
A Neuro-Fuzzy Approach to Obtain Interpretable Fuzzy Systems for
Function Approximation

Detlef Nauck and Rudolf Kruse
University of Magdeburg, Faculty of Computer Science,

Universitaetsplatz 2, D-39106 Magdeburg, Germany
Tel: +49.391.67.12700, Fax: +49.391.67.12018

E-Mail: Detlef.Nauck@cs.uni-magdeburg.de, WWW: fuzzy.cs.uni-magdeburg.de/Nnauck

Abstract

Fuzzy systems can be used for function approximation
based on a set of linguistic rules. We present a method
to obtain the necessary parameters for such a fuzzy sys-
tem by a neuro-fuzzy training method. The learning
algorithm is able to determine the structure and the
parameters of a fuzzy system from sample data. The
approach is an extension to our already published NE-
FCON and NEFCLASS models which are used for con-
trol or classification purposes. The NEFPROX model,
which is discussed in this paper is more general, and it
can be used for any problem based on function approx-
imation. We especially consider the problem to-obtain
interpretable fuzzy systems by learning.

1. Introduction
Certain fuzzy systems are universal function approx-

imators [3], [5]. I n order to identify a suitable fuzzy
system for a given problem, membership functions (pa-
rameters) and a rule base (structure) must be speci-
fied. This can be done by prior knowledge, by learning,
or by a combination of both. If a learning algorithm
is applied that uses local information and causes local
modifications in a fuzzy system, this approach is usu-
ally called neuro-fuzzy system. In this paper we only
want to consider neuro-fuzzy systems which display
the following properties [7]:
1. A neuro-fuzzy system is based on a fuzzy system
which is trained by a learning algorithm derived from
neural network theory. The (heuristical) learning pro-
cedure operates on local information, and causes only
local modifications in the underlying fuzzy system.
2. A neuro-fuzzy system can be viewed as a 3-layer
feedforward neural network. The first layer represents
input variables, the middle (hidden) layer represents
fuzzy rules and the third layer represents output vari-
ables Fuzzy sets are encoded as (fuzzy) connection
weights. (Remark: Sometimes a 5-layer architecture
is used, where the fuzzy sets are represented in the

units of the second and fourth layer).
3. A neuro-fuzzy system can be always (i.e. before,
during and after learning) interpreted as a system of
fuzzy rules. It is also possible to create the system
out of training data from scratch, as it is possible to
initialize it by prior knowledge in form of fuzzy rules.
(Remark: Not all neuro-fuzzy models support fuzzy
rule creation).
4. The learning procedure of a neuro-fuzzy system
takes the semantical properties of the underlying fuzzy
system into account. This results in constraints on the
possible modifications applicable to the system param-
eters. (Remark: Not all neuro-fuzzy approaches have
this property).
5. A neuro-fuzzy system approximates an n-dimensio-
nal (unknown) function that is partially defined by
the training data. The fuzzy rules encoded within the
system represent vague samples, and can be viewed as
prototypes of the training data. A neuro-fuzzy system
should not be seen as a kind of (fuzzy) expert system,
and it has nothing to do with fuzzy logic in the narrow
sense [6].

We have already presented two neuro-fuzzy ap-
proaches NEFCON [8], [ll] and NEFCLASS [9]. The
first one is used for control applications, and is trained
by reinforcement learning based on a fuzzy error mea-
sure. The second one is used for classification of data,
and is based on supervised learning. Both models can
do structure and parameter learning by using a learn-
ing procedure called fuzzy error backpropagation. The
term “backpropagation” denotes that learning is done
by determining error signals, and propagating them
backwards through the system architecture to com-
pute local parameter modifications. This is not a gra-
dient descent method like in neural networks, but a
simple heuristic procedure, because the functions in-
volved in the system are usually not differentiable.

The term “fuzzy error” denotes that the error mea-
sure guiding the learning process is either specified by
a fuzzy rule base (NEFCON) or by a fuzzy set over the

0-7803-4863-X/98 $10.0001998 IEEE 1106

differences between actual and desired outputs (NEF-
CLASS). If the error is specified by a rule base de-
scribing a desired state, e.g. of a controlled task, then
we have a special case of supervised learning, i.e. re-
inforcement learning. On the other hand, if there is
information about the correct output value, then we
use plain supervised learning.

In this paper we discuss a general approach to func-
tion approximation by a neuro-fuzzy model based on
plain supervised learning. This approach has a simi-
lar structure as the NEFCON model, but it is an ex-
tension, because it does not need reinforcement learn-
ing. On the other hand is also extends the NEF-
CLASS model, that can only be used for crisp clas-
sification tasks. The approach is called NEFPROX
(NEuro Fuzzy function apPROXimator). After intro-
ducing the architecture of the NEFPROX model we
discuss some problems of obtaining interpretable fuzzy
systems by learning. Then we present the learning al-
gorithms of NEFPROX and illustrate their capabilities
on a small example.

2. The Architecture of NEFPROX

Function approximation based on local learning
strategies is a domain of neural networks and neuro-
fuzzy systems [7]. Neuro-fuzzy systems have the ad-
vantage that they can use prior knowledge, whereas
neural networks have to learn from scratch. In ad-
dition neural networks are black boxes, and they can
usually not be interpreted in form of rules. A well
known neuro-fuzzy system for function approximation
is the ANFIS model [4]. However there is no algorithm
given for structure learning, and it is used to imple-
ment Sugeno models with differentiable functions (e.g.
product as t-norm). We propose a more general ap-
proach that can also implement Mamdani-type fuzzy
systems. The model is like NEFCON and NEFCLASS
based on a generic fuzzy perceptron [7].

Definition I: A S-layer generic fuzzy per-
ceptron is a 3-layer feedforward neural network
(U, W, NET, A, 0, ex) with the following specifications:

1. u = U Ui is a non-empty set of units (neurons)
iEM

and M = { 1,2,3} is the index set of U. For all
i, j E J& Ui # 0 and Ui n Uj = 8 with i # j holds.
Ul is called input layer, lJ2 rule layer (hidden layer),
and Us output layer.
2. The structure of the network (connections) is de-
fined as ‘c/v : U x U + F(lR), such that there are only
connections W(u, V) with u E Ui, v E &+I (i E {1,2})
(F(R) is the set of all fuzzy subsets of IR).
3. A defines an activation function A, for each u E U
to calculate the activation a,

(a) for input and rule units u E Ul U lJ2:
A, : II% -+ IR,, a, = A,(net,) = net,,

(b) for output units u E Us:
A, : F(R) + F(R), a, = A,(net,) = net,.

4. 0 defines for each u E U an output function 0, to
calculate the output ou

(a) for input and rule units u E Ui U Uz:
0, : JR + JR, ou = O,(a,) = a,,

(b) for output units u E Us:
0 U : F(IR) + IR, ou = O,(a,) = DEFUZZ,(a,),
where DEFUZZ, is a suitable defuzzification func-
tion.

5. NET defines for each unit u E U a propagation
function NET, to calculate the net input net,,

(a) for input units u E Ul :
NET, : lR -+ lR, netu = exu,

(b) for rule units u E Us:
NET, : (IR x F(R))ul + [0, 11,
netu = T

U’EUI
{W(u’, u)(ou)}, where T is a t-norm,

(c) for output units u E Us:
NET, : ([0, l] x F(IR))U2 + F(IR),
netu : lR + [0, 11,
net,(x) = 1

u’EU2
{T(o,/, W(u’, u)(x))}, where 1, is

a t-conorm.
6. ex : Ul + IR, defines for each input unit u E Ul its
external input ex(u) = ex,. For all other units ex is
not defined.

A generic fuzzy perceptron can be viewed as a 3-
layer neural network with special activation and prop-
agation functions, and fuzzy sets as weights. On the
other hand it can also be viewed as a fuzzy system
represented in a neural-network-like architecture. To
obtain NEFCON or NEFCLASS systems from the def-
inition of the generic fuzzy perceptron, certain restric-
tions must be specified [7]. The restrictions for a
neuro-fuzzy model for function approximation are sim-
ilar to the NEFCON model.

Definition 2: A NEFPROX system is a special 3-
layer fuzzy perceptron (see Fig. 1) with the following
specifications:

1. The input units are denoted as xi, . . . , xn, the hid-
den rule units are denoted as RI, . . . , Rk, and the out-
put units are denoted as 91, . . . , ZJ~.
2. Each connection between units xx~i and R, is labeled

0 with a linguistic term A,“: .
3. Each connection between units R, and yj is labeled

with a linguistic term B,’ . Cd

4. Connections coming Horn the same input unit xi
and having identical labels, bear the same fuzzy weight
at all times. These connections are called linked con-
nections, and their weight is called a shared weight.

1107

Fig. 1. Architecture of a NEFPROX system

An analogous condition holds for the connections lead-
ing to the same output unit yj.
5. Let Lx R denote the label of the connection between
an input unit x and a rule unit R. For all rule units
R, R’ (Qx Lz,R = L@‘) d R = R’ holds.

This definition makes it possible to interpret a NE-
FRPOX system as a plain fuzzy system. Each hid-
den unit represents a fuzzy if-then rule. Condition
(iv) specifies that th ere have to be shared or linked
weights. If this feature is missing, it would be pos-
sible for fuzzy weights representing identical linguistic
terms to evolve differently during the learning process.
If this is allowed to happen, each rule can have its in-
dividual membership functions for its antecedent and
conclusions variables. This would inhibit proper inter-
pretation of the rule base, and is highly undesirable.
Condition (v) determines that there are no rules with
identical antecedents.

These conditions are similar to the definitions for
NEFCON or NEFCLASS systems. But note that NE-
FCON systems have only a single output node, and
NEFCLASS systems do not use membership functions
on the conclusion side.

3. Learning Interpretable F’uzzy Sys-
tems

Compared to approaches like ANFIS our NEF-
PROX model has the advantage that it can also rep-
resent Mamdani-type fuzzy systems, which are more
easy to interpret than Sugeno-type systems. Our inter-
est with NEFPROX is to obtain simple fuzzy systems
that can be interpreted well. For this it is important
to have a small number of rule an a small number of
meaningful membership functions.

However there is a trade-off between readability and
precision. If we are interested in a very precise function

approximation, then we are not so much interested in
the interpretability of the solution. In this case we
want to use another feature of fuzzy system: The con-
venient combination of local models to an overall so-
lution. For this Sugeno-type models are more suited
than Mamdani-type models. However, if we are inter-
ested in a precise solution we should consider whether
a fuzzy system is the most suitable approach. Very
similar to Sugeno-type fuzzy systems are radial ba-
sis function networks, kernel regression, B-spline net-
works etc. [l], [2].

If we are more interested in an interpretable solu-
tion, then a Mamdani-type fuzzy system should be
preferred. However, we must consider that we will
probably not obtain a very precise solution by learn-
ing, because we cannot allow a learning algorithm to
apply any possible modification to the parameters of
a fuzzy systems that may be possible. For the sake of
interpretability we must constrain the learning proce-
dure. This idea can be found in all our neuro-fuzzy
approaches [71.

A neuro-fuzzy learning procedure should in this case
be very simple and fast to allow a user to understand
what it does and to experiment with it. We prefer a
tool-oriented view on neuro-fuzzy systems. We con-
sider a neuro-fuzzy method to be a tool for creat-
ing fuzzy systems from data. The learning algorithm
should take the semantics of the desired fuzzy system
into account, and adhere to certain constraints. The
learning result should also be interpreted, and the in-
sights gained by this should be used to restart the
learning procedure to obtain better results if neces-
sary. A neuro-fuzzy system supports the user to find
a desired fuzzy system based on training data, but it
cannot do all the work

Semantical problems will occur if neuro-fuzzy sys-
tems do not have mechanisms to make sure that all
changes caused by the learning procedure are inter-
pretable in terms of a fuzzy system. The learning
algorithms should be constrained such that adjacent
membership functions do not exchange positions, do
not move from positive to negative parts of the do-
mains or vice versa, have a certain degree of overlap-
ping, etc. An interpretation in terms of a Mamdani-
type fuzzy system is also in danger if the evaluation
of antecedents is not done by t-norms, but by some
special functions. This is sometimes done to allow
gradient descent learning to be applied. We refrain
from this in NEFPROX and use simple heuristics for
learning instead.

For applying a neuro-fuzzy learning strategy one ad-
ditional aspect should be considered: for whatever rea-
son we choose a fuzzy system to solve a problem it
cannot be because we need an exact solution. Fuzzy

1108

systems are used to exploit the tolerance for imprecise
solutions. So it does not make much sense to select
a very sophisticated and expensive training procedure
to squeeze the last bit of information from the train-
ing data or error measure. To do this we usually must
leave the standard fuzzy system architectures behind
and get semantical problems in exchange. From our
point of view fuzzy systems are used because they are
easy to implement, easy to handle and easy to under-
stand. A learning algorithm to create a fuzzy system
from data also should have these features.

Our view of neuro-fuzzy models as a way heuristi-
cally to find parameters of fuzzy systems by processing
training data with a learning algorithm, is expressed
by the list of five points given above. We think that
neuro-fuzzy systems should be seen as development
tools that can help to construct a fuzzy system. They
are not automatic “fuzzy system creators”. The user
should always supervise and interpret the learning pro-
cess. We have also to keep in mind that, as in neu-
ral networks, a successful learning outcome cannot be
guaranteed for the learning process of a neuro-fuzzy
system. The same guidelines for selection and prepro-
cessing of training data that are known from neural
networks apply to neuro-fuzzy systems.

4. Structure and Parameter Learning
In a function approximation problem we can use

plain supervised learning, because the correct output
is known for the training data. If we use a system of
fuzzy rules to approximate the function, we can use
prior knowledge. This means if we already know suit-
able rules for certain areas, we can initialize the neuro-
fuzzy system with them. The remaining rules have to
be found by learning. If there is no prior knowledge we
start with a NEFPROX system without hidden units,
and incrementally learn all rules.

The learning algorithm for NEFPROX is given in
Def. 3. We assume that triangular membership func-
tions are used that are described by three parameters:

p:lEt+ [OJ], /J(x) = 5

if x E [a, b),

- if x E [b, c],
i

x-a ba

I 0 otherwise.

The leftmost and rightmost membership functions for
each variable may be shouldered. We use triangular
fuzzy sets for the sake of simplicity, but the learning
algorithm can be applied to other forms of membership
functions as well. We can use, for example, either the
center-of-gravity or the mean-of-maximum method as
the defuzzification procedure in the output nodes.

To start the learning process, we must specify initial
fuzzy partitions for each input variable. This is not

necessary for output variables, for which fuzzy sets can
be created during learning. However, if the learning
algorithm is to start with specific fuzzy sets, they can
be defined. If no fuzzy sets are given, it is necessary to
specify the initial width (here:]a- cl) of a membership
function that is created during learning.

For the following definition remember that W(., .)
denotes a fuzzy weight (membership function) and
that o represents the output of a NEFPROX unit.

Definition 3: (NEFPROX learning algorithm)
Consider a NEFPROX system with n input units
X:1,---,Xn7 k rule units RI, . . . , RI,, and m output
units Y~,...,Y~. Also given is a learning problem
c = {(sd1),. l l 7 (sT, t,)} of T patterns, each consist-
ing of an input pattern s E IR”, and’ a target pattern
tElEv? The learning algorithm that is used to create
the k rule units of the NEFPROX system consists of
the following steps (rule learning a2gori thm) :
1. Select the next pattern (s, t) from L.
2. For each input unit xi E Ui find the membership
function &I such that

p$f’ (Si) = max) {@(si)}.
931 ,***,pi

3. If there is no rule node R with

then create such a node, and connect it to all output
nodes.
4. For each connection from the new rule node to the
output nodes find a suitable fuzzy weight by the fol-
lowing procedure:
From the membership functions assigned to an output .

0 unit yi find a membership function ~j~ such that

If there is no such fuzzy set, then create v$)~ such
that z&& (ti) = 1, add it to the fuzzy sets assigned to

output variable yi, and set W (R, yi) = z&)~.
5. If there are still unprocessed patterns in 2, then go
to with step (i), otherwise stop creating rules.
6. Finally, evaluate the rule base. Determine the mean
output for each output variable of each rule given by
those patterns for which the respective rule has a de-
gree of fulfilment greater than 0. If there is an output
fuzzy set to which the mean output has a higher degree
of membership than to the current fuzzy set used by
the respective rule, then change the rule consequent
accordingly.

The supervised learning algorithm for the fuzzy sets
of a NEFPROX system runs cyclically through the

1109

learning set l repeating the following steps until some
stop criterion is met (fuzzy set learning algorithm):
1. Select the next pattern (s, t) from l, propagate it
through the NEFPROX system, and determine the
output vector.
2. For each output unit yi, determine the difference
between desired and actual output value SYi = ti - oYi.
3. For each rule unit R with OR > 0:

(a) For all yi E Us determine the modifications for
the parameters a, b, c of the fuzzy set W(R, yi) using
the learning rate CT > 0.
If W(R, Yi>(h> > 0

Abi = o l 6yi l (c - a) l OR l (1 - W(R, yi)(ti)),
A ai = a-(C-

a) l OR + Abi 7

A c; = -P(C- a) l OR + Abi.

If W(R, yi)(ti) = 0

Abi = 0. S,i 9 (C - a) l OR l (1 - W(R,yi)(ti)),
A ai = sgn(ti - bi) l o l (c - a) l OR + Ab; ,
A Ci = sgn(ti - bi) l CT l (C - a) l OR -I- Ab; .

Apply the changes to W(R, yi) if this does not vio-
late a given set of constraints @. (Note: the weight
W(R, yi) might be shared by other connections, and
in this case it might be changed more than once.)

(b) Determine the rule error

ER = oR(l - OR) l x (2W(R,y)(ti) - 1) l I&I.

YEU3

(c) For each fuzzy set W(x, R) with W(x, R)(02) > 0
determine the modifications for its parameters a, b, c
using the learning rate 0 > 0:

Ab = a*E~=(c-a)*(l-W(x,R)(o,))

l sgn(o , - b),
A a = -0 l ER l (C - a) l (1 - W(X, R)(o,)) + &,,
A c = ,*ER*(c-a)=(l-W(x,R)(o&-Ab,

and apply the changes to W(x, R) if this does not vi-
olate a given set of constraints @. (Note: the weight
W(x, R) might be shared by other connections, and
in this case it might be changed more than once.)

4. If an epoch has been completed, and the stop cri-
terion is met, then stop; otherwise go to step (i).

As it is the case in our NEFCLASS model [lo], the
rule learning algorithm selects fuzzy rules based on a
predefined partitioning of the input space. This par-
titioning is given by the initial fuzzy sets. If the algo-
rithm creates too many rules, it is possible to evaluate
them by determining individual rule errors, keeping
only the best rules.

In this case, however, the approximation perfor-
mance can suffer. Each rule represents a number of
samples of the (unknown) function in the form of a
fuzzy sample. If rules are deleted, this means that
some samples are no longer considered. If parameter
learning cannot compensate for this, then the approx-
imation performance must decrease. For classification
problems as they are handled by NEFCLASS [lo], rule
pruning is not such a problem. This is due to the
winner-takes-all interpretation which is not much in-
fluenced by small changes in the output units. In con-
trast, the output of NEFPROX is taken as a function
result such that changes in the output units have a
stronger influence.

As in our other neuro-fuzzy models NEFCON and
NEFCLASS [7], the learning procedure for the fuzzy
sets is a simple heuristic. It results in shifting the
membership functions, and in making their supports
larger or smaller. As before, the learning procedure
must meet certain constraints a. As a stop criterion
the error over an additional validation set can be cho-
sen. Training is continued until the error is no longer
decreasing. This technique is well known from neural
network learning, and is used to avoid over-fitting to
the training data.

5. An Example: Time Series Prediction
As an example for the learning capabilities of the

NEFPROX algorithms, we consider a chaotic time se-
ries given by the Mackey-Glass differential equation:

.
x(t>

0.2x(t - 7) - -
1+xyt-7)

- 0.1x(t).

We use the values x(t - lS), x(t - la), x(t - 6) and
x(t) to predict x(t + 6). The training data was created
using a Runge-Kutta procedure with step width 0.1.
As initial conditions for the time series we used x(0) =
1.2 and r = 17. We created 1000 values between t =
118 and 1117, where the first 500 samples were used
as training data, and the second half was used as a
validation set.

The NEFPROX system that was used to approx-
imate the time series has four input and one out-
put variable. Each variable was initially partitioned
by 7 equally distributed triangular fuzzy sets, where
the leftmost and rightmost membership functions were
shouldered. Neighboring membership functions inter-
sected at degree 0.5. The range of the output vari-
able was extended for 10% in both directions, to better
obtain extreme output values. We used max-min in-
ference and mean-of-maximum defuzzification, i.e. the
NEFPROX system represents a common Mamadani-
type of fuzzy system with MOM defuzzification. We

1110

0.6

0 100 200 300 400 500 600 700 800 wo 1000

Fig. 2. Approximation of the Mackey-Glass time series by NEF-
PROX

used MOM defuzzification because it is more than two
times than center of gravity defuzzification, and pro-
duces almost the same results after learning.

This NEFPROX system has 105 = (4 + 1) l 7 l 3 ad-
justable parameters. The learning procedure was car-
ried out in batch mode, and parameter learning was
constraint by not allowing a membership function to
pass one of its neighbors. We also used an adaptive
learning rate. Beginning with 0 = 0.01 the learning
rate is multiplied by 1.1, if the error on the validation
set decreases for 4 consecutive steps. If the error oscil-
lates or increases, the learning rate is multiplied by 0.9.
Learning is stopped, if the error on the validation set
cannot be further reduced for 100 epochs. The NEF-
PROX system with the lowest error is saved during
the learning process, and it is restored after learning.

Fig. 2 shows the approximation performance of
NEFPROX after 216 epochs (solid line = original
data). Values 1 - 500 are the training data, and val-
ues 501- 1000 are from the validation set. The struc-
ture learning procedure created 129 fuzzy rules (in this
configuration there could be a maximum of 7* = 2401
different rules out of possible 75 = 16807 rules). The
number of rules does not influence the number of free
parameters, but only the run time of the simulation.
The root mean square errors (RMSE) are 0.0315 on
the training and 0.0332 on the validation set. On a
SUN UltraSparc training takes 75 seconds.

Compared to an ANFIS model with two bell-
shaped fuzzy sets per input variable and 16 rules
(i.e. 4 9 2 l 3 + 16 = 5 = 104 free parameters) a bet-
ter aproximation can be obtained (RMSE of 0.0016
and 0.0015)[4]. H owever, the trainig time is about
15 times longer (18 minutes on a SUN UltraSparc us-
ing software distributed by Jang at ftp.cs.cmu.edu in
user/ai/areas/fuzzy/systems/anfis). Because the con-
clusions of ANFIS rules consist of linear combinations
of the input variables, the number of free parameters
in an ANFIS systems depends also on the number of
rules.

6. Conclusions
We have presented learning algorithms to find the

structure and the parameters of a fuzzy system to ap-
proximate a function given by a supervised learning
problem. The resulting NEFPROX model is an ex-
tension to the NEFCON and NEFCLASS approaches.
NEFPROX can learn a common Mamdani-type of
fuzzy system from data. It uses a restricted learning
algorithm, such that the semantics and interpretability
of the represented fuzzy system are retained.

Compared to ANFIS, NEFPROX is much faster,
but ANFIS yields better approximation results. NEF-
PROX can do structure learning, but for ANFIS
Sugeno-type rule must be given whoose consequents
cannot be interpreted linguistically.

NEFPROX is a first step towards learning inter-
pretable fuzzy systems for function approximation.
We are currently working on using some of our results
from NEFCLASS [9], [lo] to improve NEFPROX. To
increase interpretability, the number of rules created
during learning must be reduced. Often a large num-
ber of rules and fuzzy sets are needed to obtain accept-
able approximation results. Algorithms for rule reduc-
tion are under examination. The NEFPROX software
is available at http://fuzzy.cs.uni-magdeburg.de.

References
PI

PI

PI

PI

PI

PI

PI

PI

PI

WI

WI

Hugues Bersini and Gianluca Bontempi. Fuzzy models
viewed as multi-expert networks. In Proc. Seventh Interna-
tional Fuzzy Systems Association World Congress IFSA ‘97,
volume II, pages 354-359, Prague, 1997.
Martin Brown and Chris Harris. Neurofuzzy Adaptive
Modelling and Control. Prentice Hall, New York, 1994.
J. J. Buckley. Sugeno type controllers are universal con-
trollers. Fuzzy Sets and Systems, 53:299-303, 1993.
J.-S. Roger Jang. ANFIS: Adaptive-network-based fuzzy
inference systems. IEEE Trans. Systems, Man & Cyber-
netics, 23:665-685, 1993.
Bart Kosko. Fuzzy systems as universal approximators. In
Proc. IEEE Int. Conf. on Fuzzy Systems 1992, pages 1153-
1162, San Diego, CA, March 1992.
Rudolf Kruse, Jijrg Gebhardt, and Frank Klawonn. Foun-
dations of Fuzzy Systems. Wiley, Chichester, 1994.
Detlef Nauck, Frank Klawonn, and Rudolf Kruse. Founda-
tions of Neuro-Fuzzy Systems. Wiley, Chichester, 1997.
Detlef Nauck and Rudolf Kruse. NEFCON-I: An X-
Window based simulator for neural fuzzy controllers. In
Proc. IEEE Int. Conf. Neural Networks 1994 at IEEE
WCC1’94, pages 1638-1643, Orlando, FL, June 1994.
Detlef Nauck and Rudolf Kruse. A neuro-fuzzy method to
learn fuzzy classification rules from data. Fuzzy Sets and
Systems, 89:277-288, 1997.
Detlef Nauck and Rudolf Kruse. New learning strategies for
NEFCLASS. In Proc. Seventh International Fuzzy Systems
Association World Congress IFSA’97, volume IV, pages 50-
55, Prague, 1997.
Andreas Niirnberger, Detlef Nauck, and Rudolf Kruse.
Neuro-fuzzy control based on the NEFCON model un-
der MATLAB/SIMULINK. In Pravir Chawdry, Rajkumar
Roy, and R.K. Pant, editors, Soft Computing in Engineer-
ing Design and Manufacturing, London, 1997. Springer-
Verlag.

1111

