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Abstract:

Today the method for surface quality analysis of exterior car body panels is still characterized by
manual detection of local form deviations and evaluation by experts. The new approach presented in
this paper is based on 3-D image processing. A major step in this process is the classification of the
different kinds of surface form deviations. For this purpose, we compared the performance of different
soft computing techniques. Although the dataset was rather small, high dimensional and unbalanced,
we achieved promising results with regard to classification accuracies and interpretability of rule
bases.

1 Introduction

The quality standard of today’s automotive industry products is very high. Especially car
manufacturers of the upper-class and premium market segments differentiate their products
from their competitors among other things by a perfect appearance of the painted car body.
This is an important quality demand, as the outer panels are rather exposed and directly visi-
ble to the customer. In general, the impression of a car is determined by an appealing design
of its body, the color and gloss of its paint, and the manufacturing and assembly accuracy of
the exterior body panels.

The geometric complexity of these panels makes them difficult to produce with metal forming
technologies. Small surface form deviations like sink marks always exist. Typical imperfec-
tions that are considered as distortions deviate in normal direction by tens of microns. The
surface paint does not cover such imperfections. They result in inhomogeneous runs of light
fringes on the highly reflective paint, which visibly disturb the perfect appearance of the car
body.

The manufacturing process is optimized in order to eliminate or at least to minimize such sur-
face defects at the end of the product development process. The position and the kind of the
remaining surface form deviations on each outer panel are documented in a surface quality
protocol and physically in a so called master piece. By definition the master piece represents
the just acceptable geometric shape of each local form deviation. This high quality level has
to be kept after the start of the series production. Therefore it is imperative to control the qual-
ity of the parts directly in the first steps of the manufacturing process in the press shop.

The current surface quality control procedure in the press shop is still done manually. Former
studies about quantitative detection methods have not resulted in satisfying quality control
systems. Today, during series production an experienced worker checks the produced parts at
the end of the press line in constant intervals by treating their exterior surfaces with a grind-



293

Class Linguistic Description Surface Digitization

oudge ‘rounded damage outward, Jistnctiva (6alre, + topometric measuring systom
refatively small radius * 3-Dimage (paramatrizad polnt cioud)
sink mark slight Nat based dapresslon inward v‘
‘pross mard 3 o (micro-Jsuriace, Ak mark, .
i " dagp depression proceeded by a faw peak Pre-Processing
* masking aran of Interast
dent rounded damage inward, distinctive feature * fitaring of point cioud.
flat area fiat plane on curved camber surface -
unaven surface saveratsink marks in serles or adjoined 3-D Image Analysis
« sagmentation of diffarance data

waviness ‘several heavier wrinklings In series * fealure oxtraction in clasad ragions
line distinctiva visible line T T —
draw ling visible line caused by contact wilh tool
uneven radius visible distartion of radlus geomatry

Table 1: Surface form deviations Fig. 1: 3-D image processing

stone. From the resulting specific patterns of local grinding marks he is able to detect form
deviations, and derive their type and acceptance.

The experts introduced a list of surface defects and characterizations, to that they conform
more or less in their daily quality work. The surface form deviations are characterized by lin-
guistic descriptions of their specific appearance, as shown in Table 1 for some common de-
fects. The geometry of the defects is specified by vague terms and attributes.

However, the current method has several disadvantages. It is cumbersome, subjective, error-
prone and time consuming, especially when analyzing the surface of large parts totally.
Moreover the assessed parts are often lost for the manufacturing process. Therefore it would
be desirable to have a more objective, non-contact, faster and automatic estimation method.
Our approach, which is currently in development, is based on the digitization of the exterior
body panel surface with an optical measuring system. From the resulting point cloud we try to
characterize the form deviations by mathematical properties that are close to the subjective
properties that the experts used in their linguistic descriptions. The approach has two major
aspects: the quality specialists need information about the type of defect detected, and addi-
tionally they are interested in its severeness. In this paper we focus on the first aspect.

The characteristics of the described problem - its uncertainty, fuzziness and the use of expert
knowledge — point to possible solutions in the field of soft-computing. Therefore, we compare
the performance of different soft-computing techniques to determine the type of a defect from
the extracted features.

2 Data acquisition and processing

Following the well known digital image processing chain (e.g. [4]), we try to implement a
continuous 3-D image processing. Fig. 1 provides a simplified overview of the process, in-
cluding digitization, image pre-processing and image analysis, and the application of soft-
computing techniques for the classification of surface defects.

The digitization of the exterior body panels surface with a topometric 3-D measuring system
is the basic step of our approach. The optical metrology offers high accuracy and resolution in
a large sized measurement volume as well as fast and non-contact data acquisition. The oper-
ating principle of the sensor is called Miniaturized Projection Technique (MPT) and is based
on a combined Gray code/phase shift technique [2]. Therefore, the MPT sensor projects a
sequence of gratings onto the surface of the object to be measured. Each grating is digitized
with a high resolution CCD camera under a defined angle. The superposition of the single
images of one sequence enables a unique correlation between every pixel on the CCD chip
and the position of each fringe in the projection plane, so that the depth information can be
obtained by triangulation. The resolution limit in z-direction is about Spm and the noise in z-
direction has a value of £10pum. The raw data is filtered in order to delete outliers and to re-
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Fig. 2: 3-D visualization of local surface defect examples

duce the noise to a minimum. The outcome of this operation is an accurate 3-D point cloud,
which contains the required geometric information of the surface defects.

From this point cloud, the ideal geometric shape of the part is approximated by a rather iner-
tial surface of low polynomial degree. The local form deviations can then be determined as
the differences between the 3-D point cloud and the approximated surface. 3-D plots of typi-
cal examples for local surface form deviations are illustrated in Fig. 2.

With respect to the linguistic description of the different defect classes it is not obvious,
which mathematical characteristics permit an efficient classification process. For this reason a
system of geometric attributes was developed. The goal was to define features that are in a
close connection with the linguistic descriptions. In all, 42 attributes have been defined that
are the basis of the further analysis.

3 Data characteristics

Currently, the handling of the 3-D measurement system and the data processing itself requires
a considerable amount of manual interaction due to its prototypical stage. We were thus
forced to restrict our analyses to a small, but hopefully representative set of selected master
pieces. Concretely, the basis of our analyses are 9 master pieces with a total number of 99
defects recorded by the experts in the corresponding quality protocols. From those protocols,
we know the position and type of the defects, however their severeness is not clear. For each
of these defects the complete set of 42 features was calculated.

Fig. 3 shows the distribution of defect types in our database. Obviously, the types are rather
unbalanced, and the less frequent types occur very rarely. Defect type uneven radius was even
observed only once — one can hardly expect to learn a somehow generalizing classifier for a
single pattern. The common approaches for handling unbalanced class frequencies do not
seem promising in our case: reducing the more frequent types would decrease our already
small database, and duplicating the rare cases would not increase their variance needed to
learn a well generalizing classifier. Therefore, we discarded defect types with less than four
occurrences. Thus, 94 examples of classes

draw line, flat area, sink mark, press mark uneven radius
and uneven surface are left. line
In contrast to the low number of examples, waviness
the number of features is extremely high. draw line
High dimensionality is a general problem in flat area
data analysis, and not all of the classifiers sink mark
used in this study are equally suited to learn press mark
from high dimensional data. Therefore we  unevensurface

performed an explicit feature selection [3]. 0 10 2 30 40 50
First of all, we found that some of the features
were almost identical, i.e. their linear correla- Fig. 3: Occurrences of defect types
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tion is very close to 1. As the vertical extension of defects is orders of magnitude smaller than
their size, features calculated on the 3-D shape of the defects are very similar to those calcu-
lated on their 2-D projections. We therefore discarded some of the extremely high correlated
features. We then ranked the remaining 31 features by importance using forward-sequential
feature selection. We estimated the error by 1-nearest-neighbor-classification on the normal-
ized features with 1-leave-out.

For the experiments we used 4-fold cross validation [3]. Therefore, the database was split into
four parts using stratified sampling to ensure that every split contains a similar distribution of
defect types. Especially, this procedure ensures that each part contains at least one instance of
each class.

4 Classifying Defect Types
We compared four different approaches to classification. The first three methods are com-
monly used classification techniques, namely Naive Bayes classification, decision trees, and
multi-layer perceptrons. The fourth is NEFCLASS, the well-known hybrid neuro-fuzzy classi-
fier developed at the University of Magdeburg. The following paragraphs will briefly outline
the concepts of NEFCLASS.

4.1 NEFCLASS: A Hybrid Neuro-Fuzzy Classifier

Although neural networks are popular data mining methods, the “learnt” knowledge is stored
in the numeric network connections, and thus they do not provide human understandable in-
formation about the data. A remedy lies in the combination of neural networks with fuzzy
systems: we use a fuzzy system to represent knowledge in an interpretable manner, and use
the learning ability of neural networks to determine membership values. The drawbacks of
both of the individual approaches — the black box behavior common to neural networks, and
the problem of finding suitable membership values for fuzzy systems — can thus be avoided.
NEFCLASS is such a hybrid approach [8]. Its structure is a three layer feed-forward network
with coupled fuzzy weights. The network can be interpreted as fuzzy if-then rules of the form

R,:ifx isA! and ... andx, isA® thenxisc, )

where AP, ..., AD are linguistic terms (like small, medium or large). They are represented by
fuzzy sets u,..., 49, that build a fuzzy partition of the i-th dimension. The patterns are vec-
tors X = (xy, ..., x,) that belong to k disjunct classes c;.

The network structure — i.e. the set of rules — is created by the procedure suggested by Wang
and Mendel [13]. The initial fuzzy partitions structure the data space as a multidimensional
fuzzy grid. The rule base is created by selecting those grid cells that contain data. This can be
efficiently done in a single pass through the training data.

After a rule base has been generated from an initial fuzzy partitioning, the membership func-
tions must usually be fine-tuned in order to improve the performance. In the NEFCLASS
model, the fuzzy sets are modified by simple backpropagation-like heuristics, motivated by
neural network learning. In the learning phase, constraints are used to ensure that the fuzzy
sets still fit their associated linguistic terms after learning. For example, membership func-
tions of adjacent linguistic terms must not change position, and must overlap to a certain de-
gree [8].

The NEFCLASS model has been continuously improved and extended over the last few
years. Most of these extensions address the specific characteristics and problems of real world
data and their analysis, like for example symbolic attributes [9], missing values [10], or learn-
ing with asymmetric error semantics [5]. Another import extension is the integration of prun-
ing techniques. When a rule base is induced from data it often has too many rules to be easily
readable, and thus gives little insight into the structure of the data. Therefore, to reduce the
rule base, several pruning techniques have been presented for NEFCLASS. These methods
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Fig. 4: A learnt decision tree Fig. 5: The results for NEFCLASS

are effective in both reducing the number of rules and increasing generalization ability, and
are of great importance for practical applications with higher numbers of dimensions. Details
can be found in [10][6].

5 Application and Results

This section describes the application of the selected classifiers to our database. For each of
them we tried to find a set of parameters that perform well on specific training data and are
still general enough that they can be applied to other data. We therefore trained the classifiers
with fixed settings to all four training datasets and applied the results to the corresponding test
datasets. We will describe settings, classifiers peculiarities, and steps to improve the classifi-
cation.

To measure the performance of the classifiers we present classification accuracies on training
and test data (Table 3) and the confusion matrices on the test data (Table 2). The accuracies,
i.e. the averaged relative and the absolute number of misclassification over the four datasets,
give us an idea how well the classifier performed in general. The differences of accuracy on
learning data and validation data shows how well the classifier generalizes on unseen data.
The confusion matrices allow a detailed view into the classification. The entries on the main
diagonal are the correctly classified patterns. The remaining entries show, how many patterns
of a class have been wrongly classified as some other class.

Although we tried an abundance of different parameter settings in countless classifier runs,
we only report the results that we consider to be optimal.

5.1 Naive Bayes

The Naive Bayes classifier in its basic form has no learning parameters. However, one can
often improve its performance by selecting an optimal subset of features [7]. This selection is
carried out as follows. We start with no attributes at all. Then we add attributes one by one. In
each step we select the attribute which, if added, leads to the smallest number of misclassifi-
cation on the training data. We stop adding attributes when adding any of the remaining at-
tributes does not reduce the number of errors.

The final classification accuracy is 89.0% on the training and 75,6% on the test data.

5.2 Decision Trees

For the induction of the decision trees we tried several attribute selection measures, as de-
scribed in [1]. Most of the measures yield reasonable results. However, the Symmetric Speci-
ficity Gain Ratio maximized the tree accuracy over the training data set so we employed it as
split criteria. For the pruning we use confidence level pruning [11] with a confidence of 50%.
The classification accuracy is 94.7% on the training and 75.6% on the test data. An exemplary
tree is shown in Fig. 4.
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5.3 Neural Networks

We found that standard back-propagation learning did not perform well on our datasets. We
got the best results with resilient back-propagation (RPROP) learning, that performs a local
adaptation of the weight-updates according to the behavior of the error function [12].

Because of the extremely high number of dimensions the network is extremely prone to over-
fitting, and some form of pruning is imperative. For the pruning we created a network that
was initially larger than necessary, and then stepwise pruned out the weakest neurons. As we
pruned not only neurons in the hidden, but also in the input layer, we were able to reduce the
number of inputs the network uses. Furthermore to improve classification we use weight de-
cay [14], which is a regularization method that penalizes large weights by adding 2 penalty
term to the error function.

The best network had one hidden layer of 7 units, 5 units in the output layer, and 5 units in the
input layer (after learning). The classification accuracy is 90.0% on the training and 85.5% on
the test data.

5.4 NEFCLASS

When we tried to train a classifier with NEFCLASS we encountered some problems due to
the high dimensionality of the dataset. In such cases, the structure-oriented approach by Wang
and Mendel tends to produce too many, too specialized rules. Fuzzy set optimization gets un-
stable on such neuro-fuzzy networks, and as the pruning methods rely on an initial rule base,
they might fail too.

We therefore used a subset of 7 attributes as chosen by the forward-sequential feature selec-
tion (s. Sect. 3). This made it easier to find good and general parameter settings for NEF-
CLASS.

The best classification accuracy was 81.6% in average on the training sets and 79.9% on the
test sets. The fuzzy sets after learning and pruning, and the rules are shown in F ig. 5.

6 Discussion

Table 3 summarizes the classification accuracies for all classifiers. The last column “DC”)
shows the accuracy for the default classifier, which always predicts the majority class uneven
surface.

Table 2: The confusion matrices for the four classifiers

X . E N
Naive Bayes = | &1 & | S| @ | |Decision trees R
1) Sink mark 13 3 2 1 1) Sink mark 14 1 4 -

2) Flat area 3 2 2 2) Flat arca i 3 1 2 -

3) Uneven surface 3 - 41 3} Uneven surface 4 36 1 3

4) Press mark 1 1 - 17 1 4) Press mark 1 1 1 17 -

5) Draw line i - 1 2 - 5) Draw line 1 1 1 1

Neural networks NEFCLASS

1) Sink mark 15 - 4 - . 1) Sink mark 18 0 1 0 0
2) Flat arca 2 1 - 4 - 2) Flat arca 2 0 1 4 0

3) Uneven surface 2 - 42 - - 3) Uneven surface 6 0 38 ] 0

4) Press mark - 1 - 19 - 4) Press mark 1 0 0 19 0
5) Draw line - - 1 - 3 5) Draw line 1 0 1 2 0
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Table 3: Classification Accuracy on the Training and Test Cases

NBC | Dtrees | NN _ | NEFCLASS DC
Train Sct | 89.0% | 94.7% | 90% 81.6% 46.8%
Test Sct 75.6% | 75.6% | 85.5% 79.9% 46.8%

We expected the classification to be rather difficult: We have a low number of examples, with
many dimensions and highly unbalanced class frequencies. However, although the results are
not perfect, they are all significantly better than the default classifier.

In unbalanced datasets minority classes may likely be ignored by a classifier. The second and
fifth diagonal entries in the confusion matrices correspond to the number of correctly classi-
fied patterns for the minority classes flat area and line. Obviously all classifiers had difficul-
ties with those classes, as the values in the matrices are rather small. Both, Naive Bayes clas-
sifier and NEFCLASS misclassified all of these patterns. In the trained and pruned NEF-
CLASS classifier there is not even a rule for those classes.

Furthermore, looking at the confusion matrices tells us about the relations of the majority
classes. From the higher number of confusions we can see, that uneven surface and sink mark
seem to be rather overlapping, whereas pressure mark seems to be better separated from the
other classes. These relations can also be found in the linguistic descriptions of the defects,
where uneven surface and sink mark are rather similar.

It is hard to give a general recommendation, which of the classifiers is best suited for the
problem at hand. If classification accuracy was the only goal, the feed-forward neural net-
works would be the method of choice with 86% correctly classified test patterns, followed by
NEFCLASS with 80%. However, in responsible fields like quality control, especially when
we try to predict an expert decision, confidence into the system is of extreme importance.
Neural networks are not of much help in that aspect, as the knowledge is hidden in the net-
work connection weights. Experts will most probably be more confident in a system, if its
decisions are transparently and understandably given by rules or trees. Both rules and trees
have their advantages. However, in our case the fuzzy rule base seems to be more suited to the
problem, as — in contrast to the decision trees — almost no overfitting can be observed. Even
the pruned decision trees performed much better on the training data than on the unseen test
data. If we look at the number of rules and paths, respectively, and the number of used attrib-
utes, we find that the NEFCLASS rule bases are in average less complex than the decision
trees.

Another criterion for classifier choice could be its computational simplicity. Naive Bayes and
decision trees have considerable advantages over the neuro- or neuro-fuzzy-techniques in
their computational demands and the expertise and time needed to choose appropriate
parameters. However, this criterion has little weight, as our application is not time critical.
Consequently, for the given application, NEFCLASS turns out to be the best compromise
between accuracy and transparency.

It might however be interesting to train different classifiers and aggregate their information.
The four presented classifiers agree in their prediction in 60 of the 94 patterns, and only 5 of
those 60 classifications are wrong. For another 26 patterns, three out of four classifiers predict
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Fig. 6: The error for the ensemble classifier



299

the same, being wrong in 7 cases. The corresponding error curve is shown in Fig. 6. We can
use such an ensemble of classifiers to get information about the reliability of the classifica-
tion. On the other hand, we can take a closer look at patterns that are misclassified by all of
the approaches. Looking at those outliers might help to detect inconsistencies in the dataset.

7 Conclusions and Outlook

The presented 3-D image processing approach from surface digitization to defect type classi-
fication yielded promising results. In our opinion, NEFCLASS offered the best compromise
between accuracy of the results and transparency of the learnt knowledge.

Currently, we did not take into account all of the classes. In the next step of the project, we
will generate a larger database, where also the rare classes occur more often. This might en-
able us to further improve the defect type prediction.

However, the qualitative analysis — the prediction of defect types — is only a first step. Qur
future work will be directed towards a more quantitative analysis, to tell how severe a form
deviation is and what actions should thus be initiated.
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