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Abstract 

Neuro-fuzzy systems have recently gained a lot of inter- 
est in research and application. These are approaches 
that learn fuzzy systems from data. Many of them use 
rule weights for this task. In this paper we discuss the 
influence of rule weights on the interpretability of fuzzy 
systems. We show how rule weights can be equivalently 
replaced by modifications in the membership functions 
of a fuzzy system. By this we elucidate the effects rule 
weights have on a fuzzy rule base. Using our neuro- 
fuzzy model NEFCLASS we demonstrate at a simple 
example the problems of using rule weights, and we 
show, that learning in fuzzy systems can be done with- 
out them. 

1. Introduction 
Learning techniques are widely used to support the 

development of fuzzy systems. Approaches that learn 
fuzzy rules and/or membership functions from data by 
supervised or reinforcement learning are usually called 
neuro-fuzzy systems [9]. 

The most simple way to tune a fuzzy system is to 
use rule weights. This approach is very often used in 
commercial fuzzy software, and also in some neuro- 
fuzzy models [6], [9]. In this paper we show how rules 
weights can be replaced equivalently by modifying the 
membership functions of a fuzzy rule instead. If this 
is done, the effect of a weight to the semantics of a 
fuzzy rule becomes visible. It turns out that weights 
implicitly cause membership functions to change in 
a way that they often cannot be interpreted linguis- 
tically anymore. Thus, rule weights can completely 
destroy the interpretability of the fuzzy system. In 
this paper we mean by interpretability or readability 
of fuzzy systems that the membership functions are 
normal, convex and that they suitably cover the do- 
main of a variable. The main idea is that a user of 
a fuzzy system should be able to label each fuzzy set 
a suitable linguistic term. Another important issue is 

that each linguistic term is represented by only one 
membership function in the fuzzy system. However, 
we do not want to discuss formal aspects of fuzzy par- 
titions to ensure interpretability. What we want to 
show is that if there is a interpretable fuzzy system, 
then the interpretability is lost once rule weights are 
used. 

Note that we consider fuzzy systems that are used 
for function approximation (special cases are for exam- 
ple fuzzy classification and fuzzy control). Such fuzzy 
systems consist of rules that must not be interpreted 
as logical rules. Each fuzzy rule is a vague sample i.e. 
a multidimensional fuzzy set in the data space. Apply- 
ing a rule weight to such a fuzzy rule means to change 
the representation of this multidimensional fuzzy set. 
The influence of a rule weight on the interpretation of 
such a modified rule becomes visible in its projections 
which are the one-dimensional membership functions 
of the individual variables. 

Weighted rules are also considered in probabilistic 
or possibilistic settings which are not within the scope 
of this paper. For example, certainty factors are an 
early heuristic approach to use rule weights for mod- 
eling beliefs. However, it turned out that the original 
certainty factor approach is inconsistent [5], [8]. For 
modeling degrees of belief or truth in fuzzy knowledge- 
based systems refer e.g. to [l], [2], [8], [7]. 

2. Interpretation of Rule Weights 
A weighted rule is often written by appending “with 

20” to it, where w is a real value that can be different 
for each rule, e.g.: if x is A and y is B then x is C with 
w, where A, B and C are fuzzy sets of the real line, 
x and y are input variables, x is the output variable 
and w is a real-valued rule weight. The meaning of the 
“with-operation” that ties a weight to a rule must be 
defined. We will only consider the following two cases: 
1. Rule weights are applied to complete rules: 
The antecedent of a rule is evaluated to determine a 
degree of fulfilment which is then multiplied by a rule 
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weight. 
2. Rule weights are applied only to the conse- 
quent parts of rules: The degree of fulfilment of a 
rule is used to compute the conclusion which is then 
multiplied by a rule weight. If the conclusion is a fuzzy 
set, its support is changed this way. 

Using rule weights gives rise to some semantical 
problems [9]. The weighting of rules is sometimes in- 
terpreted as a measure of “importance”, “influence” 
or “reliability” . However, if a rule is less “important”, 
one usually means something like that it is only sel- 
dom applicable, or that it is not harmful if the rule 
is not applied, but not that its consequent should be 
taken into account only to some extent. This aspect 
is already modeled by using fuzzy sets to describe the 
antecedent. 

To view a rule weight as “influence” could mean that 
a rule with a small weight should only marginally con- 
tribute to the system output. Allowing the weights to 
be selected from [0, l] could be interpreted as some- 
thing like a degree of support for a rule. A value 
less than 1 would denote something like an ill-defined 
rule that supports its consequent only to some ex- 
tent. Some approaches allow the weights to assume 
any value in lR,, but one would obviously leave the se- 
mantics of fuzzy rules behind, because it is not clear 
how rules weighted by absolute values greater than 
1 or by negative values should be interpreted. The 
influence of a rule should be modeled either by mod- 
ifying its antecedent such that the rule does only ap- 
ply to a certain degree in the situations considered, or 
by choosing an appropriate consequent that explicitly 
represents the rule’s part in the system output. 

The interpretation of a rule weight as “reliability” 
or “trust” is also questionable. If we belief that a rule 
is reliable only to a certain extent, then this means 
that we can only trust the final conclusion to a cer- 
tain extent. However, simply multiplying the output 
of a rule or its degree of fulfilment by some weight is 
not an appropriate way to model our belief. For this 
probabilistic [8] or possibilistic [7] methods should be 
considered. 

Often rule weights are used to obtain exact values 
in the output of a fuzzy system and therefore a weight 
can assume any value. In this case it is possible that 
negative rule weights occur that are sometimes used 
to represent negative rules [4]. The interpretation of 
a rule with a negative weight is especially difficult. It 
must not be interpreted as a negative proposition, but 
as a local sample with negative function result [9]. 

Let us take a closer look at this interpretation. The 
kind of fuzzy systems that we consider in this paper 
do not represent rules in a logical sense. The rules are 
vague samples that are used to approximate an oth- 

erwise unknown function. With this aspect in mind 
we have to consider the meaning of a “negative rule”. 
If we choose to interpret it by “if not . . . then . . .“I, 
it would not have the character of a local sample. It 
would correspond to a global description of the func- 
tion: 
if the input is outside of the area 

specified by the antecedent, 
then the function yields the value 

represented by the conclusion. 
By overlapping with other rules a negative rule would 
have the effect of an offset for the function. 

However, a rule with a negative weight cannot be 
interpreted as a proposition in the above-mentioned 
sense, but only as a local sample with negative function 
result. In a fuzzy classification system such a rule can 
be interpreted as a rule with negative consequent (if 
. . . then not . . .). By this a weight has an inhibitive 
influence on the selection of a certain class. 

For a user the correct understanding of negative 
rules is very important. Without this knowledge it 
is not possible to initialize the system properly or to 
interpret the learning outcome. 

Depending on whether a rule weight is multiplied 
to the degree of fulfilment or to the output of a rule, 
weighting a fuzzy rule is actually equivalent to chang- 
ing its antecedent or consequent, respectively. There- 
fore rule weights can always be replaced by changes in 
the fuzzy sets of a rule. As we will show in the fol- 
lowing section, these changes can lead to non-normal 
fuzzy sets and to the fact that identical linguistic val- 
ues are represented in different ways in different rules. 

3. Influence of Rule Weights 
We consider only rule weights for Mamdani-type 

fuzzy systems in greater detail. In Sugeno-type fuzzy 
systems, weights which are applied to the complete 
rule have the same influence as in Mamdani-type fuzzy 
systems. If the weights are applied to the consequents 
there are no semantical problems, because the conse- 
quents of Sugeno-type rules are functions or constants 
that are not interpreted linguistically. 

For the sake of simplicity we consider the following 
two Mamdani-type fuzzy rules for the remaining text 
to discuss the influence of rule weights: 

Mr: ifzisAandyisBthenxisDwithw1, 
A&: ifzisAandyisCthenxisDwithw2, 

where A, B, C and D are fuzzy sets of the real line, x 
and y are input variables, x is the output variable and 
wi is a rule weight. Each fuzzy set is labeled with an 
individual linguistic term. Note that both rules use 
fuzzy sets A and D. 
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For Sugeno-type fuzzy systems we consider rules of 
the form 

Sr: ifzisAandyisBthenx=fi(z,y) withwr, 
Sz: if x is A and y is C then z = J&y) with ~2, 

where ji is a function over the input variables and wi 
is a rule weight. The overall output for x is computed 
by a weighted sum. Note that both rules use fuzzy set 
A 
1.’ If a rule weight is used to modify the degree of fulfil- 
ment of a rule we can equivalently replace it by chang- 
ing the membership functions in the antecedents. Let 
us consider the two most common cases, where the de- 
gree of fulfilment r is computed either by a minimum 
operation or by a product. 
In the case of a minimum operation we obtain for the 
weighted degree of fulfilment 

W-T = 2-u l min{/a(a),- l l ,/-h(~n)} 
= min{w+r(2r),...,w+&c,)}. 

This means we can replace the rule weight equivalently 
by multiplying the individual membership degrees, i.e. 
we scale the heights of the fuzzy sets of the antecedent 
with the rule weight. 
If a product is used to determine the degree of ful- 
filment, we can distribute the rule weights over the 
membership functions, e.g.: 

w*r=w l & i(zi) = fi q G q & ( Xi). 

i=l i=l 

This again results in scaling the heights of the fuzzy 
sets. Different solutions are possible here, and in case 
of negative rule weights it is especially obvious that 
a rule weight can be equivalently replaced by a large 
number of possible fuzzy set modifications leading to 
a large number of different interpretations. For other 
t-norms similar replacements of rule weights can be 
found. 
In any case, a rule weight leads to a modification of 
the membership degrees of the antecedent fuzzy sets. 
Therefore we only consider the case where the degree of 
fulfilment is determined by the minimum. In this case 
the effect of a rule weight can be nicely demonstrated. 
Using our two rules A41 and A& from above we obtain 
the following two modified rules: 

MT: if x is A’ and y is B’ then x is D, 
M;: if x is A” and y is C” then x is D. 

But now we have for the fuzzy sets in the antecedents: 

A’, B’ : 
1 

Et -+ [0, wl] if wr > 0 
IR + [wi, 0] otherwise 

A” ) C” : II3 --+ [0, w2] if w2 > 0 
II% + [w:!, 0] otherwise 

If we assume ‘u # w # 1, we obtain the following 
problems: 
l Instead of using the same fuzzy set A the rules now 

use two different fuzzy sets A’ and A” in their an- 
tecedents. However, both fuzzy sets are labeled with 
the same linguistic term, i.e. we now have two differ- 
ent representations for the same linguistic term within 
the fuzzy system. This is of course highly undesirable 
if we want to interpret the rule base. 
l The resulting fuzzy sets A’ and A” are not normal 

anymore. The application of the rule weights resulted 
in resealing their membership degrees. This has also 
undesirable effects on the readability of the fuzzy sys- 
tems. Although the interval [0, l] is arbitrarily chosen 
to represent membership degrees, we have to keep in 
mind that rule weights imply a different interval of 
membership degrees for each rule. 
Interpretation is affected most, if the weights are larger 
than 1 or smaller than 0. In this case strictly spoken 
A’ and A” are no longer fuzzy sets. Especially, the 
meaning of negative membership degrees is not clear 
at all. 
In Mamdani-type fuzzy systems rule weights that are 
used to change the degree of fulfilment of the rules have 
different effects depending on the kind of implication 
used. Let us consider only the two most common cases: 
l If we use min-implication to compute the conclu- 

sion of a rule, then w > 1 only has an effect if wr < 1 
holds. If wr > 1 holds, the consequent is not modified. 
Weights from [0, l] result in degrees of fulfilment from 
[0, 11, and so the computation of the overall output is 
done as usual. 
For a rule with w < 0 the conclusion becomes a “neg- 
ative rectangle” of height wr over the whole output 
domain. After maximum combination with the conclu- 
sion fuzzy sets of other possibly active rules, such “neg- 
ative fuzzy sets” disappear from the output. Rules 
with negative weights never take part in the overall 
output value, if maximum combination is implemented 
by the book and takes all fuzzy rules into account - 
even those with zero activation. 
However, we have to be careful, if we use an implemen- 
tation that skips rules with zero activation or areas 
with zero membership from the maximum combina- 
tion for the sake of computation time. In this case, we 
can obtain a “negative output fuzzy set”, or output 
“fuzzy sets” with negative and positive “membership 
degrees”. It depends on the defuzzification method 
what kind of crisp output is computed from this. If 
we use a fuzzy system shell that allows to use negative 
weights, we must have a close look on how max-min- 
inference and defuzzification is really implemented. 
In general, rules with negative weights only influ- 
ence the computation of the overall output value, if 
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maximum combination is implemented incompletely 
as described above, or if we use local defuzzification 
methods, or if we have a fuzzy classifier, where the 
(weighted) degree of fulfilments are combined directly 
to indicate a class membership, or if we use a Sugeno- 
type fuzzy system. 
l If the conclusion is determined by dot-implication 

then the output fuzzy sets are resealed by the weighted 
degrees of fulfilment before they are accumulated and 
defuzzified. Now the case wr > 1 also influences the 
computation of the output value. If there are negative 
rule weights, there are mirrored resealed “membership 
functions”, which disappear after maximum combina- 
tion, i.e. the effects are similar as those described above 
for the case on min-implication. 
In Sugeno-type fuzzy systems the degree of fulfilment 
is used to compute a weighted sum. Rule weights occur 
as factors in the sums of the nominator and denomi- 
nator: 

We obtain a different result compared to applying 
weights to the consequents, where the weights would 
only occur in the nominator (see below). 
2. If a rule weight is applied to the consequent part of a 
rule, it modifies the size of a rule’s output value. If the 
output is crisp, the weight is simply multiplied with 
this value. If an output fuzzy set is multiplied with a 
weight, its support and shape is modified. This means 
we can replace the weights by changing the member- 
ship functions in the consequents: 

MT: if x is A and y is B then x is D’, 
Ml: if x is A and y is C then z is D”. 

Let us assume that the support of the original (con- 
vex) output fuzzy set D is [E, u]. Then we obtain for the 
support of D’ and D” [Zwr , uwr] and [Zwz, UW~], respec- 
tively, or for negative weights [uwr , Zwr] and [uw~, Zwa], 
respectively. This results in the following problems: 
l Instead of a single fuzzy set D now two different 

fuzzy sets D’ and D” are used in our two rules. How- 
ever, they are labeled with the same linguistic term, 
i.e. like in Case 1 we again have two different rep- 
resentations of the same linguistic value in our fuzzy 
system. 
l The membership functions of the consequents are 

shifted away from their original positions, and their 
supports are resealed. On the one hand this can result 
in undesirable small or large supports and on the other 
hand a fuzzy set can even migrate from a positive part 
of its domain to a negative part and vice versa. It 
is also possible, that a fuzzy set completely leaves its 
previous domain. If we are interested in interpreting 

the fuzzy systems we are forced to relabel the fuzzy 

If a rule weight is used to modify the conclusion of a 
rule in a Sugeno-type fuzzy system, then the weights 
appear as additional factors in the nominator of the 
equation for the overall output value x: 

Applying rule weights to consequents is equivalent 
to replace the function fi that computes the output 
of a rule Si by wi fi. In this case we do not en- 
counter semantical problems, because the consequents 
of Sugeno-type rules are usually not interpreted in any 
way. This means for Sugeno-type fuzzy systems rule 
weights that are applied to the consequents are a sim- 
ple way to train the system in a linear fashion. 

Rule 
ability 

weights are 
for a fuzzy 

a very simple 
system. Its 

way to obtain adapt- 
performance can be 

easily tuned by applying a learning algorithm to the 
rule weights, for example 
dure. This is much simpler 

a least mean square proce- 
to implement, than to spec- 

ify learning algorithms that modify fuzzy sets directly. 
rule weights can be 
the fuzzy sets used 

However, as 
equivalently 

we have shown above, 
replaced by changing 

in a fuzzy rule. If this is done, the effects on the rule 
base become clearly visible, and it is made clear that 
the interpretation of the fuzzy system is not so easy 
anymore. In many cases, rule weights alone are not 
sufficient to enhance the performance of a fuzzy sys- 
tem by learning, because rule weights cannot change 
the positions of the antecedent membership functions. 
If this is necessary, then the parameters of the mem- 
bership functions must also be tuned. 

Some of the problems of rule weights can be re- 
moved, if the rule weights are normalised. In this case 
membership degrees not from [0, l] do not occur, if 
there are no negative weights. However, this is usually 
not possible, if rule weights are used mainly to influ- 
ence the size of the output. Depending on the kind of 
defuzzification procedure, normalising the rule weights 
would also effect the size of the output values. 

We can view a fuzzy system as a (fuzzy) combination 
of local models, which are fuzzy sets for Mamdani-type 
systems, and (usually) linear models for Sugeno-type 
systems. If a rule weight is applied to the complete 
rule, then the influence of the local model represented 
by the consequent is changed for a certain area of the 
data space. If a rule weight is applied only to the 
consequent of a rule, then the represented local model 
itself is changed. For the sake of interpretation these 
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changes should not be done by using rule weights, but 
instead by changing the respective membership func- 
tions directly. If the learning process modifies param- 
eters of the membership functions, it is also easily pos- 
sible to define restrictions for the learning process [9]. 
By restricting the learning algorithms we sacrifice de- 
grees of freedom in exchange for readability. Learning 
becomes more difficult but overfitting might not occur 
that easily and the learning result can be interpreted 
more easily. 

4. A Simple Example 

To illustrate the effect of rule weights we use a simple 
example. We apply our neuro-fuzzy learning environ- 
ment NEFCLASS [ll], [12] to the well-known Iris data 
set [3]. NEFCLASS is available for download from our 
homepage at http://fuzzy.cs.uni-magdeburg.de. We 
chose the Iris example, because it is very simple and 
therefore suitable for demonstrating the effect of rule 
weights. The learning result shown here is of course 
not the best one that can be obtained with NEF- 
CLASS for this data set (compare e.g. [lo] or [9]), but 
it suits our purposes here. 

We used three fuzzy sets for each variable and let 
NEFCLASS find the best 5 rules (for a complete de- 
scription of the rule learning algorithm of NEFCLASS 
refer to [9]). We trained the membership functions 
of the fuzzy classifier in the first trial without rule 
weights and in the second trial with using additional 
rule weights. Because our example is from the domain 
of fuzzy classification, we applied the rule weights to 
the degrees of fulfilment (Case 1). 

If we learn only rule weights for the five rules, 
and leave the parameters of the membership functions 
alone, we obtain an unacceptable result due to unclas- 
sified patterns (10 on training set and 10 on test set). 
If we let NEFCLASS find all rules that are supported 
by the training set (19 rules for this example) and learn 
only rule weights, we still obtain 5 errors on the train- 
ing set and 10 errors on the test set. Therefore we do 
not consider this configuration further. 

The rule base found by NEFCLASS is shown in Fig- 
ure 1. The learning process was done on one half of the 
data set using a learning rate of 0.01 for all parame- 
ters, and learning was stopped after the error was not 
decreased further for more than 30 epochs. Testing 
was done with the second half of the data set. Figures 
2 and 3 show the resulting membership functions for 
the third and fourth variable (petal length and petal 
width). Figure 3 shows the membership functions be- 
fore the rule weights are replaced by changing the fuzzy 
sets, i.e. the weights are still attached to the rules. Re- 
placing the weights is considered below. As you can see 

Fig. 1. Five rule to classify the Iris data set obtained from 
NEFCLASS 

Fig. 2. Trial 1: Resulting fuzzy sets for the third and fourth 
variable without using rule weights 

the fuzzy sets are very similar in both cases. However, 
the learning results are different as shown in Table I. 

The learning result that does not use rule weights is 
a little bit better than the result that uses rule weights. 
However, we do not want to consider this fact here, 
because we just ran the learning procedure once. With 
other parameters the results might be different. It is 
only important that the results are similar. We just 
want to make clear what the effect of the rule weights 
is in this case. 

Let us consider Rules 3 and 4 for the second trial, 
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Fig. 3. Trial 2: Resulting fuzzy sets for the third and fourth 
variable using rule weights (rule weights not yet replaced) 

TABLE I 
LEARNING RESULTS FORTHE IRIS DATA SET 

errors rule weights 
train. test epochs RI Rz RS Rd Rg 

3 2 102 - - - - - 

3 3 67 3.36 4.60 4.04 3.15 3.38 

where rule weights are used. Both rules use petal 
length is large in the antecedent. As shown above, we 
can replace the rule weights by modifying the mem- 
bership functions of the rules. For Rule 3 we obtain 

large : IR ----+ [0,4.04], 

and for Rule 4 we have 

large : IR ___) [0,3.15]. 

This means we have two different interpretations for 
petal length is large, where there is only one interpre- 
tation in the first trial, where no rule weights are used. 
Strictly spoken, large is no longer a fuzzy set. Even if 
we normalize the weights (which would not change the 
performance of the classifier), we still have the prob- 
lem of two different non-normal fuzzy sets for the same 
linguistic term. 

As the learning result for the first trial shows, we 
can obtain an acceptable performance without using 
rule weights and enjoy the benefit of an interpretable 
solution. 

5. Conclusions 
We have shown how rule weights can destroy the lin- 

guistic interpretability of fuzzy systems used in func- 
tion approximation domains like fuzzy classification or 
fuzzy control. Rule weights can always be replaced 
equivalently by modifying the membership functions 
of a fuzzy system. If this is done, the influence of rule 
weights to the readability of the rule base becomes ob- 
vious. Rule weights cause non-normal fuzzy sets and 
different representations for the same linguistic term 

If the linguistic interpretation of a fuzzy system that 
is modified in a learning process is important, then one 
should avoid using rule weights. In this case it is bet- 
ter to use a restricted learning procedure that modifies 
parameters of membership functions, but recognizes 
constraints that ensure the interpretability of the re- 
sult obtained by learning. Using our neuro-fuzzy ap- 
proach NEFCLASS we have demonstrated the effects 
of rule weights with a simple example, and we have 
shown that it is not necessary to use rule weights for 
learning in fuzzy systems. 
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