clustering the Cube data set with nine prototypes. Mem-

bership degrees are grouped into ten classes obtained by subdividing the

possible membership range into ten equisized sections. Seven clusters will

be represented by a prototype like the one that is depicted in figure 3.4(a).

A suchlike prototype is ideal. The figure reveals that the prototype repre-
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sents some data clearly. To the rest of the data this prototype has only very

low membership degrees. The distribution of membership degrees for the

second prototype, depicted in figure 3.4(b), state a non-ideal cluster. Two

prototypes of this kind are obtained for this example. It is not surprising

that these two prototypes represent parts of one identical data cluster of the

Cube data set. The relatively large amount of medium membership degrees

indicates that a data cluster was improperly represented by more prototypes

than appropriate.

In [49] an improvement to visualize membership distributions is proposed.

A scaling is carried out in such way that in the ideal case (crisp partitioning)

the chart diagram would show a value of 1 on both, the left and the right

side. For this purpose a weighting factor is introduced when counting the

frequencies of the membership degrees.

Visualizing Membership Degrees of the two most Competing Clusters

Another approach visualizing clustering results is to consider for each fea-

ture vector xj the cluster with the highest membership degree, say i, and the

cluster yielding the second highest membership degree, say `. Then for each

feature vector xj a point is plotted at the coordinates (uij, u`j).

Consequently, all points must lie within the triangle defined by the points

(0, 0), (0.5, 0.5) and (0, 1), since the first coordinate must always be larger

than the second one and according to the probabilistic constraint we have

uij + u`j ≤ 1.

Regarding the ideal case all points would be plotted near the point (1, 0).

Ambiguous data that are shared by two clusters are indicated by points near

(0.5, 0.5). Points near (0, 0) originate from data that cannot be assigned to

any cluster clearly. Such points either indicate that an improper number of

prototypes was chosen for the clustering or that the clustering technique is

not appropriate for the data structure.

Figure 3.5 shows the results of this technique on two different partitionings

of the Cube data set. The left figure shows an almost ideal clustering of the

Cube data set. Eight prototypes where used here which complies with the
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(a) Clustering with 8 prototypes (b) Clustering with 5 prototypes

Figure 3.5: Visualizing membership degrees of the two most competing clusters of

the Cube data set

data set’s natural number of clusters. Most of the points are concentrated

near (1, 0). Of course, memberships are decreasing smoothly when using a

moderate fuzzifier m = 2 as we did here. Therefore, some points can be

found slightly elongated tending to (0.5, 0.5).

The right figure clearly shows that some data is badly represented by the

available prototypes. This figure shows the clustering result using only five

prototypes. Comparable to the left figure, some points lie near (1, 0). These

points are well approximated by some prototypes. Contrary, the presence of

a considerable amount of points lying between (0.5, 0.5) and (0, 0) indicates

a misjudged number of prototypes used for the clustering.

Visualizing Membership Degrees over Intra-Cluster Distances

The above approaches solely consider the membership degrees for the visu-

alization. Even more insight can be gained from a plot of the membership

degrees over the distances for each cluster, as stated in [49]. For each cluster

i a point is plotted for each datum xj at (dij, uij).

For an ideal graph one would expect high membership degrees for small

distances and low membership degrees for large distances. When cluster

centres are not chosen appropriately two different effects can be observed. If

the number of prototypes is chosen too small, one cluster has to cover two or
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(a) An ideal cluster (b) An unfavourable cluster

Figure 3.6: Visualizing membership degrees over intra-cluster distances of the Cube

data set (clustering with nine prototypes)

more data clusters. In this case, fewer points are plotted in the upper left part

of the graph. We will rather find more points in the middle of the graph. If

the number of prototypes is chosen to high, then two or more clusters com-

pete and share the same data cluster. Consequently, even for small distances

low membership degrees occur which will be reflected by points in the lower

left part of the corresponding diagram.

Figure 3.6 shows the results of this technique on two interesting clusters

resulting from clustering the Cube data set using nine prototypes. The left

graph shows an ideal cluster. Data with small distances to the cluster centre

yield high membership degrees. The gap to the rest of the data emphasizes

the compactness of the depicted cluster. The aforesaid clustering yields seven

clusters of that kind. The continuous slide from high to low membership

degrees on the right graph indicates that this cluster is not well separated

from another cluster. Indeed, two prototypes represent the remaining data

cluster.

Figures 3.7(a) and 3.7(c) show two clusters of a clustering with five proto-

types. Figures 3.7(b) and 3.7(d) show the data set and all prototypes obtained

by the clustering. The prototype that is visualized by the respective left fig-

ure is marked by a surrounding circle. An interesting fact in figure 3.7(a)

is that some data points obtain different membership degrees even though
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(a) (b)

(c) (d)

Figure 3.7: Visualizing membership degrees over intra-cluster distances of the Cube

data set (clustering with five prototypes)

their distance to the prototype is similar. The reason for this can be seen in

figure 3.7(b). There are two data clusters that are not well represented by any

prototype vector. Another data cluster which has approximately the same

distance is well represented. Thus, the prototype obtains only small mem-

bership degrees to the data points in this cluster.

Figure 3.7(c) shows a prototype where this effect cannot be observed. Data,

which has similar distances to this prototype, obtain similar membership de-

grees, too. This is evident as figure 3.7(d) shows. All other prototypes have

approximately the same distances to the data in question.
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Visualization of Clustering Results by Modified Sammon’s Mapping

Earlier we discussed Sammon’s mapping as a common representative for

multidimensional scaling. It is also common knowledge that Sammon’s map-

ping is not applicable to larger data sets since its time complexity is about

O(t · n2), where t is the algorithm’s unknown number of iterations. In [29]

an efficient modification is described that aims at visualizing fuzzy cluster-

ing results. This approach was finally refined and described in [55]. The

algorithm maps the cluster centres and the data in such a way that the orig-

inal distances between the clusters and the feature vectors will be preserved

as good as possible. This means that the algorithm only considers distances

of a usually small number c of prototype vectors to the n feature vectors min-

imizing the following functional

E =
c

∑
i=1

n

∑
j=1

(uij)
m(dx

ij − d
y
ij)

2 (3.18)

where dx
ij represents the distance between feature vector xj and the cluster vi

measured in the original p-dimensional space, while d
y
ij represents the dis-

tance between the projected cluster centre zi and the projected data yj in the

low-dimensional space (usually the plane). The proposed algorithm uses the

gradient descent method taking the partial derivatives of E yielding

∂E

∂yk
= −2

c

∑
i=1

um
ik(dx

ik − d
y
ik)

yk − zi

d
y
ik

.

For each iteration t the cluster centres zi in the plane will be determined ac-

cording to

z
(t)
i =

∑
n
j=1(uij)

my
(t)
j

∑
n
j=1(uij)m

and the mapping of each projected feature vector yk according to

y
(t−1)
k = y

(t−1)
k − ∆y

(t)
k

where ∆y
(t)
k = ∂E(t)/∂y

(t)
k . The algorithm finally converges when the error

terms of two consecutive iterations are nearly identical, i.e. ‖E(t−1) − E(t)‖
becomes smaller than a user defined threshold ε, or a maximum number of

iterations tmax has been reached.
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(a) Clustering with 8 prototypes

(b) Clustering with 5 prototypes

Figure 3.8: Visualization of partitions of the Cube data set using the modified Sam-

mon’s mapping
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Even though the complexity per iteration is quite low, many iterations will

be needed until convergence as our tests reveal. Figure 3.8 shows two map-

pings of the Cube data set obtained using the described method. The upper

graph shows a mapping using eight prototypes for the clustering and the

mapping, respectively. The mapping reflects the original cluster structure ap-

proximately presenting eight well separated clusters and their corresponding

prototypes. The lower graph shows the mapping of a five-cluster-partition

of the same data set. It is clearly visible that some data are in the proxim-

ity of the cluster centres and thusly well represented. However, there are

also some data which are not covered by any cluster clearly which meets our

expectations due to the unsuitable choice of prototypes.

Visual Assessment of Cluster Tendency

VAT, Visual Assessment of Cluster Tendency, is a tool to visualize pairwise

dissimilarity information of objects X = {x1, . . . , xn} as a square image with

n2 pixels [8]. VAT reorders the data objects so that the image highlights po-

tential cluster structures. The reordering algorithm in VAT is similar to find-

ing a minimal spanning tree, but with two differences. One difference is that

VAT does not generate the minimal spanning tree but it finds the order in

which the vertices are added to the tree. The second difference is that VAT

requires the definition of an initial vertex. Reordering begins by building a

dissimilarity matrix R with Rij =
∣

∣xi − xj

∣

∣ and taking the object that has the

largest distance to any other object and finding the object closest to it. VAT

then finds the object closest to either of the first two objects. This procedure

is repeated until all objects have been considered in the reordering.

Figure 3.9 shows two dissimilarity images of the Cube data set using the

normalized Rij-value as grey tone for each feature vector. Whereas dark pix-

els correspond to nearby objects do light pixels stand for distant objects. The

left graph shows the unordered Cube data set. The right graph shows the

dissimilarity image produced by VAT. The eight data clusters of the Cube

data set, visualized by dark blocks, can be easily found in the graph. Their

separation to other clusters is indicated by the sharp contrast to neighbour-
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(a) Dissimilarity image of the unordered

Cube data set

(b) Dissimilarity image of the Cube data set

produced by VAT

Figure 3.9: Visual assessment of cluster tendency of the Cube data set

ing blocks. The clusters’ sizes can also be read from the blocks’ dimensions.

As a modification of VAT, bigVAT allows the visualization for larger data

sets reducing computational complexity by performing a quasi-ordering of

the objects and enableling graphical representations larger than usual screen

sizes [45]. VCV, Visual Cluster Validity, is related to VAT, but takes the inter-

datum distances into account that come from partitioning the data set [37].

3.8 Visualizing Single Clusters

We proposed in [86, 87] an approach – called Single Cluster Visualization

(SCV) – to visualize single clusters by projection of the data points onto

the plane under the constraint that the membership degrees to clusters are

preserved. Note, membership degrees can be obtained directly when using

a fuzzy clustering algorithm (e.g. fuzzy c-means), but also when calculat-

ing membership degrees after the partitioning, which can be done for any

prototype-based clustering algorithm. To achieve the objective of member-

ship preservation, we adopt the noise distance aspect of the noise clustering

technique [17].

Noise clustering is based on the introduction of an additional noise clus-

ter that is supposed to contain all feature vectors that are about a certain
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distance, the noise distance δ, away from all other prototype vectors. This

means that the prototype vc for the noise cluster c has no parameters. The

clustering scheme differs only in one point from k-means or fuzzy c-means.

When calculating the membership degrees the distance of the feature vector

xj to the noise cluster vc is the fixed constant value dcj = δ2. The proper

specification of δ is discussed in [17, 81].

With the objective to place the cluster in the plane, we need two coordi-

nates for each data point. Note that the constraint for the projection is not to

preserve the distances dij but the membership degrees uij. The idea for our

visualization is to compute the distances to the cluster prototypes by means

of the membership degrees. To achieve this we consider the usual computa-

tion of membership degrees as mentioned in equation (3.5). This provides a

very simple connection between membership degrees and distances

uij

u`j
=

1

∑
c
k=1

(

dij
dkj

)
1

m−1

1

∑
c
k=1

(

d`j
dkj

) 1
m−1

=

(

d`j

dij

) 1
m−1

. (3.19)

For the purpose of visualization we propose to place the cluster i to be visu-

alized at (0, 0) and to choose a second cluster ` at (1, 0). The cluster at (1, 0)

is a virtual cluster that contains all feature vectors with the highest member-

ship degree apart from uij. The intention of this cluster is to collect all feature

vectors that are assigned to another cluster than the one we want to visu-

alize. Let us denote the membership degree to the most competing cluster

by u`j. Furthermore, we introduce a noise cluster to cover the clusters apart

from i and `. According to the distance of the two chosen cluster prototypes

at (0, 0) and (1, 0), we define the noise distance δ = 1. This means we have

unoisej = 1− uij − u`j. According to equation (3.19) this leads to

uij

unoisej
=

(

1

d̂ij

)
1

m−1

. (3.20)

We denote the distance between cluster i and xj on the plane by d̂ij to empha-

size the fact that we do not deal with original distances any more but with
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0 1

x̂j

d̂ij

d̂` j

Figure 3.10: Placement of x̂j in the plane

representative distances with respect to the according membership degrees.

Solving equation (3.20) for d̂ij we obtain

d̂ij =

(

unoisej

uij

)m−1

. (3.21)

Analogously, we obtain for the second cluster `

d̂`j =

(

unoisej

u`j

)m−1

. (3.22)

This approach enables us to visualize some useful aspects:

• which feature vectors can be assigned clearly to the cluster i of interest,

• if a feature vector cannot be assigned to i, is there another cluster `,

where the vector can be assigned to,

• which feature vectors are near to one or more prototypes apart from i

and `,

• are there feature vectors that cannot be assigned to any cluster clearly.

With equation (3.21) one can compute the distance of each feature vector xj

to the cluster i, so that it is possible to draw a circle around (0, 0) as one hint

for the feature vector’s position in the plane. With the distance to the other

cluster (1, 0), one could draw another circle around the cluster centre. The

intersection point of these two circles would be the position of the new fea-

ture vector in the plane. Note that there are usually two intersection points.

We only consider the one above the x-axis. It is also possible that the two
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circles do not intersect at all. This case will be discussed in the section on

implementation aspects.

Figure 3.10 illustrates this approach. The small circle that represents the

potential coordinates of x̂j, can be drawn with radius d̂ij obtained from equa-

tion (3.21). Analogously, the bigger circle can be drawn with radius d̂`j that

we get with equation (3.22). The intersection point of these two circles repre-

sents the feature vector x̂j in the plane.

3.8.1 Implementation Aspects

Apart from the clustering itself, which leads to the membership degrees uij

another parameter affects the transformation, namely m (see equations (3.20,

3.21, 3.22)). A priori, one would take the same value for m as for the clus-

tering. But it can also be useful to modify this parameter. Practical tests

have shown that in some cases, e.g. when a feature vector is very close to a

prototype vector, no intersection point can be obtained in the plane and con-

sequently the membership degrees to the respecting feature vector cannot be

preserved exactly.

The rules shown in algorithm 7 handle such cases while trying to preserve

membership degrees approximately. Let us denote the transformed data set

X̂. The two circles have no intersection point only in the case, when the fea-

ture vector is very close to one of the clusters. In this case, we place the point

on the x-axis, i.e. x̂2j = 0. The rest of the rule tries to find the proper posi-

tion for x̂j on the x-axis balancing the distances to cluster (0, 0) and cluster

(1, 0). If the distance to both clusters is relatively small, say max(d̂ij, d̂`j) < 1,

then we compute a position between both clusters in relation to d̂ij and d̂`j.

Otherwise, which means one or both clusters are about a distance of 1 or fur-

ther away from the feature vector, we distinguish whether cluster (0, 0) or

cluster (1, 0) is nearer. If the distance of xj to cluster (0, 0) is higher than the

distance to cluster (1, 0) then x̂j will be placed to the right of cluster (1, 0) at

x̂j = (1 + d̂`j, 0). If the distance d̂ij to cluster (0, 0) is smaller than the dis-

tance d̂`j to cluster (1, 0) then x̂j will be placed to the left of cluster (0, 0) at

x̂j = (−d̂ij, 0). This concept enables an accurate placement of data points
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Algorithm 7 Placement of x̂j on the x-axis

if no intersection point then

x̂2j = 0

if max(d̂ij, d̂`j) < 1 then

x̂1j = d̂ij/
(

d̂ij + d̂`j

)

else

if d̂ij > d̂`j then

x̂1j = 1 + d̂`j

else

x̂1j = −d̂ij

end if

end if

end if

relative to the nearest cluster at least. However, it is not essential to know the

exact distance of the feature vector to the other cluster, since the distance is

quite large in fact.

With these rules the membership degrees cannot be preserved exactly, but

approximated intuitively. Alternatively, one can avoid this kind of approx-

imation by modifying parameter m for the transformation process. Small

values m → 1 prevent that no intersection point can be met. Otherwise, one

can set higher values for m to force placements on the x-axis. Such transfor-

mations may not be that differentiated, but information can be reduced to

some essential facts if needed. Generally, data points situated left from 0.5

on the x-axis can be assigned to cluster (0, 0), while data points on the other

side belong to another cluster.

3.8.2 Illustrative Examples

Let us first apply our visualization method to an artificial data set. The Cube

data set (see figure 3.11(a)), that we have used before already, consists of

eight well separated clusters, which are in the corners of an imaginary 3-

dimensional cube. A fuzzy c-means partition of the data set with five proto-

types is shown in the figure. Of course, eight prototypes would be the best
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(a) Clustering of the Cube data set with 5

prototypes

A

B

C

(b) Transformation of the Cube data set

from the perspective of prototype A

1 2 3

4

(c) Transformation of the Cube data set

from the perspective of prototype B

(d) Transformation of the Cube data set

from the perspective of prototype C

Figure 3.11: SCV - an illustrative example

choice to partition the Cube data set. Thus, we can illustrate with this parti-

tion which information one can get from the visualization tool, if the number

of clusters is chosen wrongly.

Figure 3.11(b) shows the SCV-transformation of the Cube data set from

the perspective of prototype A. Clearly four groups of data points can be

observed (circled with a dashed line). The data points in group 1 are those,

which can be clearly assigned to prototype A. Data points that are located in

group 2 are those, which are not assigned to prototype A at all, but to another

prototype. Note, a partition that only consists of these both groups is ideal.
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(a) (b)

Figure 3.12: SCV transformations of single clusters of the Wine data set

(a) Transformation with m = 1.2 (b) Transformation with m = 1.02

Figure 3.13: The effect of parameter m on SCV transformations

Group 3 stands for feature vectors, which are not assigned to prototype A

and not to any other prototype. Instead, the data points have approximately

the same membership degree to two or more prototype vectors (but not to

prototype A). Group 4 represents feature vectors that have approximately

the same membership degree to prototype A and another prototype.

Figure 3.11(c) shows the transformation of the Cube data set from the per-

spective of prototype B. At first sight one can notice that group 4 is absent.

That means in fact that no other prototype than prototype B has high mem-

bership degrees to the data points in group 1. A closer look reveals that the
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distance of prototype B to some misrepresented data is higher comparing to

other prototypes, such as prototype A and C. All other data points that could

contribute to group 4 are clearly represented by some prototypes.

The transformation of the Cube data set from the perspective of prototype

C is shown in figure 3.11(d). Now group 3 is missing in the plot. This be-

comes evident, because all data points that are underrepresented are directly

between prototype C and at least one other prototype. As we have discussed

above, group 3 only occurs when data points have low membership degrees

to the regarding prototype and approximately equal membership degrees to

two or more other prototypes. Since prototype C is at least as near to the data

as other prototypes, group 3 cannot be formed.

Figure 3.12 shows some results on the well known Wine data set. The fig-

ure shows as an example two clusters of a partitioning with four prototypes.

The left one is a visualization of a quite compact cluster. Data points left from

0.5 on the x-axis whose component on the y-axis is greater than zero have

only small membership degrees to the cluster (1, 0) even if their distance to

cluster (0, 0) seems to be far. This is due to the relatively small fuzzifier that is

used during the clustering. The cluster shown in figure 3.12(b) is much more

overlapping other clusters as the points on the x-axis, fairly in the middle

between both clusters, indicate. As mentioned above, using small values for

m leads to rather sensitive transformations. Even a relatively small member-

ship degree to a certain cluster attracts the data points in the transformation.

To smooth this effect it is advisable to decrease m for the transformation or

increase m for the clustering if possible.

The effect of decreasing m for the transformation is shown in figure 3.13.

While figure 3.13(a) shows the transformation of a cluster of the Wine data

set with m = 1.2, figure 3.13(b) shows the same cluster transformed with

m = 1.02. The changeover from cluster (0, 0) to cluster (1, 0), which is the

imaginary line at 0.5 through the x-axis, is rather sparse. This fact indicates

a compact cluster with only few feature vectors which cannot be assigned

clearly to any cluster.
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3.8.3 Discovering Weather Clusters Impacting Air Traffic

Management

In this section we discuss the results of SCV applying it to the weather data

set [84]. Three categories are defined (short, medium and long flights) ac-

cording to the flight durations in the TMA. Short flights correspond to flights

taking up to one minute more than the average flight duration in the TMA.

Medium flights exceed the average flight duration up to eight minutes. The

remaining flights correspond to the longer flights.

Figure 3.14(a) shows one cluster of a three-cluster-partition. Short flights

are visualized by green points, medium flights by blue points and long flights

by red points. All feature vectors left from 0.5 on the x-axis have their highest

membership degree to the cluster we try to visualize here. At first sight it is

visible that no compact cluster could be found. The changeover from cluster

i to cluster ` is quite fluent. According to the visualization no clear border

between cluster i and another cluster can be drawn. A second cluster, de-

picted in figure 3.14(b), represents flights of all three categories. Estimating

flight durations based on the cluster’s average flight duration produces in

comparable cases a considerable variance and poor predictions accordingly.

Borders between cluster i and cluster ` cannot be decided.

These visualizations reveal that flight durations can be partly classified

using weather data as figure 3.14(a) evinces. However, the entire data set

should not be analyzed only by partitioning methods. Some regions in the

feature space seem to be more complicated and flight duration categories

cannot be separated linearly. Recent studies applying support vector ma-

chines could improve prediction quality and underline our assumptions [61,

98].
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(a) Cluster of short flight durations

(b) Cluster of mixed flight durations

Figure 3.14: Visualization of weather clusters with SCV
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3.9 Prototype-Based Outlier Detection

The detection of outliers as we proposed in [51] is a modified version of the

one proposed in [92] and is composed of two different techniques namely

clustering and statistical outlier detection.

The technique is described by means of an alternating procedure that re-

peats clustering of the data set as a first step and removing outliers as a

second step. In the clustering step the data set will be partitioned with a

prototype-based clustering technique, such as k-means or fuzzy c-means, so

that the feature space is approximated with an adequate number of proto-

types. According to the clustering algorithm, the prototypes will be placed

in the centre of regions with a high density of feature vectors. Even though

outliers are far away from the typical data they influence the placing of the

prototypes [25].

Algorithm 8 describes the outlier detection procedure schematically. After

partitioning the data, feature vectors are considered as belonging only to a

single cluster. Note, when using a fuzzy clustering algorithm a defuzzifica-

tion has to be done. For each attribute t of the feature vectors of the con-

sidered cluster, the mean value, i.e. vi, and the standard deviation σvi
has to

be calculated. For the vector xj with the largest distance to the mean vector,

which is assumed to be an outlier, the value z
(t)
j of the z-transformation

z
(t)
j =

∣

∣

∣
x

(t)
j − v

(t)
i

∣

∣

∣

σ
v
(t)
i

for each of its components is compared to a critical value which depends

on the sample size. If one of these values is higher than the respective crit-

ical value, then this vector is declared as an outlier. One can use the Maha-

lanobis distance as in [92], however, since simple clustering techniques like

the (fuzzy) c-means algorithm tend to spherical clusters, we apply a modi-

fied version of Grubbs’ test [35], not assuming correlated attributes within a

cluster.

The critical value is a parameter that must be set for each attribute de-



3.9 Prototype-Based Outlier Detection 89

Algorithm 8 Prototype-based outlier detection

Given the data set X = {x1, . . . , xn} ⊂ R
p

Clustering of the data set yielding c prototypes vi

Define critical z(t) for each attribute t

repeat

for i = 1 to c do

for all data xj in cluster i do

for each attribute t of xj do

Compute z
(t)
j =

∣

∣

∣
x
(t)
j −v

(t)
i

∣

∣

∣

σ
v
(t)
i

if z
(t)
j > z(t) then

remove xj

end if

end for

end for

Compute new positions for all prototypes vi

Update critical z(t) for each attribute t according to the new cluster

size

end for

until no outlier found

pending on the specific definition of an outlier. One typical criterion can

be the maximum number of outliers with respect to the amount of data [48].

Eventually, large critical values lead to smaller numbers of outliers and small

critical values lead to very compact clusters. Note that the critical value is set

for each attribute separately. This leads to an axes-parallel view of the data,

which in case of axes-parallel clusters leads to a better outlier detection than

the (hyper)-spherical view on the data.

If an outlier was found, the feature vector has to be removed from the

data set. With the new data set, the mean value and the standard deviation

have to be calculated again for each attribute. With the vector that has the
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largest distance to the new centre vector, the outlier test will be repeated by

checking the critical values. This procedure will be repeated until no outlier

will be found anymore. The other clusters are treated in the same way.

3.9.1 Illustrative Examples

Figure 3.15 shows the results of the proposed algorithm on an illustrative ex-

ample. The crosses in this figure are feature vectors, which are recognized

as outliers. As expected, only few points are declared as outliers, when ap-

proximating the feature space with one prototype only (see figure 3.15(a)).

The prototype will be placed in the centre of all feature vectors. Hence, only

points on the edges are recognized as outliers. Comparing the solutions with

three and ten prototypes one can determine that both solutions are almost

identical. Even in the border regions, where two prototypes compete for

some data points, the algorithm rarely identifies these points as outliers, in

accordance to our intuition.

The figure shows that the algorithm can identify outliers in the illustra-

tive data set in a stable way. With only few parameters the solution can

be adapted to different requirements concerning the specific definition of an

outlier. With the choice of the number of prototypes, it is possible to influence

the result in that way that with a larger number of prototypes even smaller

data groups can be found. To avoid an overfitting to the data it makes sense

in certain cases, to eliminate very small clusters before applying the outlier

elimination procedure. However, finding out the proper number of proto-

types should be of interest of further investigations.

In case of using a fuzzy clustering algorithm like FCM to partition the data,

it is possible to assign a feature vector to different prototype vectors. In that

way one can consolidate that a certain feature vector is an outlier or not, if

the algorithm decides for each single cluster, or at least for the clusters that

yield the highest membership degree, that the corresponding feature vector

is an outlier.

FCM provides membership degrees for each feature vector to every clus-

ter. One approach could be, to assign a feature vector to the corresponding
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(a) 1 prototype

(b) 3 prototypes

(c) 10 prototypes

Figure 3.15: Outlier detection with different number of prototypes
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Cluster
mean flight
duration (s)

(before outlier test)

RMSE
mean flight
duration (s)

(after outlier test)

RMSE

1 2021.18 266.17 2021.18 266.17

2 2497.13 407.90 2465.71 358.68

3 2136.85 268.93 2136.85 268.93

4 2303.41 409.35 2303.41 409.35

5 2186.22 292.04 2186.22 292.04

6 1872.23 180.45 1872.23 180.45

7 2033.31 395.33 2033.31 395.33

8 1879.28 187.12 1879.28 187.12

9 1839.65 90.95 1839.65 90.95

10 2566.15 517.01 2523.28 492.60

Table 3.1: Estimated flight duration before and after outlier treatment

clusters with the two highest membership degrees. The feature vector is con-

sidered as an outlier if the algorithm comes to the same decision for both

clusters. In cases where the algorithm gives no definite answers, the feature

vector can be labelled and processed by further analysis.

3.9.2 Eliminating Outlying Weather Data

We applied the above method on a weather data set describing the weather

situation at Frankfurt Airport at 12:20 PM. Partitioning the weather data is

done using k-means with 10 prototypes. Since the weather data set is high-

dimensional in the feature space we prescind here from showing a visualiza-

tion of the clustering results. Though, table 3.1 shows some numerical results

for the flight duration before the outlier treatment and afterwards.

The proposed outlier procedure removes a total of four outliers in two clus-

ters. The according clusters are highlighted in the table by means of light

grey background. Indeed, both clusters benefit from removing the outliers

insofar that the estimation of the flight duration, using a simple measure like

the mean, can be improved to a considerable extent. The lower RMSE for the

flight duration estimation in both clusters confirms this.
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Classification aims at associating input data to predefined classes. Many

techniques, such as neural networks and support vector machines (SVM),

have been successfully applied for this purpose. Unfortunately, these tech-

niques have the disadvantage of being hardly interpretable. The user of a

suchlike technique cannot see why the system behaves like it does. Available

expert knowledge cannot be easily integrated into the system.

Both these issues are not the case for fuzzy systems [59]. Fuzzy rules can be

understood by a user and own rules can be integrated if necessary. Typically,

fuzzy rules describe an inference scheme:

R : if antecedent then consequent

where the antecedent is described by the input variables:

x1 is A1 and . . . and xl is Al

and the consequent by a single output variable y is B6. Input variables are

defined by means of membership functions.

Instead of constructing an entire rule base by hand, one can automatically

derive rules from data. Fuzzy rules are usually obtained from fuzzy clus-

ters by projecting the clusters to the coordinate spaces, but also various other

techniques are commonly used [5, 34, 50]. Despite the good interpretability

of single fuzzy rules, the analysis of an entire fuzzy rule base can be exhaust-

ing. Particularly if the data comprehend many attributes, i.e. the input data

is high-dimensional, interpretation becomes difficult. The following section

therefore discusses a technique to visualize fuzzy rules and the data set clas-

sified by the rule system as well. We have presented this approach in [83, 85].

6There are also other concepts of fuzzy rules, e.g. where the rule consequent is employed

as a linear function of the input variables, which are not considered here.
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4.1 Rule Classification Visualization

To start with, we follow the terminology of fuzzy rules according to the defi-

nition that is given in [5, 32]. Later we will apply the rule base visualization

approach on a rule base that is generated by a more general rule construction

technique.

A trapezoidal membership function of a fuzzy rule is defined by four pa-

rameters < ai, bi, ci, di > (see figure 4.1). The rule’s core region for attribute

i is defined by parameter bi and ci. It describes the region of the member-

ship function that is supported by training examples during the rule learn-

ing phase. The rule’s support region for attribute i is defined by parameter

ai and di. The support region might be constrained as the figure shows, but

also open to ±∞ depending on the training algorithm. In addition, a centre

vector of each rule can be determined by means of the core region’s centre

for each attribute of the rule.

Further, we define neighbourhood of rule centre vectors according to over-

lap regarding the core regions of the rule system. Neighbourhood Ne f of rule

Re andR f can either be 1 if all core regions of both rules overlap, or 0 if not.

Combining the centre vectors and the neighbourhood Ne f we can define

a dissimilarity (or distance) matrix D as it is used with Sammon’s mapping

that we already described in section 2.1. Sammon’s mapping finds a low-

dimensional representation of high-dimensional data trying to preserve dis-

tances between feature vectors. Accordingly, we can use Sammon’s mapping

to find a two- or three-dimensional mapping of the rule centre vectors (or

their representation by means of the dissimilarity matrix). Thus, we use the

normalized rule centre vectors to determine the required distance matrix and

enlarge the distance of non-neighbouring rules by Ne f . Of course, no guaran-

tee can be given, that all neighbouring rules will be placed appropriately, but

considering core based neighbourhood might improve the chance to obtain

feasible transformations.

Once the rule centre vectors are mapped in the plane or the 3D-space, we

propose to place the data set’s feature vectors according to their membership
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Figure 4.1: A trapezoidal membership function

degree to the two rules that yield the highest response. Thus, we place the

feature vectors proportional to both rule centre vectors. A visualization like

this reveals some interesting aspects of the rule system:

• Similar rules and neighbouring rules can be visualized by their distance

and a drawn link, respectively.

• Classified feature vectors symbolize by their colour and their propor-

tional distance to the respective rule centre vector which rule fires to

what degree.

• Misclassified feature vectors can be detected when using appropriate

symbols or colours for them.

• Conflicting rules (visualized by connected rule centres of different colours)

can be identified.

In the next section we will demonstrate the proposed technique on some

benchmark examples.

4.1.1 Illustrative Examples

Figure 4.2 shows an exemplary rule classifier that is learned based on the well

known Wine data set (see section 2.4.3). We applied the fuzzy rule learning

algorithm as described in [5] and obtained ten rules which classify the entire
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Figure 4.2: 2D-Visualization of an example for a rule classifier on the Wine data set

data set correctly. Rule centre vectors are visualized by squares (2). Connec-

tions between rule centre vectors indicate their neighbourhood regarding the

core region. Rules of the same class are visualized by the same colour. Ad-

ditionally, data objects are visualized by means of points. A feature vector’s

membership to a certain rule can be differentiated by means of its colour and

its distance to rule centre vectors.

The figure reveals some interesting facts. In consequence of placing vectors

in the plane depending on their membership degree to the two rules that

yield the highest response, classified feature vectors will be placed on an

imaginary line that connects two rule centre vectors. Note, feature vectors

may not only be represented by neighbouring rules corresponding to the core

based neighbourhood definition whose neighbourhood is visualized by lines

in the figure. As the figure reveals, for some neighbouring rules the data set

contains no data that lie in the core regions of those rules. Two of ten rules

represent data that lie not in any of the core regions of these rules. If two

rules yield similar membership degrees to a feature vector, it will be placed

in the middle between these rule centre vectors. Of course, the classification

that will be done in such cases is not that confiding since the decision comes
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randomly if no further information is available.

This classifier is almost ideal. Despite of one conflicting red rule that over-

laps with one blue rule and one green rule no misclassifications occur. There

are also no rule pairs representing different classes that compete for some

data. Actually, the visualization tool can provide much more insight into

classifiers that comprise problematic aspects. The following examples will

demonstrate some more prospects of this technique.

The second example is the Wisconsin breast cancer data set [64]. Each pa-

tient in the database had a fine needle aspirate taken from her breast. Then

nine attributes where determined and analyzed to discriminate benign from

malignant breast lumps. Figure 4.3(a) shows the visualization of the learned

rule system and the corresponding classified data set. For this example we

divided the data set into a training data set and a test data set by choosing

randomly 50% of the data for each of both data sets. We used the training

data set to learn the fuzzy rule classifier. The test data set was applied on the

learned classifier which yields the figure above using the proposed visual-

ization technique.

The figure shows clearly that rule centre vectors which represent the same

class are mapped in the same region in the plane. There are two neighbour-

ing rules that represent different classes. These rules misclassify some feature

vectors. Some rules respond only with small membership degrees to few fea-

ture vectors and do not yield high response to any other feature vector. This

fact is shown in the figure by rule centre vectors that have no adjacent feature

vectors. Thus, the figure reveals that the rule system can be pruned here.

Figure 4.3(b) shows a 3-dimensional visualization of the rule classifier on

the training data of the Wisconsin breast cancer data set. Feature vectors of

different classes are visualized by small spheres of different colours. Rule

centres are visualized by cubes. Transparency helps to identify feature vec-

tors which are positioned exactly on the same coordinate as rule centres.

Light grey connections between rule centres indicate rule neighbourhood.

Three-dimensional visualization is mainly efficient when interaction (zoom-

ing, rotating, etc.) is provided. The figure results from a Java3D implemen-
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(a) 2D-Visualization of an examle for a rule classifier on the

Wisconsin breast cancer data set

(b) 3D-Visualization of an examle for a rule classifier on

the Wisconsin breast cancer data set

Figure 4.3: Visualization of rule classifiers on the Wisconsin breast cancer data set
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tation that enables the user to interact. In the foreground of the figure a dark

grey connection can be found. In the actual implementation, feature vectors

can be clicked and the two rules that yield the highest response to the feature

vector will be visualized by a dark grey connection. Clicking the same fea-

ture vector again causes the disappearance of the according connection. This

feature helps the analyst to identify interesting rules and feature vectors as

well.

4.1.2 Visualization of Classification Rules for Flight

Duration Prediction Based on Weather Data

The impact of weather on flight duration of arriving aircraft has been ana-

lyzed in various studies [61, 76, 78]. Several techniques, such as neural net-

works, support vector machines, linear regression and regression trees have

been applied to the data [11, 65, 74, 75].

Figure 4.4 shows an example of a rule classifier that was learned on a sam-

ple of the weather data using the method described in [5]. As mentioned

earlier, the weather data set consists of weather reports which are regularly

released every thirty minutes and describe the weather situation at Frankfurt

Airport. To demonstrate our visualization technique that is suitable mainly

for smaller data sets or rule bases respectively, we consider here only the

weather reports given at 12:20 PM for the year 1998. Due to some missing

weather reports for the considered time period the data set comprehends

333 data. The flight duration times were grouped into three classes: short

flights with one minute delay with respect to the average flight duration in

the TMA, medium flights with eight minutes delay and long flights with

even more delay.

A rule classifier was learned using this data set and pruned to eleven rules.

For a better interpretability some additional lines are plotted (light grey) to

visualize which rule pair yields the highest response to a certain weather re-

port that could not be classified correctly. Solid black lines indicate overlap-

ping rules again. It can be observed that rules covering short flights (green

rule centre vectors) and medium flights (blue rule centre vectors) overlap
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Figure 4.4: 2D-Visualization of an exemplary rule classifier on the weather data

Figure 4.5: POLARMAP-Visualization of the weather data set
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sometimes. Rules that cover long flight durations (red rule centre vectors)

are fairly distant to other rules in the figure which emphasizes the impact of

weather on flight duration. The proximity of rules that cover short flights,

reflects the similarity of those weather conditions. Of course, rules, cover-

ing medium flights, are sometimes alike to short flight rules but also to long

flight rules. This is reflected by the rule centres’ positions in the figure. If only

one rule covers a certain weather report the feature vector will be placed di-

rectly on the rule centre vector. Thus, it cannot be inspected on the graph,

how many feature vectors overlap. Further development should focus this

problem. Due to pruning 118 weather reports cannot be classified correctly.

These weather reports are depicted by the circles in the figure.

Figure 4.5 shows a 2-dimensional mapping of the weather data set using

POLARMAP. Data points surrounded by a circle correspond to misclassified

weather reports. The figure reveals why this data is not covered by any rule

of the pruned rule system. Mostly these points are located in areas where

all classes of weather reports appear. In these cases the rule learner has to

use many rules to classify the data set correctly. Since the pruning strat-

egy simply removes those rules which cover only few weather reports, these

points cannot be classified correctly thereafter. The figure also gives some

hints for the partly low classification rates (green: 61%, blue: 48%, red: 89%).

The discretization of the continuous flight duration times to three flight du-

ration classes generates numerous misclassifications especially on class bor-

ders. Further analysis should investigate a suitable binning. Binning could

be improved using histograms (e.g. see figure 4.6) to find an appropriate

discretization of the flight duration attribute. As it can be seen in figure 4.6,

there are two significant gaps at 1900s and 2150s that might be a better choice

to use for discretization.

The rule construction technique as discussed in section 4.1 assumes that for

each rule a centre vector can be computed. Indeed, the aforesaid technique

always generates membership functions for each variable of the data set in

each rule. However, other rule construction algorithms try to find rules that

use a minimal number of variables to describe the classification task. Differ-
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Figure 4.6: Histogram of flight durations

ent rules of a rule base consider different variables. Consequently, rule centre

vectors that we have used so far to build a distance matrix for the Sammon’s

mapping procedure cannot be determined directly.

To build up a distance matrix (or generally a dissimilarity matrix) distances

are not essentially needed. Dissimilarity can be defined by comparing single

membership functions of rule pairs. Starting with an initially zero valued

dissimilarity matrix, dissimilarity of a rule pair has to be augmented if mem-

bership functions for the same variable do not overlap. Dissimilarity of a

rule pair that is not overlapping or that predicts different classes can also be

augmented. A suchlike derived dissimilarity matrix can be straightly used

with Sammon’s mapping.

Figure 4.7 shows two rule bases that are generated by the NEFCLASS

fuzzy rule learner [68]. The rule base that is visualized in the upper figure is

built using the same class definition as described earlier in this section. The

classification rate is comparable to the rule classifier that we have discussed

in this context. For a better readability only misclassified short flights are

depicted in the figure. The visualization reveals that the rule base contains

some overlapping rules – rules that get non-zero membership degrees to a

shared subset of data of the same class – but also two conflicting rules that
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(a) A rule classifier with 11 rules

(b) A rule classifier with 5 rules

Figure 4.7: 2D-Visualization of rule classifiers on the weather data including some

misclassified short flights (Sammon’s mapping based on a dissimilarity

matrix)



104 4 Fuzzy Classification Rules

get non-zero membership degrees to a shared subset of data of a different

class. Eye-catching are some misclassified short flights whose two highest

membership degrees get rules that actually classify long flights. Investiga-

tions on the raw traffic data have shown that the flight durations for these

flights where originally missing. These missing values were replaced by the

mean value which obviously does not suitably reflect the reality. There are

also some short flights that get high membership degrees to rules that classify

medium and long flights. Despite of bad weather conditions and demanding

traffic at the airport these aircraft could land very fast.

Figure 4.7(b) shows the mapping of a rule base that is composed by five

rules only. The reduction of the rule number is an effect that arises when

taking the flight duration frequencies (as shown in figure 4.6) into account.

Flight duration classes are defined according to the gaps in the histogram at

1900s (as the upper bound for short flights) and at 2150s (as the upper bound

for medium flights)7. The classification rate is approximately the same as

for the rule base with 11 rules. As the figure reveals, this rule base contains

more conflicting rules. Since the class definition has changed the intra class

classification rate cannot be compared directly with the prior fuzzy classifier.

7Using the gap at 2450s as the upper bound for medium flights does not improve the fuzzy

classifier.



5 Conclusions

In this work we have contributed to the field of data mining and data visu-

alization against the background of air traffic management tasks. We have

presented some new visualization techniques as well as some suitable exten-

sions to well-known methods.

Visualization of high-dimensional data is an active research area. Mul-

tidimensional scaling aims at finding a low-dimensional representation of

high-dimensional data while preserving similarity of objects. We focused in

this thesis on the development of two new MDS-related techniques, namely

MDSpolar and POLARMAP, that provide some valuable aspects. Besides

computational efficiency, both approaches allow to map new data that has

not been used to learn the model. So far only few approaches support this

feature while being computational expensive. In contrast to conventional

MDS approaches were distances or dissimilarities will be preserved, our

transformation bases in both approaches on the preservation of angles be-

tween feature vectors when mapping high-dimensional data onto the plane.

MDSpolar provides the possibility to map new data that has not been used

to learn the model, since the solution is described by means of a system of

linear equations. POLARMAP’s solution is even more comfortable because

a function is learned that can be applied for new data objects. Similar to ker-

nel methods POLARMAP can implicitly represent the data in a new feature

space to improve the transformation. The application of these visualization

techniques revealed interesting correlations between weather and flight du-

rations at airports. With density-based multidimensional scaling we have

introduced another approach that combines conventional MDS and density

preservation successfully.

Clustering is the process of grouping data into several clusters containing

similar objects. The task of clustering is to maximize the intraclass similarity
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and minimize the interclass similarity. Many clustering techniques are fairly

sensitive to noisy data. The effect is that prototypes, centre vectors that repre-

sent the clusters, will be placed on suboptimal positions in the feature space.

Noise clustering is a common technique that robusts well-known clustering

algorithms, like fuzzy c-means. However, noise clustering depends strongly

on the number of prototypes used for the clustering which is not covered by

the original noise clustering approach. We provided in this work a technique

that estimates the respective control parameter - the noise distance - such

that noise clustering becomes widely robust to the prototype number. Fur-

ther we discussed a new technique that combines clustering and statistical

outlier detection. On the basis of the weather data we have shown that the

treatment of outliers by means of our technique yields more accurate results

for the flight duration prediction.

Validation of clustering partitions is a crucial step to check whether the

prototypes fit the data clusters. To date, plenty of validity indices exist con-

densing the clustering result to a single value to rate the partition quality. We

have also discussed some visual techniques to validate clustering partitions.

With the approach called single clustering visualization we have presented

a new technique to visualize a clustering partition from the perspective of

a certain cluster. Interesting aspects become visual, such as compactness of

clusters, the existence of outliers and whether the number of prototypes is

chosen appropriately or not.

Furthermore, we provided a very efficient technique to visualize fuzzy rule

classifiers. Fuzzy rules a known to be easily interpretable. Therefore they are

often used to classify data. Our 2D- or 3D-visualizations of rule bases reveal

important aspects and thusly improve interpretability. The application of

this visualization technique enabled us to identify misclassified data as well

as outliers and helped us to identify conflicting and overlapping rules for the

combined weather and flight duration data set.

The application of the different visualization and data preprocessing tech-

niques has shown that there is still some work to do. Our multidimensional

scaling techniques might sometimes have a large constant in the computa-
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tion scheme which restrains their efficiency for large data sets. To cope with

this problem we have discussed the binning issue that allows to consider

relevant data pairs only. Further investigations should concern the criterion

for data that belong to the same bin and finding the appropriate bin size to

improve transformation quality and efficiency. Of course, visualization can

only reflect existing underlying data structures. Consequently, the proposed

techniques are fairly dependent on the provided data. The interpretation

of the obtained results cannot completely substitute expert knowledge. Fi-

nally, visualization with scatter plots and related methods is restricted to the

displaying medium. Thus, visualization of very large data sets demands so-

phisticated techniques to overcome such limitations. Future work should

concern these aspects.

Aside from improving the prediction accuracy by means of data cleaning

we have to declare that ultimate accuracy cannot be achieved since devia-

tions in air traffic occur naturally. The application of support vector regres-

sors on this data have shown that taking non-linearities into account may im-

prove prediction accuracy significantly which proves that there is still room

for advancement at the expense of interpretability. Visualization is a very

important medium to transmit knowledge to experts and decision makers

and should be elaborated in future particularly for powerful and hardly in-

terpretable techniques.
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A Mappings of the Weather Data

The following figures show the effect of the bin size on MDSpolar-mappings of

a weather data set that contains 3510 data8. When using smaller bin sizes (say

50 or 100) the mapping already reveals some of the characteristics that can

be observed for mappings with larger bin sizes. Accordingly, short flights

(green points) are spread over the entire feature space, whereas medium

flights (blue points) and long flights (red points) are mainly represented in a

separate area. A stable mapping will be obtained when using a bin size of

200 or higher.

Figure A.1: Mapping of the weather data with MDSpolar (bin size=50)

8Due to its similar approach the effect of the bin size on mappings with POLARMAP is

comparable with MDSpolar.
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Figure A.2: Mapping of the weather data with MDSpolar (bin size=100)

Figure A.3: Mapping of the weather data with MDSpolar (bin size=200)
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Figure A.4: Mapping of the weather data with MDSpolar (bin size=500)

Figure A.5: Mapping of the weather data with MDSpolar (bin size=1000)
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