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Abstract

In real world data sets we often have to deal with different kinds of variables.
The data can be for example categorical or metric. Data mining methods can often
deal with only one kind of data. Even fuzzy systems that are not dependent on
the scales of variables usually only use metric data. In this paper we propose a
learning algorithm that creates mixed fuzzy rules — fuzzy rules that use categorical
and metric variables.
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1 Introduction

When real world data sets must be analysed we often have to deal with different types
of variables on different scales, i.e. nominal scales (categorical data), ordinal scales, or
interval and ratio scales (both metric). Many approaches that are used in data mining
[2] can only deal with one kind of data. For example, neural networks, many statistical
procedures and pattern analysis rely on metric data. To process nominal scaled data these
approaches represent them usually on artificial metric scales. Approaches like decision
trees [13], Bayesian Networks [4, 12] or logic-based approaches work best with categorical
data, or at least discrete finite domains. To deal with continuous variables, they must
use intervals. Fuzzy systems are not dependent on the scales of the data they process.
However, fuzzy system software environments usually assume that variables are metric.

In data mining fuzzy systems can have the advantage to produce solutions that are in-
terpretable in terms of the involved variables. Fuzzy systems can be created by learning
from data using fuzzy cluster analysis [1, 3] or neuro-fuzzy methods [5]. Fuzzy cluster
analysis depends on a distance measure and can therefore only use metric data. Neuro-
fuzzy methods use different approaches to create rule bases. A popular method is to use
a hyperbox-oriented approach, where rules are picked from a regular grid of hyperboxes
(= multi-dimensional fuzzy sets) [9, 14].
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It would be useful to be able to create fuzzy rules from data that contain categorical
variables without converting them to a metric scale. In this paper we call fuzzy rules
that contain categorical and metric variables mixed fuzzy rules. We propose an algorithm
that can create a rule base of mixed fuzzy rules. The algorithm is an extension to our
NEFCLASS model (neuro-fuzzy classification) [6, 7].

Mixed fuzzy rules demand to use fuzzy sets for the categorical variables that cannot be
represented by the usual parameterized membership functions like triangles or trapezoids.
In Section 2 we describe the kind of rules and discuss an artifical example. In Section 3
we present the learning algorithm and in Section 4 we apply our algorithm to real world
data set. In Section 5 we discuss the interpretation of mixed fuzzy rules and conclude
with an outlook on future work on the algorithm.

2 Using Categorical Variables in Fuzzy Rules

Let us consider two attributes z and y, where z € X C R is continuous and y € ¥ =
{A, B,C} is categorical. In a fuzzy rule we describe values of x by linguistic terms. We use
Ivalue to denote any such linguistic term (Ivalue may be a term like small, approximately
zero, large, etc.). In a mixed fuzzy rule using two variables we can have the following
situations:

(i) fuzzy-exact: if z is Ivalue and y = A then ...
(ii) fuzzy-imprecise: if z is Ivalue and y € {B,C} then ...
(iii) fuzzy-fuzzy: if z is Ivalue and y is {(A, u(A)), (B, u(B)), (C, u(C))} then ...

In the first two cases the categorical variable y has a “switching function” for a rule. If y
does not assume one of the values noted in the respective y-term of the antecedent, the
rule is not applicable at all. But if y does assume any of these values, the applicability of
the rule is not restricted by this argument, and the degree of fulfilment only depends on
the value for z.

In the third situation, we use a fuzzy set to describe the value that y may assume, by
simply attaching a degree of membership to each element of Y using some membership
function u : Y — [0,1]. By giving some value to y we can now restrict the applicability
of the rule to any degree between 0 and 1.

Obviously case (i) and (ii) are just special cases of case (iii), because we can replace y = A
by v is {(4,1),(B,0),(C,0)} and y € {4, B} by y is {(4,1),(B,1),(C,0)}.

Because the elements of Y are not ordered, we cannot easily use a linguistic term to label
fuzzy sets like {(4, p(A)), (B, u(B)), (C, 1(C))}. This means the interpretability in terms
of the variables is restricted compared to fuzzy rules that just use variables on metric
scales. We will discuss this issue in Section 5.

For cases (i) and (ii) we can remove the categorical variable from the fuzzy rules, and create
different rule bases, one for each combination of values of y (see Fig. 1). Depending on the
value of y we simply select the applicable rule base. Such a situation may be, for example,
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useful in a medical setting, where we want to classify diseases of patients according to
some symptoms. If we assume that the classification depends on whether the patient
is female or male, we can simply build two different rule bases ~ one to classify female
patients, and one to classify male patients.

A {B.C}
’Apply Fuzzy {Apply Fuzzy
Rule Base 1 | {Rule Base 2

Figure 1: Switching between fuzzy rule bases depending on a categorical variable

For case (iii) let us consider an artifical data set given in Fig. 2. For z we want to use
three fuzzy sets labelled by small, medium and large. The degree of membership for any
value adds up to 1.0, i.e. the membership functions overlap at degree 0.5. The vertical
lines visualise these points. The values of y are represented at the vertical scale, but
please note that the scale is nominal, i.e. the ordering of elements has no meaning.

We assume that the data can be classified into a positive class and a negative class, as
denoted by the + and — signs in the data space. As can be seen in Fig. 2 there is some
degree of overlapping between both classes, especially in the area where z is small.
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small medium large
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Figure 2: An artificial data set with a metric and a categorical attribute

What kind of rules can we use to represent the classification of this data set? If we look
at the grid drawn in Fig. 2, we could get the idea to use 7 rules, one for each box that
contains data, and label each rule with the majority class. This is what would probably
happen, if we apply some kind of clustering algorithm by ignoring the case that y is
nominal scaled and choose to map it to a metric scale, e.g. by setting A = 1, B = 2,

C=3.
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However, we do not want to hide the fact that y is categorical and choose another ap-
proach. Let us first consider the situation, where z is small and the class is positive. We
count 3 cases where y = A, 2 cases where y = B and 5 cases where y = C. By normal-
ising these values, we obtain the fuzzy set {(A,0.6), (B, 0.4),(C,1.0)}. If we consider the
negative class and z is small, we obtain the fuzzy set {(4,0.33), (B, 1.0), (C,0.33)} in the
same manner.

This means, we can add the following two rules to our rule base:
Ry: if z is small and y is 11 = {(4, 0.6), (B,0.4), (C,1.0)}, then class is positive
Ry: if z is small and y is v, = {(4, 0.33), (B, 1.0), (C, 0.33)}, then class is negative

Let us now assume that we obtain three new cases where z = xy in each case with
psmall(zg) = 1.0 and y having a different value in each case. Tab. 1 gives the degrees of
fulfilment for both rules and the classification for all three cases.

Table 1: Classification of three sample cases using rules R; and R,

z  psma(z) y w(y) w(y) Ri R, class

zo 1.0 A 06 0.33 0.6 0.33 positive
o 1.0 B 04 1.00 0.4 1.00 negative
2o 1.0 C 1.0 0.33 1.0 0.33 positive

The rules are, like rules that use only metric variables, representations of typical represen-
tatives for the classes. If we consider the positive class, a typical case would for example
have a small value for = and either C, A or B for y, where we would consider C' more
typical than A and A more typical than B. For the negative class we would consider B
more typical than A or C.

R; and R, are partially contradictory, as they overlap in all variables. If we use

6 (1, p2) = sup min{ (w), pa(x)}

to denote the degree of similarity or overlapping of two fuzzy sets u; and pg, then we
obtain 6 = 0.4 for the antecedents of rules R; and R,. Rules with § = 0 are mutually
exclusive, and for @ = 1 the rules are either identical or one rule is a generalisation of
the other one (if the consequents are identical), or they are completely contradictory (if
the consequents are different). Partial contradiction is, however, common for fuzzy rule
bases, as overlapping of rules is a desired feature.

If we use this rule generation technique further, we obtain the following two rules next:
Ry: if zis medium and y is v3 = {(A4,0.25), (B, 0), (C, 1.0)}, then class is negative,
Ry: if z is medium and y is vg = {(4,0), (B, 1.0), (C,0)}, then class is positive.

For R; and Ry we obtain 6 = 0, i.e. they are mutually exclusive. In this case it would
be possible to use crisp sets to describe the values for y (y € {4,C} for R and y = B
for Ry). However, we would loose the information that the combination z is medium and
y = C is much more typical for the negative class then the combination z is medium and
y = A. It is therefore useful to keep the fuzzy set representation.

136



For the last box in Fig. 2 that contains data, we obtain a problem. Using the procedure
described above, we obtain the two contradictory rules (6 = 1):

Rs: if zis large and y is v5 = {(A,0), (B, 0), (C,1.0)}, then class is positive,

Rs: if z is large and y is vg = {(4,0), (B,0),(C,1.0)}, then class is negative.

We cannot include both rules in our rule base, as we only tolerate partial contradiction.
Therefore we delete the less performing rule, i.e. the rule that would cause most misclas-
sifications: in this case rule Rg. Our final rule base consists therefore of rules Ry, ..., Rs.

3 Learning Mixed Fuzzy Rules

The algorithm given in Fig. 3 computes a fuzzy rule base from a set of training data
containing categorical and metric data.

We use the following notations: R = (a,M,c) is a fuzzy rule. a is vector of fuzzy sets
and part of the antecedent of a rule, 4 is a membership function over a metric variable in
an antecedent. M = [my, ..., m,] is an array of vectors, where the vector m; represents
a fuzzy set for the ith categorical variable. a and M together represent the antecedent
of a fuzzy rule. ¢ represents a class index, i.e. a consequent of a rule. When a fuzzy rule
is created, M is initialized (Fig. 3, line 8) such that each m; contains only zeros. The
training data set L contains pairs (p, t), where p is an input pattern consisting of metric
and categorical featuers, and t is target vecotor describing the class of p. We expect, that
there are initial fuzzy sets for each metric variable.

At first the algorithm creates a set of rule base candidates. This set may be inconsistent, as
it contains contradictory rules. After resolving inconsistencies, by selecting from multiple
rules with identical antecedents but different consequents the best performing rule, a final
rule base is created. This is done, by applying one of the rule evaluation algorithms of
NEFCLASS [8].

After rule creation the fuzzy sets are trained to improve the performance of the classifier.
Membership functions of metric variables are trained according to the algorithms given
in [5]. To compute the modifications for a fuzzy set mér) of a categorical variable z; that
is used in the antecedent of rule r the following procedure is used:

Am{p;] = m-e
m = { m,[p;] ife, <0
1~ m,[p;] ife, >0
e, = e (- (1—7)+¢)
e, = te, = 0c

where p; is the value for z; in the current input pattern p, ¢, is the target value for class ¢,
that is used as the consequent of rule 7, o, is the output of the classifier for class ¢, and 7,
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/* find all rectangular fuzzy clusters that contain data */
for each pattern (p,t) of L do
begin
for each metric input feature p; do
find 4 such that p{(p;) = max UNE
JE{Lti
Create the first part of the antecedent a = (/,Lg), cees ,ugf));
¢ = class index of p given by t;
initialize M;
Create rule R = (a, M, c);
If R is not in list of rule base candidates
then add R to list of rule base candidates;
end;

/* for each rule base candidate, determine frequencies for categorical variables */
create a new empty list of rule base candidates
for each pattern (p,t) of L do
for each rule base candidate R do begin
copy rule base candidate R to R’
for each class ¢ do
for each categorical feature p; do
ifclassof p=c
then with rule candidate R': m;[p;] = my[p;] + 1;
add R' to the new list of rule base candidates
end
delete the old list of rule base candidates;

/* transform the m; into fuzzy sets by normalizing them */
for each rule base candidate R do
normalize all m;;

/* resolve conflicts and select final rule base */
Find all contradicting rules and resolve conflicts;
Select a rule base from the rule base candidates using a performance measure;

Figure 3: Algorithm for creating a rule base of mixed fuzzy rules from data

is the degree of fulfilment of rule 7. The modifications are computed after each presented
training pattern and are applied to the fuzzy set after all patterns were processed (offline
learning, batch learning). The rule error e, is largest for degree of fulfilment 7 = 0.5. The
goal is to drive the membership degrees to the extreme values during learning. For that
we use a small value € to make sure, that fuzzy sets that yield a degree of membership of
1.0 or 0.0 for some value can still be modified by the learning process.

The algorithm is implemented in NEFCLASS-J the new implemention of the NEFCLASS
model. The software is written in Java and will be available for free via the Internet. In
the next section we describe the application of the algorithm using some real world data.
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4 Application of the Learning Algorithm

For testing the algorithm described in the previous section, we used the “Wisconsin Breast
Cancer” data set (WBC data) [15]. We used our new software tool NEFCLASS-J (see
Fig. 4) that provides all the learning algorithms of our NEFCLASS model that were
described elsewhere [7, 10] and some additional features [11] including the algorithm to
handle categorical variables.

pEy
b To enter a-new rule to the rule base, selecta

i+ dhlvariable and a fuzzy set. Then press the Set bution,
to add a a new term o the antecedent. When the
| is lete selecta t and
ress Add Rule to create a new rule.
1| Click on each listto obtain more Information.
{ To save your changes, leave with OK to discard all
difications, use Cancel.
2 e e
. 'Consaquent (Class)
.- Then: Imalign

0 if unifistmi
R1: if uniformity of;

Figure 4: The rule editor of NEFCLASS-J displaying the learning result

The WBC data set is available via the Internet from the machine learning repository
(ftp://ftp.ics.uci.edu/pub/machine-learning-databases). It is a breast cancer database
that was provided by W.H. Wolberg from the University of Wisconsin Hospitals, Madison
[15]. The data set contains 699 cases and 16 of these cases have missing values. Although
the NEFCLASS-J can handle data with missing values [11], we deleted those cases, be-
cause other approaches we compare our result to (see Tab. 3) cannot handle missing
values. :

Each case is represented by an identification number and nine attributes (z;: clump
thickness, z,: uniformity of cell size, z3: uniformity of cell shape, z4: marginal adhesion,
z5: single epithelial cell size, z: bare nuclei, z7: bland chromatin, zg: normal nucleoli,
q: mitoses). All attributes are from the domain {1,...,10}. Each case belongs to one of
two classes (benign: 458 cases, or malignant: 241 cases). The values of all nine variables
are actually from an ordinal scale. Classifier usually simply treat them as metric values
and good classification results can be obtained this way (see Tab. 3).

To test our new learning algorithm we chose to interpret variables =3 and z as categorical
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variables and the rest as metric variables. We chose z3 and g because these two variables
are usually considered as influential by other classification approaches applied to the WBC
data. )

The new NEFCLASS-J tool offers an automatic creation and pruning process that creates
a rule base, trains the membership functions and finally automatically prunes the classifier
to remove as many variables and rules as possible. This process can be combined with an
n-fold cross validation. For this, the tool randomly splits the data set into n parts and in
each cycle it uses n—1 parts for creating the classifier and the remaining part for validation
such that each part is once used for validation. The final classifier is obtained by using
all available data. The error estimation (mean error) & for unseen data is computed from
the errors e; of the classifiers created during validation.

The 99% confidence interval for the estimated error is given by
€+2.58-6;

where &; is the standard error of the mean:

We used a 10-fold cross validation, and let the tool select the best two rules per class
during rule learning. For each metric variable two initial membership functions were
given (half trapezoids, compare Fig. 5). The fuzzy sets for the categorical variables were
created during rule learning. The fuzzy sets were trained until the error on the validation
set could not be further decreased, but not longer than 300 cycles.

uniformity of cell size
1.0 sm 5
0.5}
0.0
T T T T 1
1.0 2.8 4.6 6.4 8.2 10.0

Figure 5: Initial membership functions for metric variables
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The final classifier contains only two rules using one and two variables, respectively:

(i) if 22 (uniformity of cell size) is small and zs (bare nuclei) is term{®) then benign

(ii) if 2 (uniformity of cell size) is large then malign

The membership functions after training are shown in Fig. 6. The fuzzy set for the
categorical variable ¢ is drawn as a histogram. Its exact representation is
term® = {(1,1.0),(2,0.99), (3,0.75), (4,0.63), (5,0.68),
(6,0.0), (7,0.14), (8,0.02), (9,0.0), (10,0.22)}.

uniformity of cell size
1,05 g
0.5
0.0
T T T T T L}
1.0 2.8 486 6.4 8.2 10.0
bare nuclei
1.0 fsO
0.5
0.0
T T T T T 1
1.0 28 46 6.4 8.2 10.0

Figure 6: Membership functions for the metric variable z, and the
' categorical variable zs after training

This classifier causes 29 misclassifications (4.25%) on the training data, i.e. its classifica-
tion rate is 95.75% (see Tab. 2). The error estimation for unseen data obtained from cross
validation yiélds 3.95% + 1.88% misclassifications, i.e. an estimated classification rate of
96.05% + 1.88% (99% confidence interval). This error estimation must be interepreted
this way: A classifier that is obtained by the described learning procedure and using the
described parameters and training data is estimated to produce an error of 3.95%+1.88%
on unseen data.
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The final rule base was also discovered in three of the validation cycles. Altogether seven
different rule bases were discovered during validation (nine rule bases with two rules, one
rule base with three rules). However, most of the other rule bases were very similar and
differed only in additionally using the other categorical variable 3, using 3 instead of
T, O using just z,.

Table 2: The confusion matrix of the final classifier obtained by NEFCLASS-J

Predicted Class
malign benign not classified sum
malign | 222 (32.50%) | 17 (2.49%) |0  (0.00%) | 239  (34.99%)
benign | 12 (1.76%) | 432 (63.25%) |0 (0.00%) | 444  (65.01%)
sum | 234 (34.26%) | 449 (65.74%) |0  (0.00%) | 683 (100.00%)

correct: 654 (95.75%), misclassified: 29 (4.25%), error: 58.32.

Tab. 3 compares the result obtained with NEFCLASS-J (last entyy) to results obtained
with other approaches including a previous release of NEFCLASS for Unix workstations
(NEFCLASS-X [10]) The classification performance on unseen data is very good and the
classifier is very compact. The error estimates given column “Validation” of Tab. 3 are
either obtained from 1-leave-out cross validation, 10-fold cross validation, or from testing
the solution once by holding out 50% of the data for a test set.

Table 3: Comparing the NEFCLASS learning outcome for the WBC data set to some
other approaches. Numbers in () are mean values from cross validation. The column
“BError” contains an estimated error for unseen data

Model Tool Remarks Error Validation

Discriminant SPSS linear model 3.95% 1-leave-out

Analysis 9 variables

Multilayer SNNS 4 hidden units, 5.18% 50% test set

Perceptron RProp

Decision Tree C4.5 31 (24.4) nodes, 4.9%  10-fold
pruned

Rules from C4.5rules 8 (7.5) rules using 4.6%  10-fold

Decision Tree 1-3 variables

NEFCLASS NEFCLASS-X 2 (2.1) rules using 4.94% 10-fold

(metric variables) (Unix version) 5-6 variables

NEFCLASS NEFCLASS-J 2 (2.1) rules using 3.95% 10-fold

(2 categorical variables) (Java version) 1-3 variables
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5 Conclusions

We have presented a learning algorithm for mixed fuzzy rules using training data with
categorical and metric variables. The resulting fuzzy rules cannot be as easily interpreted
as fuzzy rules that use only metric variables and continuous membership functions that
can be labelled with terms like small or large.

Fuzzy sets that are denoted as an ordered set of pairs are hard to be labelled linguistically.
In some cases linguistic labels can be found by inspection. For example, if we have
a categorical variable describing the job of a person the fuzzy set { (accountant, 0),
(consultant, 0.3), (engineer, 0.7), (lecturer,1), (professor, 1)} may be labelled as academic
job.

If fuzzy rules are created by learning, then it is useful to also create linguistic labels
automatically. To quickly generate a rough linguistic term for a fuzzy set given by an
ordered set of pairs we could use “y is A or C or B” for y is {(A4,1.0), (B,0.4),(C,0.7)}.
The order in which the feature values with non-zero membership are listed, expresses the
preferences represented in the degrees of membership. In this case we learn from the label,
that A is more typical than C and C is more typical than B in the situation of interest.
‘If we need to know the exact degrees of membership, we can look at the fuzzy set.

This interpretation is similar to common linguistic labels like approximately zero for a
continuous variable. In this case we also know, that 0 is the most typical value for the
variable and larger or smaller values are less typical. If we are interested in the exact
degrees, we also have to look at the membership function.

The algorithm presented in this paper is an extension to our neuro-fuzzy model NEF-
CLASS. The new Java version of the NEFCLASS software will be publicly available at
the time of this conference at http://fuzzy.cs.uni-magdeburg.de. The other new features
of this software will be described in another paper [11].
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