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Abstract 
The design and optimization process of fuzzv 

controllers can be supported by learning techniques 
derived from neural networks. Such approaches are 
usually called neuro-fuzzy systems. In this paper, we 
describe the application of an updated version of the 
neuro-fuzzy model NEFCON to a real plant. The 
NEFCON model is able to learn and optimize the rulebase 
of a Mamdani-type fuzzy controller online by a 
reinforcement learning algorithm that uses a fuzzy error 
measure. We used an implementation of this model under 
MATLABDIMULINK. This simulation environment 
supports the development of real time applications in an 
easy way. 

1. Introduction 

The main problems in fuzzy controller design are the 
construction of an initial rulebase and in particular the 
optimization of an existing rulebase. The optimization 
process is usually very time consuming, especially if real 
plants must be used during optimization. The methods 
used for the application presented in this paper have been 
developed to support the user in these cases. 

One of the main objectives of our project is to develop 
algorithms that are able to determine online an appropriate 
and interpretable rulebase within a small number of 
simulation runs. Besides, it must be possible to use prior 
knowledge to initialize the learning process. 

This is a contrast to ‘pure’ reinforcement strategies [2] 
or methods based on dynamic programming [ 1, lo] which 
try to find an optimal solution using neural network 
structures. These methods need many runs to find even an 
approximate solution for a given control problem. On the 
other hand, they have the advantage of using less 
information about the error of the current system state. 
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However, in many cases a simple error description can be 
achieved with little effort [7, 91. 

In this paper, we describe the application of neuro- 
fuzzy learning methods to a real plant. We chose 
MATLAB/SIMULINK [9] as environment for the neuro- 
fuzzy model, in order to use a standard software tool, that 
is well suited for the design of industrial applications. 

The model was implemented as a toolbox for 
MATLAB/SIMULINK [9]. Thus, it is available for the 
interactive design of fuzzy controllers and supports it by 
learning methods. 

The used learning techniques are based on the neuro- 
fuzzy model NEFCON [7]. 

1.1. The NEFCON-Model 

The NEFCON-Model is based on a generic fuzzy 
perceptron [6, 71. An example, which describes the 
structure of a fuzzy controller with five rules, two inputs, 
and one output, is shown in Figure 1. The inner nodes Ri, 
. . ., R5 represent the rules, the nodes &, 2, and q the 

input and output values, and ,u,? , v,. the fuzzy sets 

describing the antecedents A,“’ and consequents B, . 

Rules with the same antecedents use so-called shared 
weights, which are represented by ellipses in Figure 1. 
They ensure the integrity of the rulebase. The node RI for 
example represents the rule: 

R,: if 6 is Ai” and & is Ai2’ then 7 is B, . 

The model structure allows to learn and optimize the 
rulebase of a Mamdani-type fuzzy controller [4] online by 
a reinforcement learning algorithm. 

2. The Learning Algorithms 

The learning process of the NEFCON model can be 
divided into two main phases. The first phase is designed 



2.2. Optimization of the Rulebase 

Figure 1: A NEFCON System with two inputs, five 
rules and one output 

to learn an initial rulebase, if no prior knowledge of the 
system is available. Furthermore, it can be used to 
complete a manually defined rulebase. 

The second phase optimizes the rules by shifting or 
modifying the fuzzy sets of the rules. 

Both phases use a fuzzy error to learn or to optimize 
the rulebase [7, 91. The fuzzy error describes the quality of 
the current system state 

2.1. Rulebase Learning 

For the presented application, we used the ‘Bottom- 
Up’-Algorithm [ 8, 91. 

This algorithm starts with an empty rulebase. An initial 
fuzzy partitioning of the input and output intervals must be 
given. The algorithm can be divided into two parts. 

During the first part, the rules’ antecedents are 
determined by classifying the input values, i.e. finding that 
membership function for each variable that yields the 
highest membership value for the respective input value. 
Then the algorithm tries to ‘guess’ the output value by 
deriving it from the current fuzzy error. 

During the second part, the rulebase is optimized bY 
changing the consequent to an adjacent membership 
function, if this is necessary. 

To optimize the rulebase we choose the optimization 
algorithm NEFCON-I [9]. 

This algorithm is motivated by the backpropagation 
algorithm for the multilayer perceptron. It optimizes the 
rulebase by ‘reward and punishment’. A rule is ‘rewarded’ 
by shifting its consequent to a higher value and by 
widening the support of the antecedents, if its current 
output has the same sign as the optimal output. Otherwise, 
the rule is ‘punished’ by shifting its consequent to a lower 
value and by reducing the support of the antecedents. 

2.3. Description of the System Error 

For the description of the system error, we use a 
linguistic error description [7]. 

This method is based on the fact that the optimal state 
of a dynamic system can be described by a vector of 
system state variable values. Usually the state can not be 
described exactly, or we are content, if the system 
variables have roughly taken these values. Thus, the 
quality of a current state can be described by fuzzy rules. 

By use of an error definition that is based on a 
linguistic error description with fuzzy rules, it is also 
easily possible to describe compensatory situations. These 
are situations in which the dynamic system is driven 
towards its optimal state. 

3. Learning applied to a real plant 

Since we want to be able to determine an appropriate 
and interpretable rulebase within a small number of 
simulation runs, we decided to split the learning process in 
two main steps. 

During the first step, the rulebase will be learned and 
optimized by use of a simple (linear) model of the real 
plant. Because of the differences between the real plant 
and the linear model used for learning, the fuzzy controller 
will not be able to control the real plant appropriately in 
most cases. Therefore, a second learning step will be 
necessary. During the second step, the derived rulebase 
will be optimized by use of the real plant. 

Thus, an appropriate working rulebase can be found 
with less experimental (and time) effort on the real plant. 
Besides, the risk of a damage of the real plant is reduced. 

As an example for a real plant, we used the well-known 
inverted pendulum. 

3.1. The learning Environment 

The used inverted pendulum model is shown in Figure 
2. The revolving pendulum is mounted on top of a moving 
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Figure 2: The used inverted pendulum model 

base. The moving base can be driven along a track over a 
length of approximately 1Sm. The moving base is driven 
by a DC-motor, a toothwheel, a toothbelt and a clutch. 

The measured values of the pendulum are the pendulum 
angle a (la1 < lo”), the cart position x obtained by 
incremental encoders, and the cart velocity x’. 

The plant was connected to a standard Pentium 166 PC 
running Microsoft Windows NT 4.0. For the data transfer 
we use of a standard I/O interface card with a scanning 
rate of at least 10 ms (during simulation we used a 
scanning rate of 30 ms). 

For the first learning step, we used a simple linear 
model of the real pendulum. This model was implemented 
in the SIMULINK learning environment, which was 
constructed for this learning approach (see Figure 3). 

The derivation of a linear model for an inverted 
pendulum is described in detail in [5]. 

As mentioned above, the angle velocity could not be 
obtained directly from the plant. The use of two measured 
angles to calculate a local derivative was not possible due 
to the measurement errors. These errors were caused by 

clock time 

angle vel. 

velocity 

.NEFCOh w b x’= Ax+Bu 
Fuzzy 1 v=Cx+Du 

b 
pendulum 

demux observer mux 

Figure 3: SIMULINK simulation environment for the 
pendulum 

the simple mechanical construction of the pendulum and 
its control environment. Therefore, we used an observer to 
derive the missing value (see, for example, [ 11, 121). The 
observer calculates the missing value, in this case the 
angle velocity a’, by use of the measured values and the 
control values applied to the plant (see the block observer 
in Figure 3). 

The derivation of the observer for the pendulum is 
described in [5], too. 

3.2. The Used Error Description 

The required system error for the learning algorithms 
was defined by the rulebase depicted in Figure 4. The 
input domains of the fuzzy system, which defines the error 
description, are partitioned by three triangular membership 
functions and the output domain by five triangular 
membership functions. 

1 If (a is n) and (da is p) 
2 If (a is p) and (da is n) 
3 If (a is p) and (da is p) 
4 If (a is n) and (da is n) 
5 If (a is p) and (da is z) 
6 If (a is n) and (da is z) 
7 If (a is z) and (da is n) 
8 If (a is z) and (da is p) 

then (err is z) 
then (err is z) 
then (err is n) 
then (err is p) 
then (err is n) 
then (err is p) 
then (err is p) 
then (err is n) 

9 If (a is z) and (da is z) and (x is p) and (dx is z) then (err is pz) 
10 If (a is z) and (da is z) and (x is n) and (dx is z) then (err is nz) 
11 If (a is z) and (da is z) and (x is z) and (dx is p) then (err is p) 

12 If (a is z) and (da is z) and (x is z) and (dx is n) then (err is n) 
13 If (a is z) and (da is z) and (x is n) and (dx is n) then (err is n) 
14 If (a is z) and (da is z) and (x is p) and (dx is p) then (err is p) 

15 If (a is z) and (da is z) and (x is n) and (dx is p) then (err is z) 
16 If (a is z) and (da is z) and (x is p) and (dx is n) then (err is z) 

(a - angle; da - angle velocity; x - position; dx - velocity; err - error) 

Figure 4: Rulebase of the linguistic error description 

The rules 1 to 8 (Figure 4) are used to define the error 
of the pendulum. 

The rules 9 to 16 define the position error of the cart. 
The error signal derived bv these rules is onlv used 
(unequal to zero), if the pendulum is well balanced (a is 
zero and da is zero). Thus, a straightforward and non- 
optimal control strategy is implicitly defined by this error 
description. 

3.3. Learning and Optimization 

The learning algorithm was initialized with an empty 
rulebase. The input and output intervals have been 
partitioned by five triangular membership functions. Each 
simulation cycle was started with random initial conditions 
for the angle and angle velocity of the pendulum. 

For the first learning approach we used only the angle 
and angle velocity to learn a rulebase. Therefore, the error 
description was restricted to the rules 1 to 8 (Figure 4) and 
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Figure 5: Model based learned rulebase (restricted to 
a and a’) applied to the simulated model 

a NEFCON system with two input and one output values 
was used. 

During the rulebase learning phase, noise was added to 
the reference signal to improve the coverage of the system 
state space [2]. Each cycle took 10 seconds of simulation 
time. If the pendulum fell down, the current cycle was 
terminated immediately. 

The learning algorithm was able to generate an 
appropriate working rulebase in only three cycles of 
rulebase learning and three cycles for optimization. The 
control behavior is depicted in Figure 5. 

The controller was able to balance the pendulum 
without further optimization quite well. However, since we 
used no restrictions for the cart movement during learning, 
the cart moved slightlv against the svstem boundaries. The 

Afterwards, the learned rulebase was applied to the real 
pendulum model. This was done by simply replacing the 
linear pendulum model block (pendulum) in the 
SIMULINK simulation environment (see Figure 3). The 
block was replaced by a control block, . which 
communicates directly with the plant, by use of the I/O 
interface card of the PC. 
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Figure 6: Model based learned rulebase (restricted to Figure 8: Model based learned rulebase applied to the 
a and a’) applied to the real plant real plant 
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Figure 7: Model based learned rulebase applied to the 
simulated model 

simulation results are depicted in Figure 6. 
For the next learning approach, we used the simulation 

environment as presented in (Figure 3) and the complete 
error description (Figure 4). 

The learning algorithm was able to generate an 
appropriate working rulebase within only five cycles for 
rulebase learning and three cycles for the optimization of 
the fuzzy sets. The control behavior is shown in Figure 7. 

Finally, we applied the rulebase, which was learned by 
use of the simple linear model, to the real pendulum. The 
control results are depicted in Figure 8. 

The controller was able to balance the pendulum, as 

Nevertheless, the control behavior is not optimal. The 
presented control behavior is a typical sample of system 
control with an automatically learned rulebase. The system 
‘swings’ slightly around its optimal state, but remains 
stable. Better results could be obtained, for example, by 
starting the learning procedure with different initial 
conditions or by refining the used error description. 
Furthermore, the intervals for the input and output values 
could be changed or prior knowledge could be used to 
initialize the rulebase of the fuzzy controller. 
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expected, only for a short period (about seven seconds). 
This is caused by the model-based differences between the 
real pendulum and the linear model used for learning. 
Further tests have shown, that even rulebases obtained by 
more exact models work only slightly better, when they 
were applied to the real model. 

4. Conclusion and future work 

By the implementation of the updated NEFCON model 
under MATLAB/SIMULINK, it is possible to use the 
model conveniently for the design of fuzzy controllers for 
different dynamic systems. 

As presented, the rulebase obtained by use of a simple 
model of a plant can be applied to a real plant in an easy 
way. Nevertheless, the derived rulebase has to be 
optimized by using the real plant in most cases, to be able . 
to control the plant appropriately. 

Currently, this optimization cannot be done in real time, 
due to some performance problems with the current 
release of the MATLAB/SIMULINK environment and the 
announced, but still missing, MATLAB compiler. The 
next release of our NEFCON tool will likely support 
online learning in real time. 

Nevertheless, in case of more complex dynamic 
systems, the quality of the results greatly depends on the 
definition of the fuzzy error measure. This is caused by the 
fact that the NEFCON algorithms use only a simple 
approach to include the dynamics of the controlled system 
in the optimization process (see, for example, the credit 
assignment problem [2]). 

Some variations of reinforcement strategies [ 1, 31 have 
to be analyzed in order to determine, if it will be possible 
to integrate them into the optimization phase of the 
presented algorithms. It has to be studied whether they 
improve the quality of the controller without increasing the 
number of runs for learning significantly. 

5. Remarks 
. 

The used development tool for fuzzy controllers under 
MATLAB/SIMULINK can be obtained free of charge for 
non-commercial purposes via the Internet from 
http:Nfuzzy.cs.uni-magdeburg.de/nefcon. 

MATLAB/SIMULINK is a simulation tool developed 
by ‘The Mathworks’ Inc., 24 Prime Park Way, Natick, 
Mass. 01760; (WWW: http://www.mathworks.com). 

The used inverted pendulum was provided by the 
Institute of Automation (IFAT), University of Magdeburg, 
Germany (WWW: http://infaut.et.uni-magdeburg.de). 

The used plant (PS600 Position Control and Inverted 
Pendulum) was constructed by amira GmbH, Dusseldorf, 
Germany (WWW: http:llwww.amira.de). 
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