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Abstract 

Current research in the domain of inference networks, 
probabilistic as well as possibilistic, focuses on learning 
such networks from data. Learning inference networks 
consists in finding a decomposition of a multivariate 
probability or possibility distribution that is induced by 
a database of sample cases. An operation to be car- 
ried out several times during the execution of common 
learning algorithms is the computation of the projec- 
tion of the database-induced probability or possibility 
distribution to a subset of the database attributes. This 
operation is trivial for the probabilistic case, but turns 
out to be a problem for the possibilistic one, since ad 
hoc approaches lead to wrong results or are very inef- 
ficient. In this paper we suggest an eficient method 
to compute maximum projections of database-induced 
possibility distributions, making real world possibilistic 
network learning feasible in the first place. 

valuation-based networks [ 191. But recently possibilis- 
tic networks [8] also gained some attention. All of these 
approaches led to the development of efficient imple- 
mentations, for example HUGIN [l], PULCINELLA 
[18], PATHFINDER [lo] and POSSINFER [8]. 

1. Introduction 
Inference networks, especially probabilistic net- 

works, are already well established as powerful tools 
for reasoning under uncertainty. The idea underlying 
them is that reasoning in multi-dimensional domains, 
which tends to be infeasible in the domains as a whole 
- and the more so, if uncertainty and/or imprecision 
are involved -, can be made feasible by a decomposi- 
tion of the available knowledge. The main advantage 
of such a decomposition is that it reduces the reason- 
ing process to computations in lower-dimensional sub- 
spaces. 

A large part of recent research in the domain of in- 
ference networks, probabilistic as well as possibilistic, 
has been devoted to learning them from data [4], [ll], 
[7]. Basically, such learning consists in finding a de- 
composition of a database-induced multivariate prob- 
ability or possibility distribution. Any algorithm for 
this task needs to compute several times the projec- 
tion of this distribution to a subset of the database at- 
tributes, mainly in order to determine the distributions 
of the decomposition. This operation is trivial for the 
probabilistic case, but turns out to be a problem for 
the possibilistic one, since ad hoc approaches lead to 
wrong results or are very inefficient. In this paper we 
suggest an efficient method to compute maximum pro- 
jections of database-induced possibility distributions, 
thus providing an important ingredient to make real 
world possibilistic network learning feasible. 

2. Computing Maximum Projections 
Before we can state clearly the problem we try to 

solve, we need some formal underpinnings. We start 
by defining a tuple (precise as well as imprecise), a 
relation, and projections of tuples as well as relations. 
We then introduce the notion of a database and that 
of a database-induced possibility distribution. 

The theory of decomposition techniques for uncer- 
tain and imprecise knowledge is well developed. For 
example, decomposition based on dependence and in- 
dependence relations between variables has extensively 
been studied in the field of graphical modeling [12]. 
Some of the best-known approaches are Bayesian net- 
works [17], Markov networks [14], and the more general 

The definition of the induced possibility distribution 
is usually the first step in learning a possibilistic infer- 
ence network from a given database. The decompo- 
sition part of the learning process involves computing 
maximum projections of the induced possibility distri- 
butions. Unfortunately it is not as easy as it appears 
at first sight to find an efficient algorithm for this task. 
Hence computing maximum projections is actually a 
problem, which we try to solve in this paper. 
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Definition I: Let X = {Ai, . . . , A,} be a set of at- 
tributes with domains dom(Ai) = {a?), . . . , &\}. A 
tuple t over X is a mapping 

t : x + U&X @44> 

with the constraint VA E X : t(A) C dam(A) A t(A) # 0. 
The set of all tuples over X is denoted T(X). •I 

We write tuples similar to the usual vector notation. 
For example, a tuple t over {A,& C} which maps A 
to (al}, B to {b2$4} and C to {cl, CQ} is written t = 
(A + {ul>,B + {bz, b4}, C + {cl, es}). If an implicit 
order is fixed, the attributes can be omitted. 

With the above definition a tuple can assign a set of 
values to an attribute, instead of only one. The idea is 
that we want tuples to represent imprecise (i.e. multi- 
valued) information about the state of the world. We 
make this more precise below, where we discuss how 
a database can be interpreted as a description of a 
multivariate possibility distribution. 

Definition 2: A tuple t over an attribute set X is 
called precise, iff VA E X : 1 t(A) 1 = 1. Otherwise it is 
called imprecise. The set of all precise tuples over X 
is denoted Tprec (X) . cl 

Note that a tuple, as defined in definition 1, can be 
seen as representing a set of possible precise tuples. We 
make use of this view when introducing the possibility 
distribution induced by a given dataset. 

Since we head at describing decompositions of pos- 
sibility distributions into distributions on lower-di- 
mensional subspaces, we need to define the notion of a 
projection of a tuple to a subset of the set of attributes 
it is defined upon. 

Definition 3: If t is a tuple over an attribute set X 
andY C X, thenty - = projf:(t) denotes the projection 
or restriction of the tuple t to Y. The mapping ty 
assigns (sets of) values only to the attributes in Y. 
(Hence ty is a tuple over Y .) 0 

We now turn from tuples to relations. 
Definition 4: A relation R over an attribute set X 

is a set of tuples over X. cl 
Definition 5: If R is a relation over X and Y C X, 

then the projection Ry = proj$ (R) of R from Xto Y 
is defined as 

Ry= projF(R)= {s E T(Y) ] 3 E R : s c proj$(t)}. 

(Hence Ry is a relation over Y .) 0 
For the ty,pe of problem we are dealing with, a sim- 

ple relation is not enough. In a relation, as it is a set 
of tuples, each tuple can appear only once. In con- 
trast to this, in a database of sample cases a given 
tuple can appear several times, reflecting the relative 
frequency of its occurrence. Since we cannot dispense 

with this frequency information, we need a mechanism 
to represent the number of occurrences of a tuple. 

Definition 6: A database D over an attribute set X, 
is a tuple (R, WR), where R is a relation over X and 
WR is a function mapping each tuple in R to a natural 
number, i.e. WR : R + N. cl 

The function WR is meant to express the number of 
occurrences of a tuple t E R in a set of sample cases. 
We speak of u&(t) as indicating the weight of a tuple t. 

We interpret a given database as a description of 
a multivariate possibility distribution. This interpre- 
tation is based on the context model [5], [13], which 
provides a well-founded justification of the semantics 
of a degree of possibility. In this model possibility 
distributions are seen as information-compressed rep- 
resentations of (not necessarily nested) random sets, 
a degree of possibility as the one-point coverage of a 
random set [16]. 

More precisely, let 0 be the set of all possible states 
of the world, wo E 0 the actual (but unknown) state of 
the world, (C, 2c, P), C = {cl, . . . , ck}, a finite prob- 
ability space, and y : C + 2’ a set-valued mapping. 
C is seen as a set of contexts that have to be distin- 
guished for a set-valued specification of wo. The con- 
texts are supposed to describe different physical and 
observation-related frame conditions. P( { c}) is the 
(subjective) probability of the (occurrence or selection 
of the) context c. 

A set y(c) is assumed to be the most specific cor- 
rect set-valued specification of ~0, which is implied by 
the frame conditions that characterize the context c. 
By “most specific set-valued specification” we mean 
that wg E y(c) is guaranteed to be true for y(c), but 
is not guaranteed for any proper subset of y(c). The 
resulting random set r = (y, P) is an imperfect (i.e. 
imprecise and uncertain) specification of WO. Let 7rr 
denote the one-point coverage of r (the possibility dis- 
tribution induced by I’), which is defined as 

rr : f-2 + [o, 11, T(W) * p({c E c 1 w E y(c)}) ’ 

In a complete modeling, the contexts in C must be 
specified in detail, so that the relationships between 
all contexts cj and their corresponding specifications 
r(cj) are made explicit. But if the contexts are un- 
known or ignored, then 7rr(w) is the total mass of all 
contexts c that provide a specification y(c) in which 
~0 is contained, and this quantifies the possibility of 
truth of the statement “w = ~0” [6], [8]. 

We apply the context model directly to a database. 
The set of all precise tuples over X is the set 0 of all 
possible states of the world. Each sample case is seen 
as associated with a context, each of which is assumed 
to have equal probability. Since the weight function 
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counts sample cases, a database already combines con- 
texts, 
set of 

namely 
precise 

those which lead to the same tuple. The 
tuples represented by a normal tuple is 

seen as the most specific correct set-valued specifica- 
tion of the actual state wo of the world. Thus we can 
define the possibility distribution that is induced by a 
given dataset D. 

Definition 7: Let D = (R, WR) be a non-empty 
database (R # 0) over an attribute set X. The 
(not necessarily normalized) possibility distribution 
nD over X that is induced by D is defined as 

TD : ~pm(X) + [o, 11, 

rD(t) * 

That is, the degree of possibility of a “point” t is the 
sum of the weights of those tuples (and thus of those 
sample cases) that cover it. 

In learning possibilistic networks from data, it is 
tried to decompose such a database-induced possibil- 
ity distribution into distributions on lower-dimensional 
subspaces. This is done in order to reduce the amount 
of data necessary to draw inferences in the underlying 
domain, since it can be shown that in a decomposition 
(as defined below) inferences can be carried out using 
only the distributions of the decomposition. 

The distributions on lower-dimensional subspaces, 
of which a decomposition of a multivariate possibility 
distribution consists, are maximum projections of this 
possibility distribution. 

Definition 8: Let TD be a possibility distribution in- 
duced by a non-empty database D = (R, u&) over X 
and let Y C X. The maximum projection of TD to Y, - 

w written TD = projc(rD) is defined as 

rg’(r) e max To(t), 
tEEx (r) 

where E&r), the extension of T E Tprec(Y) to X, is 
defined as &(r) = {s E Tprec(X) 1 projF(s) = r}. •I 

A given possibility distribution TD can be decom- 
posed into distributions on lower dimensional sub- 
spaces, if it is possible to reconstruct TD from the dis- 
tributions on the subspaces. 

Definition 9: Let XD be a possibility distribution in- 
duced by a database D = (R,zuR) over an attribute 
set X and let y = {Yl,. . . , Yk} C 2x be a set of attri- 
bute sets, for which VYI, Y2 E yy Yl E Yz -+ Yi = Yz 
(i.e. no attribute set Yi is contained in any other). 

TD is called decomposable into a set of distributions 
on Y E y, iff Vt E Tprec(X) : 

r&t) = min nr’(t) = min proj$(rD)(t). 
YEY YEY 

In this case the set {~rl’, . . . , nFk’} of maximum pro- 
jections of nD to the elements of y is called a decom- 
position of KD. cl 

Often additional conditions are required to hold for 
the attribute sets in Y, e.g. that the sets Yi, if in- 
terpreted as the hyperedges of a hypergraph, form a 
hypertree, i.e. a hypergraph without cycles. Although 
this is a necessary condition for probabilistic decompo- 
sition, since cycles cannot be tolerated in undirected 
probabilistic networks (Markov networks), it can be 
neglected for possibilistic decomposition (due to the 
idempotence of the propagation operation). 

In addition, since an exact decomposition is not 
what can be hoped for in practice, often approxima- 
tions, resulting in a certain loss of information, are 
accepted. We neglect this possibility here. 

We can now state clearly the problem this paper 
tries to solve. A learning algorithm for a possibilistic 
network usually consists, just like a learning algorithm 
for probabilistic networks, of two parts: an evaluation 
measure and a search method. The evaluation mea- 
sure estimates the quality of a given decomposition 
candidate and the search method determines which de- 
composition candidates are inspected. But, of course, 
in order to evaluate a given decomposition candidate, 
one has to compute the maximum projections to the 
chosen set of subspaces. Therefore an important task 
for any learning algorithm for possibilistic networks 
is to efficiently compute the maximum projection of 
a database-induced possibility distribution to a given 
subset of the underlying set of attributes. 

At first sight this seems to be a trivial task, but a 
closer look reveals that an eficient algorithm is not 
that easy to find. Especially, it is not possible, to 

(Y> compute the maximum projection simply as TD = 

maxrEEx(t)nR ?f&(r), which could be computed in a 
single traversal of R. A simple example demonstrates 
this: Let D = (R, WR) be a dataset over X = {A, B} 
with R = {(A + (a1,aa},B + {h,b2}),(A + 
{ul},B + {bz})} and Vt E R : W&t) = 1. From the 
above formula for t = (A + {ul},B -+ {bz}) the de- 
gree of possibility nD (t) = 0.5 would result, although 
the correct value is 1. The problem is that the tuples 
in R “intersect” on t and thus must be counted both. 

3. Computation via the Support 
Due to the problem mentioned above it seems to be 

necessary to construct the complete possibility distri- 
bution (or at least its “support”, i.e. the set of precise 
tuples on which it is greater than zero) in order to com- 
pute the maximum projection of a database-induced 
possibility distribution. Of course, this is very ineffi- 
cient, if possible at all, since the support of a database- 
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induced possibility distribution often contains a huge 
number of tuples (see section 5). Fortunately, there is 
a better method, based on the intersection property 
observed above and working with the “closure” of a 
relation, which we describe in the next section. We 
study the method based on the “support” of a rela- 
tion first, since our proof, that the computation from 
the “closure” of a relation leads to the correct results, 
compares the results of the “closure” method to the 
results of the “support” method. 

We start by defining the notion of “at least as spe- 
cific as” for tuples. This notion is helpful in defining 
the support of a relation and also proves to be very 
useful when dealing with closures. We then define the 
support of a relation and of a dataset and demonstrate 
how a maximum projection of a database-induced pos- 
sibility distribution can be computed from the support 
of a given (imprecise) database. 

Definition IO: A tuple tl over an attribute set X is 
called at least as specific as a tuple t2 over X, written 
tl E t2, iff VA E X : tl(A) C tz(A). Cl 

Note that C is not a total ordering, since there are 
tuples that a&ncomparable. For example, ti = (A --+ 
{m>,B + (bl,b2}) and t2 = (A + {m,az}J3 + 

{bi, bs}) are not comparable, since neither tl & t2 nor 
t2 & tl holds. 

Note also that C is obviously transitive, i.e. if tl, t2, 
t3 are three tuplesover an attribute set X with ti C t2 
and t2 E t3, then also tl g t3. 

Finally, note that C is maintained by projection. 
That is, if tl and t2 &e two tuples over an attribute 
set X with tl C t2 and if Y c X, then proj$(ti) & 
proj$&). (We need this in the proof of theorem 1.) 

Definition 11: Let R be a relation over an attribute 
set X. The support of R, written supp(R), is the set 
of all precise tuples that are at least as specific as a 
tuple in R, i.e. 

supp(R) = {t E TPrec(X) 1 3r E R : t c r}. •I - 

0 bviously, supp (R) is also a relation over X. Using 
the above definition we define the support of a dataset 
D = (@“R) 2x3 SUP@) = (supd%%~,,(R))- In 
doing so, we fix z.&,pp(R) in such a way, that any max- 
imum projection of the possibility distribution Kg can 
be computed by taking maxima over WS,pP(R). This 
can be achieved by defining z&,r-,p(R) as 

W,upp(R) : s”pdR) + N, 

Wsupp(R) b) - &R,sCt W&) - 

Comparing this definition to definition 7, we see that 

rD(t) = 
&Wsupp(R) (% if t E supp(R), 
o 

:, otherwise, 

where K = &R w&r). 
It follows, that any maximum projection of KD can 

be computed easily from wsupp(R) as follows (although 
(Y> the two are identical, we write rSupp(D) instead of nr’ 

to indicate that it is computed via the support of 0): 

riT;p(D) : Tp=X(Y) -+ [O, ‘1, 
P7 

(4 - 
+ max %.~pp(R) (t>, if sX(r) # 0, 

rsuPP(D) 
%Sx (r) 

0, otherwise, 

where Sx(r) = {t E supp(R) ( r & proj$(t)} and K = 
c sER u&). (Restricting Ex(r) of definition 8 to 
SX (r) & EX (r) is justified, since Vs E E&r)\&(r) : 
;IrD(s) = 0.) 

4. Computation via the Closure 
As already mentioned above, the computation of 

maximum projections via the support of a database is, 
in general, very inefficient, because of the usually vast 
number of tuples in supp(R). In this section we intro- 
duce a computation of a maximum projection via a set 
of tuples that is usually much smaller then supp( R) , 
namely clos( R). (That, in practice, it is indeed much 
smaller is demonstrated in section 5.) 

We start by defining the 
and with it the closure of 

intersection of two tuples 
a relation under tuple in- 

tersection. By extending the notion of closure to a 
database and defining W&s(R) appropriately, any max- 
imum projection of a database-induced possibility dis- 
tribution can be computed by taking maxima over 
W&s(R). We prove that the degrees of possibility de- 
rived in this way are the same as those that result from 
a computation via the support of the given database. 

Definition 12: Let X be a set of attributes. A tu- 
ple s over X is called the intersection of two tuples tl 
and t2 over X, written s = tlnt2, iff VA E X : s(A) = 
t1 (A) n t2 (A) l 

c l 

Note that the intersection of two given tuples need 
not exist. For example, tl = (A + {a}$ + {h$2}) 
and t2 = (A + { u2}, B + { bl , b3)) do not have an in- 
tersection, since tl (A)ntz(A) = (8, but a tuple may not 
map an attribute to the empty set (see definition 1). 

Note also that the intersection s of two tuples tl and 
t2 is at least as specific as both of them, i.e. s 5: tl and 
s C t2. In addition, s is the least specific of all tuples 
s’foT which s’ C tl and s’ L t2, i.e. Vs’ E T(X) : (s’ C 
t1As’ 5 t2) + 2 [z s = 

- 
- tl flt2. This is important, since 

it also says that any tuple that is at least as specific as 
both of two given tuples is at least as specific as their 
intersection. (We need this in the proof of theorem 1.) 

Finally, note that intersection is idempotent, i.e. 
t fl t = t. (We need this below, where we collect some 
properties of closures.) 

666 



Definition 13: A relation R over an attribute set X 
is called closed under tuple intersection, iff 

Qtl, t2 E R : (3s E T(X) : s = tl I-I tz) + s E R, 

i.e. iff R contains for any two tuples also their inter- 
section (provided it exists). cl 

Definition 14: Let R be a relation over an attribute 
set X. The closure of R, written clos(R), is the set 

clos(R) = {t E T(X) 1 3s C R : t E i-i s}, - SES 

i.e. the relation R together with all possible intersec- 
tions of tuples from R. Cl 

Note that clos(R) is, obviously, also a relation and 
that it is closed under tuple intersection: If tl, t2 E 
clos(R), then 3Si E R : ti = nsesl s and 32 g R : 
t2 = l-l sE~2 s. If 3r E T(X) : r = ti fl t2, then r = 
tl n t2 = nsESl s I-I nsESz s = flsESlUS2 s E clos(R). 
(The last equality in this sequence holds, since fl is 
idempotent, see above). 

Note also that a direct implementation of the above 
definition is not the best way to compute clos(R). A 
better, because much more efficient way, is to start 
with a relation R’ = R, to compute only pairwise in- 
tersections of tuples taken from R’, and to add the 
results to R’, until no new tuples can be added. 

Just as for the support, we extend the notion of clo- 
sure to databases and define the closure of a database 
D = (R,wR) as clos(D) = (clos(R), wclO+$. In do- 
ing so, we fix wclos(R) in such a way, that any maxi- 
mum projection of the possibility distribution nD can 
be computed by taking maxima over w,los(~). This 
can be achieved by defining w,los(R) as 

%los(R) : clos(R) + IN, 

Wclos( R) (4 I+ &R,cCt wRwn - 

We assert that any maximum . projection of TD can - - 
be computed from W&s(R) as follows (we write rL&) 
to indicate that it is computed via the closure of 0): 

w 
( > 

& max W,los(R) @), if CX @) # 0, 

%los(D) ’ - 
tECx (f) 

o 
7 otherwise, 

where Cx(r) = {t E clos(R) 1 r C projc(t)} and K = 
c sGR u&(s). Since, as already mentioned, clos(R) 
usually contains much fewer tuples than supp( R) , a 
computation based on the above formula is much more 
efficient. We establish our assertion, that any maxi- 
mum projection can be computed in this way, by the 
following theorem. 

Theorem I: Let D = (R, WR) be a database over X 
and Y E X. Let supp(D) = (supp(R),w,,,,(R)) and 
clos(D) = (clos(R) (Y> 

7 %los(R)) as we11 as rsupp(D) and 

r$&,) be defined as above. Then 

i.e. computing the maximum projection of the possi- 
bility distribution TD induced by D via the closure of 
D is equivalent to computing it via the support of D. 

Proof: Let r E Tpre-JY) be arbitrary. Let K = 
c t@ WR(t), sx = {s E SUPP@) I r E projC(s)), and 
cx = {c E clos(R) 1 r E proj$(c)}. We prove the 
assertion of the theorem in two steps. 

1) *(y) (f-9 2 r (Y> 
clos( D) supp(D) ( > ’ : 

(y) a> sx = 0: ~~uydp(D)o) = o 5 ~clos(D) (r) E [0, 11. 

b) Sx # 0: 

(Y> 
%upp(D) ’ = ( > + ma&ssx w supp(R) b) 

- - & I1llaxsEs, &R set W&h Y - 

Let i E SX be (one of) the tuple(s) s E SX for 
which Ws,pp(R) (s) is maximal. Let V = {t E R I 

SEt}. Thenitisr 07 
SUPP(D) r ( > = +-%upp(R)(s^) = 

1 
K c tEV wR(t). Since V 5 R, it is t” = lit,, t E 
clos(R). Since 3 E SX, it is r C projf! (2) and since 
Qt E V : s^ C t, it 
follows tha; t* E 
Since t* = llte, 
V C VV. Putting - 

w 
%los(D) ’ = ( > 

> - 

> - 

is 2 C t*, hence r C projf:(t*). It 
&-Let VV = {t-i R I t* C t}. 
t, it is Qt E V : t” C t and hence - 
everything together we arrive at 

& m=cECx Wclos(R) cc> 

+‘Wclos(R) (t*) = $ &w WR(t) 

k c tev wdt) = n;;;p(D) CT) 

2) r$&J) (T) 5 Ks(uy3,(D) (‘)I 

(y) a> cx = 0: xclos(D) (r) = 0 < rLuydp(D) (r) E [o, 11. 

b) Cx # 8: 

07 
%los(D) ’ = ( > + max&C, Wclos(R) (s) 

- - + maxcECx &R,cCt w&)= - 

Let 2 E CX be (one of) the tuple(s) c E CX for 
which Wsupp(R) (c) is maximal. Let liv = {t E R I 

E C t}. Then it is r$&,) (r) = $!f&s(R)(~) = - 

+ c t+,“R(t)- Let u = (t E Tprec(X) I t 5 c}* 

Since r E Tprec(Y) and r E projc(Z) (because of 
2 E CX), there must be a tuple s* E U, for which 
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T E proj$(s*). Since s* E U, s” 5 2 E clos(R) 
and since Vc E clos(R) : 3 E R : c & t, it follows 
that 3 E R : s* _C t and hence s” E supp(R). 
Let V = {t E R 1 s* C t}. Since s* & 2, it is 
Vt E T/v : s* C t and hence VV C V. Putting - - 
everything together we arrive at 

(Y> 
%upp(D) ’ = ( > + maxs&sx w supp( R) cc> 

> +%upp(R)(S*) = & &v WR@) 

From 1) and 2) it follows that, since T is arbitrary, 

5. Experimental Results 
We tested our method on three datasets, namely 

the Danish Jersey cattle blood type determination 
dataset (djc, 500 cases), the soybean diseases dataset 
(soybean, 683 cases), and the congress voting dataset 
(vote, 435 cases). (The latter two datasets are well 
known from the UC1 Machine Learning Repository 
[15].) Each of these datasets contains a lot of miss- 
ing values, which we treated as an imprecise attribute 
value. That is, for a missing value of an attribute A we 
assumed dam(A) as the set of values that the corre- 
sponding tuple maps A to. Unfortunately we could not 
get hold of any real world dataset containing “true” 
imprecise attribute values, i.e. datasets with cases in 
which for an attribute A a set S c dam(A) with 
IS] > 1 and S # dam(A) was possible. If anyone can 
direct us to such a dataset, we would be very grateful. 

For each of the mentioned datasets we compared the 
reduction to a relation (keeping the number of occur- 
rences in the tuple weight), the expansion to the sup- 
port of this relation, and the closure of the relation. 
The results are as follows: 

dataset cases tuples in tuples in tuples in 
R supp(R) clos(R) 

. 
dJC 500 283 712818 291 
soybean 683 631 n.a. 631 
vote 435 342 98753 400 

The entry “n.a.” (not available) means that the re- 
sulting relation is too large to be computed. Hence we 
could not determine its size. It is obvious that using 
the closure instead of the support of a relation to com- 
pute the maximum projections leads to an enormous 
reduction in complexity, or, in some cases, makes it 
possible to compute a decomposition in the first place. 

Applications of the considered method to actually 
learn possibilistic networks from data can be found in 
[2], [3], although the use of the presented method is 
not explicitly mentioned in these papers. 
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