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Abstract - We explore an approach to possibilis-
tic fuzzy clustering that avoids a severe drawback of
the conventional approach, namely that the objective
function is truly minimized only if all cluster centers
are identical. Our approach is based on the idea that
this undesired property can be avoided if we intro-
duce a mutual repulsion of the clusters, so that they
are forced away from each other. We develop this ap-
proach for the possibilistic fuzzy c-means algorithm
and the Gustafson–Kessel algorithm.
Keywords: fuzzy clustering, possibilistic membership
degrees

I. Introduction

Cluster analysis is a technique for classifying data, i.e.,
to divide a given dataset into a set of classes or clusters.
The goal is to divide the dataset in such a way that two
cases from the same cluster are as similar as possible
and two cases from different clusters are as dissimilar as
possible. Thus one tries to model the human ability to
group similar objects or cases into classes and categories.
In classical cluster analysis each datum must be assigned
to exactly one cluster. Fuzzy cluster analysis relaxes this
requirement by allowing gradual memberships, thus of-
fering the opportunity to deal with data that belong to
more than one cluster at the same time.

Most fuzzy clustering algorithms are objective func-
tion based: They determine an optimal classification by
minimizing an objective function. In objective function
based clustering usually each cluster is represented by
a cluster prototype. This prototype consists of a cluster
center (whose name already indicates its meaning) and
maybe some additional information about the size and
the shape of the cluster. The cluster center is an instan-
tiation of the attributes used to describe the domain, just
as the data points in the dataset to divide. However, the
cluster center is computed by the clustering algorithm
and may or may not appear in the dataset. The size and

shape parameters determine the extension of the cluster
in different directions of the underlying domain.

The degrees of membership to which a given data point
belongs to the different clusters are computed from the
distances of the data point to the cluster centers. These
distances depend on the size and the shape of the cluster
as stated by the additional prototype information. The
closer a data point lies to the center of a cluster (w.r.t.
size and shape), the higher is its degree of membership
to this cluster. Therefore the problem to divide a dataset
X = {~x1, . . . , ~xn} ⊆ IRp into c clusters can be stated as
the task to minimize the distances of the data points to
the cluster centers, since, of course, we want to maximize
the degrees of membership.

Several fuzzy clustering algorithms can be distin-
guished depending on the additional size and shape in-
formation contained in the cluster prototypes, the way in
which the distances are determined, and the restrictions
that are placed on the membership degrees [4], [3], [8].
Here we focus on the fuzzy c-means algorithm [2], which
uses only cluster centers and a Euclidean distance func-
tion, and the Gustafson–Kessel algorithm [7], which uses
cluster centers, covariance matrices and a Mahalanobis
distance function.

Probabilistic Fuzzy Clustering

In probabilistic fuzzy clustering the task is to minimize
the objective function

J(X,U,B) =
c∑
i=1

n∑
j=1

umijd
2(~βi, ~xj) (1)

subject to

n∑
j=1

uij > 0, for all i ∈ {1, . . . , c}, and (2)
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c∑
i=1

uij = 1, for all j ∈ {1, . . . , n}, (3)

where uij ∈ [0, 1] is the membership degree of datum ~xj
to cluster ci, ~βi is the prototype of cluster ci, and d(~βi, ~xj)
is the distance between datum ~xj and prototype ~βi. B is
the set of all c cluster prototypes ~β1, . . . , ~βc. The c × n
matrix U = [uij ] is called the fuzzy partition matrix and
the parameter m is called the fuzzifier. This parameter
determines the “fuzziness” of the classification. With
higher values for m the boundaries between the clusters
become softer, with lower values they get harder. Usually
m = 2 is chosen.

Constraint (2) guarantees that no cluster is empty and
constraint (3) ensures that the sum of the membership
degrees for each datum equals 1. Because of the second
constraint, this approach is called probabilistic clustering,
since with it the membership degrees for a given datum
formally resemble the probabilities of its being a member
of the corresponding cluster.

Unfortunately, the objective function J cannot be min-
imized directly. Therefore an iterative algorithm is used,
which alternately optimizes the cluster prototypes and
the membership degrees. That is, first the cluster proto-
types are optimized for fixed membership degrees, then
the membership degrees are optimized for fixed proto-
types. The main advantage of this scheme is that in
each of the two steps the optimum can be computed di-
rectly. By iterating the two steps the joint optimum is
approached. The update formulae are derived by simply
setting the derivative of the objective function (extended
by Lagrange multipliers to incorporate the constraints)
w.r.t. the parameter to optimize equal to zero. For the
membership degrees we thus obtain the following formula
if d2(xj , βk) > 0 holds with k ∈ 1, . . . , c

uij =
1

c∑
k=1

(
d2(xj , βi)
d2(xj , βk)

) 1
m−1

. (4)

Equation (4) shows that the membership degree of a da-
tum to a cluster depends not only on the distance be-
tween the datum and that cluster, but also on the dis-
tances between the datum and other clusters. The parti-
tioning property of a probabilistic clustering algorithm,
which “distributes” the weight of a datum on the differ-
ent clusters, is due to this equation.

Although often desirable, the “relative” character of
the membership degrees in a probabilistic clustering ap-
proach can lead to counterintuitive results. Consider, for
example, the simple case of two clusters shown in fig-
ure 1. Datum ~x1 has the same distance to both clusters
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Fig. 1. A situation in which
the probabilistic assign-
ment of membership de-
grees is counterintuitive
for datum x2.

and thus it is assigned a degree of membership of about
0.5. This is plausible. However, the same degrees of
membership are assigned to datum ~x2. Since this datum
is far away from both clusters, it would be more intuitive
if it had a low degree of membership to both of them.

Possibilistic Fuzzy Clustering

In possibilistic fuzzy clustering one tries to achieve a more
intuitive assignment of degrees of membership by drop-
ping constraint (3), which is responsible for the unde-
sirable effect discussed above. However, this leads to the
mathematical problem that the objective function is now
minimized by assigning uij = 0 for all i ∈ {1, . . . , c} and
j ∈ {1, . . . , n}. In order to avoid this trivial solution, a
penalty term is introduced, which forces the membership
degrees away from zero. That is, the objective function J
is modified to

J(X,U,B) =
c∑
i=1

n∑
j=1

umijd
2(~βi, ~xj)

+
c∑
i=1

ηi

n∑
j=1

(1− uij)m, (5)

where ηi > 0. The first term leads to a minimization of
the weighted distances while the second term suppresses
the trivial solution. This approach is called possibilistic
clustering, because the membership degrees for one da-
tum resemble the possibility (in the sense of possibility
theory [6]) of its being a member of the corresponding
cluster [9], [5]. The formula for updating the member-
ship degrees that is derived from this objective function
is [9]

uij =
1

1 +

(
d2(~xj , ~βi)

ηi

) 1
m−1

. (6)

From this equation it becomes obvious that ηi is a pa-
rameter that determines the distance at which the mem-
bership degree equals 0.5. ηi is chosen for each cluster
separately and can be determined, for example, by com-
puting the fuzzy intra cluster distance [9]

ηi =
K

Ni

n∑
j=1

umijd
2(~xj , ~βi), (7)
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where Ni =
∑n
j=1 u

m
ij . Usually K = 1 is chosen.

At first sight this approach looks very promising. How-
ever, if we take a closer look, we discover that the objec-
tive function J defined above is, in general, truly mini-
mized only if all cluster centers are identical. The reason
is that formula (6) for the membership degree of a da-
tum to a cluster depends only on the distance of the
datum to that cluster, but not on its distance to other
clusters. Hence, if there is a single optimal point for a
cluster center (as it will usually be the case, since mul-
tiple optimal points would require a high symmetry in
the data), all cluster centers will converge to this point.
More formally, consider two cluster centers ~β1 and ~β2,
which are not identical, and let

zi =
n∑
j=1

umijd
2(~βi, ~xj) + ηi

n∑
j=1

(1− uij)m, i = 1, 2,

i.e., let zi be the amount that cluster βi contributes to the
value of the objective function. Except in very rare cases
of high data symmetry, it will then either be z1 > z2

or z2 > z1. That is, we can improve the value of the
objective function by setting both cluster centers to the
same value, namely the one which yields the smaller z-
value, because the two z-values do not interact.

Note that this behavior is specific to the possibilistic
approach. In the probabilistic approach the cluster cen-
ters are driven apart, because a cluster, in a way, “con-
sumes” part of the weight of a datum and thus leaves
less that may attract other cluster centers. Hence shar-
ing a datum between clusters is disadvantageous. In the
possibilistic approach there is nothing equivalent to this
effect.

Nevertheless, possibilistic fuzzy clustering usually
leads to acceptable results, although it suffers from sta-
bility problems if it is not initialized with the correspond-
ing probabilistic algorithm. We assume that other results
than all cluster centers being identical are achieved only,
because the algorithm gets stuck in a local minimum of
the objective function. This, of course, is not a desirable
situation. Hence we tried to improve the algorithm by
modifying the objective function in such a way that the
problematic property examined above is removed.

II. Cluster Repulsion

The idea of our approach is to combine an attraction of
data to clusters with a repulsion between different clus-
ters. In contrast to a probabilistic clustering algorithm
this is not done implicitly using restriction (3), but ex-
plicitly by adding a cluster repulsion term to the objec-
tive function [10].

To arrive at a suitable objective function, we started
from the following set of requirements:

• The distance between clusters and the data points
assigned to them should be minimized.

• The distance between clusters should be maximized.
• There should be no empty clusters, i.e., for each clus-

ter there must be datum with non-vanishing mem-
bership degree.

• Membership degrees should be close to one or close
to zero and, of course, the trivial solution of all mem-
bership degrees being zero should be suppressed.

These requirements are very close to standard possi-
bilistic cluster analysis. The attraction between data
and clusters is modeled (as described above) by a term∑c
i=1

∑n
j=1 u

m
ijd

2(~βi, ~xj). A term
∑c
i=1 ηi

∑n
j=1(1 −

uij)m is used to suppress the trivial solution. The objec-
tive that no cluster should be empty leads to constraint
(2). The repulsion between clusters can be described
in analogy to the attraction between data and clusters.
That is, we are using a term that is minimized if the sum
of the distances between clusters are maximized.

This could be achieved by simply subtracting the sum
of squared distances between clusters from the objective
function. However, this straightforward approach does
not work. The problem is that this kind of repulsion
increases with the distance of the clusters and thus drives
them ever farer apart. In the end, all data points would
be assigned to one cluster and all other clusters would
have been moved to infinity.

To avoid this undesired “explosion” of the cluster set,
a repulsion term must be used that becomes smaller the
farer the clusters are apart. Then the attraction of the
data points can compensate the repulsion only if the clus-
ters are sufficiently dispersed. This consideration lead
us to the term

∑c
i=1 γi

∑c
k=1,k 6=i

1

d2(~βi,~βk)
where γi is a

weighting factor. This term is only relevant if the clus-
ters are close together. With growing distance it be-
comes smaller, i.e., the repulsion is gradually decreased
until it is compensated by the attraction of the data.
The weighting factor γi should be cluster-specific to deal
with the case that clusters have a highly varying number
of data points assigned to them. γi can be defined as
γi = γ

∑n
j=1 u

m
i,j . The repulsion is increased if cluster ~βi

is attracted by many data. An alternative approach to
model the repulsion between clusters is to use the term∑c
i=1 γi

∑c
k=1,k 6=i e

−d2(~βi,~βk) instead of the quotient used
above. The difference between both terms is how the re-
pulsion between clusters decreases with growing distance.
However, in this paper we only discuss the first one.
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The classification problem is then described as the task
to minimize

J(X,U,B) =
c∑
i=1

n∑
j=1

umijd
2(~βi, ~xj) +

c∑
i=1

ηi

n∑
j=1

(1− uij)m

+
c∑
i=1

γi

c∑
k=1,k 6=i

1

d2(~βi, ~βk)
(8)

w.r.t. the constraint
∑n
j=1 uij > 0 for all i ∈ {1, . . . , c}.

γi is used to weight two objectives against each other:
the objective that the distance to the clusters should be
minimized and the objective that the distance between
clusters should be maximized. Using 1

d2(~βi,~βk)
means that

only clusters with a small distance are relevant for mini-
mizing the objective function, while clusters with a large
distance are only slightly repelling each other.

Minimization of (8) w.r.t. the membership degrees
leads to (6). That is, the membership degrees have the
same meaning as in possibilistic cluster analysis.

For the variant of the fuzzy c-means algorithm (only
cluster centers ~ci, Euclidean distance, and therefore
spherical clusters) a minimization of (8) with respect to
the cluster prototypes leads to
n∑
j=1

umij (~xj − ~ci)− γi
c∑

k=1,k 6=i

1
d4(~ck,~ci)

(~ck − ~ci) = 0.

For reasons of simplicity, we interpret 1
d4(~ck,~ci)

as a
repulsion degree between cluster ~ck and cluster ~ci. With
this interpretation we can compute the cluster centers by

~ci =

∑n
j=1 u

m
ij~xj − γi

∑c
k=1,k 6=i

1
d4(~ck,~ci)

~ck∑n
j=1 u

m
i,j − γi

∑c
k=1,k 6=i

1
d4(~ck,~ci)

(9)

Alternatively we can also solve this equation iteratively.
Next we turn to the Gustafson–Kessel algorithm [7].

Here we face the problem that we cannot transfer the
computation of distances and data points and cluster
centers to the computation of distances between cluster
centers. The reason is that the distance between a data
point and a cluster depends on the covariance matrix
associated with the cluster. But for distances between
clusters two covariance matrices have to be taken into
account. A simple way to cope with this problem is to
average the distances that result if the other cluster cen-
ter is treated as a data point, i.e.

d2(~βi, ~βk) =
1
2
(
(~ci − ~ck)>Ai(~ci − ~ck)

+(~ci − ~ck)>Ak(~ci − ~ck)
)
. (10)

Ai is the norm matrix that describes the shape of cluster
~βi.

A minimization of (8) with respect to the cluster pro-
totypes leads to

n∑
j=1

umi,j(~xj − ~ci)− γi
c∑

k=1,k 6=i

1
d4(~ck,~ci)

1
2(

(~ck − ~ci)>Ai + (~ck − ~ci)>Ak

)
= 0.

For reasons of simplicity we compute the cluster cen-
ters by

~ci =
(∑n

j=1 u
m
i,j 1I−γi

∑c
k=1,k 6=i

(A>i +A>k )
2d4(~ck,~ci)

)−1

·
(∑n

j=1 u
m
i,j~xj − γi

∑c
k=1,k 6=i

(~c>k Ai+~c
>
k Ak)

2d4(~ck,~ci)

)>
.

(11)
The term 1

d4(~ck,~ci)
can be interpreted as the repulsion

degree between cluster ~βi and cluster ~βk.
A minimization of (8) with respect to Ai leads to

Ai = p
√

det(Si)S−1
i . (12)

where Si is defined as

Si =
n∑
j=1

umi,j(~xj − ~ci)(~xj − ~ci)> (13)

−γi
c∑

k=1

(~ck − ~ci)(~ck − ~ci)>
1

2d4(~βi, ~βk)
.

The expressions to compute the cluster centers ~ci and
the norm matrices Ai demonstrate the effect of cluster re-
pulsion. Clusters are attracted by data assigned to them
and repelled by other clusters. The effect of the repul-
sion is roughly the same as if data points close to the re-
pelling cluster center were neglected. If the repelling part
of the expressions extends the attracting part, that is for
the fuzzy c-means

∑n
j=1 u

m
i,j < γi

∑c
k=1,k 6=i

1
d4(~ck,~ci)

, one
cluster should be removed and initialized at a different
position.

III. Experimental Results

We used the wine dataset [1] to test our approach.
The wine dataset has three clusters with 59, 71, and 48
data points, respectively. For cluster analysis we used
the attributes 7, 10, 13. We scaled the dataset to [0, 10]
in each dimension.

Fig. 5 shows the classification obtained with the prob-
abilistic Gustafson–Kessel algorithm. The grey scale in-
dicates the membership degree to clusters. Attribute 7
and 10 are shown. This result clearly demonstrates the
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partitioning property of the probabilistic algorithm. The
dataset is divided into three clusters. Fig. 6 shows the
classification obtained with the possibilistic Gustafson–
Kessel algorithm. All clusters are identical. The global
optimum of the possibilistic objective function is found.
Fig. 7 shows the result of our approach with γ = 1. To
show the classification borders we used a light grey. The
classification of the data space is similar to the proba-
bilistic approach. However the clusters differ. Because
the data is not well separated all three clusters are close
together, see fig. 2, 3, and 4. The data points in the mid-
dle attract all clusters. If we increase the weight of the
repulsion to γ = 6 the cluster on the left is based mainly
on the data on the left. The attraction of the data points
in the middle is canceled by the repulsion of other clus-
ters. Compared with the classification result with γ = 1
the data points on the left are better represented by the
cluster on the left. The cluster on the right does not
change its position or its shape because it fits the data
points.

IV. Conclusion

In this paper we presented an approach for possibilis-
tic fuzzy cluster analysis that is based on data attract-
ing cluster centers as well as cluster centers repelling
each other. This approach combines the more intuitive
membership degrees of possibilistic fuzzy cluster analysis
(since they can be interpreted as similarities) with the
property of probabilistic fuzzy cluster analysis to detect
distinct clusters. The attraction between clusters and
data points assigned to them and the repulsion between
clusters is modeled separately. In contrast to a proba-
bilistic clustering algorithm the membership degree can
be interpreted as a measure of similarity to a cluster. The
repulsion between clusters avoids the problems of possi-
bilistic cluster analysis as described above. γi is used to
weight the two opposite objectives, i.e., that the distance
between clusters and data assigned to them should be
minimized and that the distance between clusters should
be maximized. The modeling of the repulsion avoids the
problem of the ”‘explosion”’ of clusters.

However, if we compare possibilistic fuzzy cluster anal-
ysis with probabilistic fuzzy cluster analysis we always
have to keep in mind that in possibilistic fuzzy cluster
analysis data can have a high membership degree to sev-
eral clusters while a probabilistic fuzzy clustering algo-
rithm partitions the data.
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Fig. 2. Wine dataset with attribute 7 and 10.
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Fig. 3. Wine dataset with attribute 10 and 13. Fig. 4. Wine dataset with attribute 7 and 13.

Fig. 5. Wine dataset classified with probabilistic
Gustafson–Kessel algorithm. Attributes 7, 10.

Fig. 6. Wine dataset classified with possibilistic
Gustafson–Kessel algorithm. Attributes 7, 10.

Fig. 7. Wine dataset classified with possibilistic
Gustafson–Kessel algorithm. Attributes 7, 10,
γ = 1.

Fig. 8. Wine dataset classified with possibilistic
Gustafson–Kessel algorithm. Attributes 7, 10,
γ = 6.
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