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Abstract—In this paper, a typicality-based clustering algo-

rithm is proposed: it exploits typicality degrees defined in a
prototype construction framework to identify a decomposition
of the dataset into homogeneous and distinct clusters and to
provide characteristic representatives of the obtained clusters,
so as to summarise the initial dataset. The proposed algorithm
can be applied both to vectorial and non vectorial data, such as
trees for instance. Tests performed on artificial and real data
illustrate the interest of the proposed approach.

I. INTRODUCTION

Clustering is an unsupervised learning task that aims

at decomposing a dataset into homogeneous and distinct

subgroups called clusters. Through this decomposition, it

offers a simplified representation of the dataset that can be

summarised by the clusters, and thus it helps the user to

better apprehend the dataset.

In this paper a typicality-based algorithm is proposed to

perform clustering with the aim to further improving the data

summarisation property. It is based on typicality degrees [1],

[2], that were proposed in a prototype construction frame-

work as a means to build characteristic representatives of data

categories. Typicality degrees model the representativeness

of each data point, indicating the extent to which a point

is characteristic of the group it belongs to. They depend

both on the resemblance of the point to the other members

of its category, and on its dissimilarity from members of

other categories. Prototypes derived from these typicality

degrees thus take into account both the common features

of the category members and their discriminative features as

compared to other groups [1].

In this paper, typicality degrees and prototypes are ex-

tended to unsupervised learning and the clustering task: the

fact that both common and distinctive features are modelled

is related to the aim of finding clusters that are both compact

and separable, i.e. homogeneous and distinct. Indeed, points

assigned to the same cluster are expected to be more similar

to another than to points belonging to other clusters. Another

advantage of this framework is that it makes it possible

to consider vectorial data as well as non vectorial data: it

enables to consider data for which a structured informa-

tion is available, as for instance sequences, trees or more

generally graphs, and not only vectors of numerical values.

Furthermore, the typicality degree framework offers means

Marie-Jeanne Lesot is with the Knowledge Processing and Language
Engineering, Otto-von-Guericke University of Magdeburg Universitätsplatz
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to characterise each obtained cluster, and thus to improve the

data summarisation property of clustering. These properties

are discussed and illustrated in the next sections.

The paper is organised as follows: section II briefly

recalls the typicality degree framework. Section III describes

the proposed algorithm for the dataset decomposition into

clusters and the cluster characterisation through their most

typical members, taking into account both vectorial and non

vectorial data. Section IV compares the proposed algorithm

with other clustering algorithms from a theoretical point of

view. Section V presents experimental results obtained both

with artificial and real datasets of vectorial and non vectorial

data; section VI concludes the paper.

II. TYPICALITY DEGREES AND FUZZY PROTOTYPES

A. Principle

Typicality degrees [1], [2] were defined in the context of

prototype construction, as a means to build representatives

to summarise sets of data: they are numerical coefficients

taking values between 0 and 1 that measure the extent to

which a point is representative of the category it belongs to.

According to the typicality notion defined by Rosch [3], they

take into account two complementary components, respec-

tively called internal resemblance and external dissimilarity:

a point is said typical of its category depending both on its

resemblance to the other members of the category (internal

resemblance), and on its dissimilarity to members of other

categories (external dissimilarity). This for instance models

why whales and platypuses can be considered as atypical

examples of the mammal category: whales are too similar

to the members of the fish category and thus have a low

external dissimilarity. On the other hand, platypuses are not

similar enough to other mammals and have a low internal

resemblance. Both have a low typicality degree with respect

to the mammal category.

Typicality degrees can then be exploited to define a

prototype, that takes into account both the common features

of the category members, and their discriminative features

as compared to other categories. This leads to a significant

representative that characterises the considered category.

B. Formalisation

There exist different definitions for typicality degrees (see

e.g. [4]) but most of them do not implement the previous

Rosch definition. We consider here the formalisation pro-

posed in [1] and extended in [2] that complies with the

previous principles.



Let’s denote X = {xi, i = 1..n} a dataset with points

belonging to several categories, C a category, and x a point in

X assigned to C. The computation of typicality degrees and

prototypes requires the definition of comparison measures

to evaluate resemblance and dissimilarity. These comparison

measures are functions taking as input data point couples and

respectively indicating by a value in [0, 1] the extent to which

the two points are similar and dissimilar [5]. We denote them

ρ and δ respectively in the following.

The internal resemblance of point x with respect to ca-

tegory C, R(x,C), is defined as its average resemblance to

the other members of the category; likewise, its external dis-

similarity, D(x,C), is computed as its average dissimilarity

to points in other categories:

R(x,C) = avg(ρ(x, y), y ∈ C) (1)

D(x,C) = avg(δ(x, y), y 6∈ C) (2)

The typicality degree is then derived as the aggregation of

these two quantities, as

T (x,C) = ϕ(R(x,C), D(x,C)) (3)

ϕ is an aggregation operator that expresses how the typicality

degree depends on R(x,C) and D(x,C): a conjunctive

operator e.g. requires that a point have both high internal

resemblance and external dissimilarity to be considered as

typical. Tradeoff operators, such as the weighted mean,

relax this definition and can model a compensation property:

a high internal resemblance may compensate for a low

external dissimilarity. The choice of the aggregation operator

determines the semantics of the typicality degrees [2].

Lastly a prototype can be deduced from these typicality de-

grees, to provide a summarised representation of the category

and underline its most characteristic features. The simplest

method consists in representing the category by extracting its

most typical members: the definition of the typicality degrees

guarantees that these representatives will provide a relevant

summary of the category. Another possibility consists in

aggregating these most typical points, to build a prototype,

in the form [1]

pC = ψ({xi/T (xi, C) > τ}) (4)

where τ is a typicality threshold and ψ an aggregation

operator. Rifqi [1] considers the case of fuzzy data, i.e.

data whose attributes take as values fuzzy sets; ψ is then

a fuzzy set aggregation operator. In the case of numerical

crisp data, ψ can be the weighted mean, using typicality

degrees as weights. ψ can also be an operator that builds a

fuzzy set from the typicality degrees [2], so as to model the

imprecision of the prototype and not reduce it to a single

point.

III. TYPICALITY-BASED CLUSTERING ALGORITHM

A. Principle

In this paper, the previous typicality degrees are ex-

tended to unsupervised learning, so as to define a clustering

algorithm that improves the data summarisation property.

The underlying idea is that a good partition is such that

each point is typical of the group it is assigned to. Thus

the algorithm aims at maximising the typicality degrees: it

considers a hypothetical partition of the data, computes the

typicality degrees with respect to this partition, and corrects

the partition so that each point becomes more typical of the

group it is assigned to.

Consider for instance the illustrative example represented

on figure 1: clustering aims at identifying the two groups

A and B indicated on figure 1a by ◦ and ∗ respectively.

Figure 1b represents a random initialisation, that assigns

points to 2 clusters, a and b, respectively depicted with + and

⊳; figure 1c indicates the typicality degrees of all points with

respect to these 2 clusters (full line for cluster a, dashed line

for cluster b) as a function of their identification number.

The two points in B assigned to cluster a (points 12 and

13) have a low typicality degree for cluster a, because they

are on average not similar enough to the other points in

a and not dissimilar enough from points in b; they have a

higher typicality degree to cluster b than to cluster a. More

generally, assigning each point to the cluster it is most typical

of leads to the partition represented on figure 1d, which is the

expected one. The associated typicality degrees are illustrated

on figure 1e, they are higher than those on graph (c). It is to

be noted that other initialisations may require slightly more

steps to converge to the desired partition.

Thus the proposed algorithm consists in alternatively com-

puting typicality degrees given a data partition and updating

the data assignment according to typicality degrees. After ob-

taining the clusters, the final typicality degrees are exploited

to define characteristic representatives for the clusters and

summarise them. The algorithm is summarised in table I and

described in details in the following.

It is to be noted that the typicality framework offers a

means to detect outliers and points located in overlapping

regions between the clusters: both have low typicality de-

grees, respectively because of low internal resemblance and

low external dissimilarity. Their detection makes it possible

to apply special handling to them, improving the quality of

the clusters: clusters are expected to be compact and distinct,

which means they must be robust against outliers and not

concentrated in areas where subgroups overlap.

Moreover, as can be seen from the previous section, the

typicality degrees computation does not depend on the data

nature: it does not handle data points as such but only through

the values of their comparison, resemblance and dissimilarity.

Thus it can be applied to vectorial data as well as non

vectorial (structured) data.

B. Assignment Step

As indicated above, the proposed algorithm consists in al-

ternatively computing typicality degree and data assignments.

As regards the derivation of a data partition from typicality

degrees, it seems natural to assign points to the cluster they

are most typical of, i.e. to define

xi ∈ Cr ⇐⇒ r = arg max
s
T (xi, Cs) (5)
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Fig. 1. Principle of the proposed algorithm. (a) Considered dataset, expected clusters, and data point numbering. (b) Random initialisation of the data
partition, into 2 clusters, a (depicted with +) and b (depicted with ⊳). (c) Typicality degrees with respect to the clusters a and b, for all data point
represented by their identification number; the plain line indicates the typicality degree with respect to cluster a, the dashed one for cluster b. (d) Updated
partition according to the typicality degrees. (e) Resulting typicality degrees.

Two specific cases are considered separately: the case where

the maximal typicality degree is small and the case where

the maximum is not clearly defined.

When the maximal typicality degree is small (lower than

0.1 in our experiments), a point assignment would not be

significant: this case corresponds to points for which all

typicality degrees are small, i.e. points that are typical for

no cluster. They are to be interpreted as outliers and should

not be assigned to any cluster: if they were assigned to “real”

clusters, they would for instance distort the computation

of the average in eq. (1), leading to non significant and

low internal resemblances for the other cluster members.

Therefore, they are assigned to a fictitious cluster for which

no typicality degree is computed, that can be interpreted as

a noise cluster.

Another special case corresponds to points for which the

maximal typicality degree is not clearly defined, i.e. the

second biggest typicality value is close to the biggest one

(in our experiments, when their difference is smaller than

0.02). A tie-breaking strategy is needed, to avoid arbitrary

assignments. These points are considered as equally typical

of two clusters and usually correspond to points located in

overlapping areas between clusters; their typicality degrees

are then rather low for both clusters. Such points are also

assigned to the fictitious cluster.

C. Typicality Degree Step

Given a partition of the data, typicality degrees are then

computed. In the supervised learning framework, typicality

is only considered for the category a point belongs to,

and equals 0 for the other categories. In the unsupervised

framework, clusters are to be questioned; therefore, typicality

is computed with respect to all clusters: for each point,

its assignment to each cluster is successively considered.

The assumed partition is only used to determine, for each

considered assignment, which points belong to the same

cluster and to other clusters in order to compute the internal

resemblance and external dissimilarity. Typicality degrees are

also computed for points assigned to the fictitious cluster:

this assignment only means these points are not taken into

account in the typicality degree computation for other points.

The typicality degree computation step requires the com-

putation of internal resemblance, external dissimilarity and

their aggregation. In the following, the choices of comparison

measures and aggregation operator are discussed, taking into

account the cases of both vectorial and non vectorial data.

1) Choice of the Resemblance Measure: Resemblance

measures are functions that take as arguments two data points

and return a value in the interval [0, 1] indicating the extent

to which the two points are similar [5]. Their choice, together

with the dissimilarity measure choice, is obviously essential

for the clustering result and has a major influence.

In the case of vectorial data, by analogy with the possi-

bilistic clustering algorithm (PCM) [6], we propose to use

ρ(x, y) =
1

1 +
(

d(x,y)
γR

)2 (6)

where d is a distance, as the Euclidian distance and γR a user-

defined parameter. γR corresponds to a reference distance: it

is a normalising coefficient that rules the distance from which

the resemblance between two points will be lower than 0.5.

Now in the typicality framework, the resemblance measure

is only used to compare points assigned to the same cluster,

so as to compute internal resemblance. Therefore it seems

natural to define a normalisation for each cluster indepen-

dently, leading to one resemblance measure pro cluster. We

propose to define γRr as half the cluster r diameter: this

implies that each cluster contains point couples that are

considered as totally resemblant, and other couples having a

0 resemblance. Thus the resemblance measure values indeed

cover the range [0, 1] in each cluster.

As clusters are searched for, their diameters is not known

at the beginning of the process, and γRr cannot be de-

fined. Therefore, we propose to define a two-step algo-

rithm, following the PCM methodology: first initialisation

is performed using a few steps of fuzzy c-means (FCM)

(10 iterations in our experiments). Then for all r = 1..c,
γRr = (

∑

i u
m
rid(xi, wr))/(

∑

i u
m
ri) where (uri) and (wr)

are the membership degrees and centre positions provided

by FCM. Second, after having converged using these values,

the obtained data partition is used to update the estimation

of the cluster diameters and γRr values.

In the case of non vectorial data, the resemblance measure

must also be defined, and depends on the considered data

nature. One possibility is to use kernel functions [7]: the

latter are functions applied to data couples that have the

properties of scalar products and can be interpreted as

resemblance measures. Still they require to be normalised;



this normalisation step can be difficult to design from an

interpretation point of view. Therefore, we propose to define

a resemblance measure deduced from the distance associated

to the scalar product: denoting k the kernel function, one

can consider the distance defined by d2
K(x, y) = k(x, x) −

2k(x, y)+k(y, y) and use it in eq. (6). Indeed, one can then

use the same normalisation process as indicated above: the

reference distance determination is also justified with this

other distance measure.

2) Choice of the Dissimilarity Measure: A dissimilarity

measure is a function that takes as arguments two points and

returns a value in the interval [0, 1] that indicates the extent

to which the two points are dissimilar [5]. We propose to use

δ(x, y) = 1 −
1

1 +
(

d(x,y)
γD

)2 (7)

that is the complement to one of the previous resemblance

measure. Yet, the normalisation parameter γD is chosen

independently of γR, to adapt to the different distance scale:

dissimilarity is used to compare points belonging to different

clusters. Thus the considered distances are on average bigger

than those involved in the resemblance computation: using

γD = γR would lead to dissimilarity values that are all

very high, and non informative, the ulterior aggregation of

R and D would not be informative either. Therefore the

normalisation parameter must refer to a different distance,

we propose to base it on the data diameter diam(X). More

precisely, we choose γD so that the dissimilarity is 0.9 for

points at distance diam(X)/2. This implies that there exist

point couples that are totally dissimilar, as well as points

that are to be considered as having a zero dissimilarity, i.e.

δ indeed covers the [0, 1] range.

In the case of non vectorial data, as for resemblance mea-

sures, the kernel-derived distance dK can be used in eq. (7),

without requiring to modify the normalisation process.

3) Choice of the Aggregation Operator: Lastly typicality

degrees are defined by the aggregation of internal resem-

blance and external dissimilarity. This choice also has a

major influence on the obtained results and determines the

semantics of typicality [2]. It cannot be chosen as freely as in

the supervised framework: in the latter, one can be interested

in discriminative prototypes (in classification tasks e.g.), thus

a high importance may be given to the external dissimilarity.

In the clustering case, both internal resemblance and

external dissimilarity must be simultaneously influential:

otherwise outliers may be considered as highly typical of any

cluster, and may not be excluded, distorting the clustering

results. This means that the operator should be a conjunctive

operator, at least at the beginning of the process to exclude

outliers; we use ϕ = min. In a second step, one can be more

tolerant, we recommend to use a variable behaviour operator

offering a full reinforcement property [8] such as the MICA

operator, defined as ϕ(a, b) = max(0,min(1, a + b − t))
where t is a user-defined parameter we set at 0.6.

TABLE I

PROPOSED TYPICALITY-BASED CLUSTERING ALGORITHM

Notations: X = {xi, i = 1..n}, the considered dataset, c the desired
number of clusters, ρ and δ resemblance and dissimilarity measures,
ϕ an aggregation operator (see text for their recommended choice).
Initialisation: apply a few steps of FCM and assign points according
to their maximal membership degree. Compute the normalising
coefficients used in the comparison measures.
Loop: while assignment evolves, alternate

1) Typicality step: for each point x and each cluster Cr , r = 1..c

a) Compute the internal resemblance
R(x, Cr) = avg(ρ(x, y), y ∈ Cr)

b) Compute the external dissimilarity
D(x, Cr) = avg(δ(x, y), y 6∈ Cr)

c) Compute the typicality degree
T (x, Cr) = ϕ(R(x, Cr), D(x, Cr))

2) Assignment step: for each point x

a) If x is typical for no cluster, i.e maxr T (x, Cr) < 0.1,
assign x to a fictitious cluster C0

b) If the maximum is not clear, i.e. T1(x)−T2(x) < 0.02
where Ti(x) is the ith biggest typicality value, assign
x to the fictitious cluster C0

c) Else assign x to the cluster maximising the typicality,
i.e. to Cr where r = arg maxs T (x, Cs)

After convergence of the loop, update the values of the cluster
diameters based on the new data assignment and apply the loop
a second time.

D. Cluster Representative

1) Principle: The clustering algorithm, summarised in

table I, alternatively computes typicality degrees and data

partition until stability of data assignments. It provides a

decomposition of the initial dataset into subgroups that offers

a summarisation of the dataset, through the representation

as a reduced number of clusters instead of all individual

data points. Exploiting the obtained typicality degrees, this

data summarisation can be improved by characterising each

cluster to help the user to better apprehend it.

As indicated in section II, different definitions of proto-

types can be deduced from typicality degrees.

The fuzzy set definition [2] makes it possible to model the

imprecision of group representatives, that are not reduced to

a single precise point. In the case of vectorial data, when

fuzzy prototypes are built attribute by attribute, they can be

directly interpreted in the linguistic variable framework. Thus

they provide an interpretable representation of the data. Yet,

when built globally and not attribute by attribute, these fuzzy

sets may be more difficult to interpret, although they can

model correlation between attributes. Likewise, in the case

of non vectorial data such fuzzy sets are difficult to interpret.

As mentioned in section II, other solutions include the

computation of weighted average, but this approach can

only be applied in the case of vectorial data. Therefore,

a simpler representation method is applied here, consisting

in representing the cluster by its most typical members.

This corresponds to an intuitive process: in the case of

complex objects, a description is often performed through

a set of typical examples that illustrate and characterise

the underlying notion. Typicality degrees offer the means to

determine representative points, that indeed lead to a relevant



cluster summarisation, due to their definition as detailed in

the previous sections.

It is to be noticed that the produced representation can

only be interpreted if the user has a means to interpret data

points individually, be it based on his knowledge of the data,

or on visualisation for individual data points.

Note that there exist other methods for providing inter-

pretable description for clusters, as for example the method

proposed by [9]. The aim here is simply to exploit further

the rich information provided by the typicality framework.

2) Method: The summarisation of each cluster thus sim-

ply consists in characterising it through the most typical

examples, i.e. defining as prototype

pC = {xi/T (xi, C) > τ} (8)

without aggregating these most typical data points. This is

equivalent to producing as representative an α-cut of the

fuzzy prototype, with high α values.

The difficulty is then to choose the threshold τ . It must be a

compromise between the quantity of data a user can interpret,

and the precision of the proposed representation. It must be

noted that the threshold can vary between clusters as it can be

the case that some clusters are more easily characterised than

others: for instance well separated clusters contain points

with on average higher typicality degrees than other clusters.

Thus an absolute threshold does not seem appropriate.

One way to determine it can be to define the proportion of

cluster members one wants to consider as typical examples,

in some cases, a single representative can be desired, in other

cases more details can be more useful.

IV. COMPARISON WITH OTHER CLUSTERING

ALGORITHMS

Before illustrating the results obtained with the proposed

algorithm, we compare it to other classic clustering methods,

namely fuzzy c-means and some of their variants, that follow

the same approach. Indeed, they are also based on iteratively

alternating two steps, consisting in computing weighting

coefficients and updating cluster parameters based on these

coefficients. In the proposed algorithm, no cluster parameters

are considered, i.e. clusters are directly described by their

members, thus the cluster parameter update reduces to a data

partition update. Still, the underlying principle is similar, and

in the following we compare the used weighting coefficients

and the typicality degrees the proposed method relies on.

In the following, we mention the basic algorithms, defined

for vectorial data. There exist other variants to handle non

vectorial data, such as the relational clustering approaches

[10], [11] or the kernel-based methods (see [12] e.g). The

following comments also apply for these cases. It is to be

noted that in the kernel approach, no cluster center in the

input space can be defined, they remain implicit; a cluster

characterisation similar to the one described in section III-D

could be used, representing a cluster by the points having the

maximal weighting coefficients. Yet, as discussed below, the

semantics of these coefficients do not justify such a method.

A. Fuzzy c-means

The fuzzy c-means (FCM) algorithm is based on the

definition of membership coefficients, that indicate the extent

to which a point belongs to a cluster. More precisely, they

indicate the extent to which a point is shared between the

clusters: the quantities involved in their definition are relative

distances, that compare the distance to a cluster centre to the

distance to other cluster centres.

Due to this relative definition, the influence of a point

does not decrease with its absolute distance to the centres

(see e.g. [13]). This is not compatible with an interpretation

in terms of typicality degrees, where such a decrease is

expected: FCM do not associate outliers, i.e. points located

far away from all data, with a small degree as expected, but

consider them as equally shared between all clusters. Their

membership degrees equal the reciprocal of the number of

clusters and they influence the cluster centre positions.

B. Possibilistic c-means

The possibilistic c-means (PCM) [6] relax the constraint

that causes the relative definition of membership degrees in

FCM, so as to be more robust. The coefficients they are based

on then measure the absolute resemblance between data

points and cluster centres, and not a relative resemblance.

Outliers are thus associated to small coefficients as expected.

Now the resemblance between a data point and a cluster

centre can be interpreted as an internal resemblance: it

replaces the average resemblance to the group members (see

eq. (1)) by the resemblance to some average of the group

members. Thus PCM can be seen as based on internal resem-

blance: the possibilistic coefficients correspond to typicality

degrees in the specific case where the aggregation operator

ϕ does not depend on external dissimilarity.

Partially due to this fact, PCM suffer from a coincident

cluster problem (see e.g. [14]): they sometimes lead to con-

founded clusters, whereas natural subgroups of the data are

overlooked. Timm et al. [15] propose to solve this problem

by modifying the cost function to impose cluster repulsion

and lead clusters apart from each other. The cluster centre

expressions are then modified, the weighting coefficients

keep the same definition as the PCM coefficients.

The proposed typicality-based algorithm also provides a

cluster repulsion property, but the latter is incorporated in

the coefficient definition itself: taking into account external

dissimilarity, typicality degrees consider the condition that

clusters must be distinct one from another and have a

repelling effect.

C. Possibilistic Fuzzy c-means

Pal et al. [13] propose another solution to the PCM cluster

merging problem: they argue that both possibilistic and

membership degrees are necessary to perform clustering and

propose to combine the two approaches: in the Possibilistic

Fuzzy c-means algorithm (PFCM), they consider a weighted

sum of FCM and PCM coefficients, each one being raised

to a parameter power. The obtained coefficients are thus

combination of relative and absolute resemblance.
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Fig. 2. Clustering results using (a) FCM, (b) PCM, (c) PFCM, (d) proposed
typicality-based algorithm. Each symbol depicts a different cluster, stars
represent points that are not assigned to any cluster, plus the cluster centres
(the centre is replaced by the most typical cluster member for the proposed
algorithm, on graph (d)).

TABLE II

CLUSTER CENTRE POSITION

Position of the cluster centres for the dataset represented on figure 2 for
several clustering algorithms. In the case of the proposed typicality-based
algorithm (TB), the most typical point for each cluster is indicated.

Algorithm Centre 1 Centre 2

FCM 0.07 3.99 0.11 -0.02
PCM -0.07 3.99 -0.00 -0.03

PFCM -0.08 4.02 -0.02 -0.07
TB -0.08 4.26 0.03 -0.18

The proposed algorithm also adds to the absolute resem-

blance a complementary term, but the latter is the external

dissimilarity; the aggregation scheme is more flexible than

the weighted sum. Internal resemblance and external dis-

similarity can be considered as more clearly complemen-

tary of each other than PCM and FCM coefficients. The

values obtained after combination have a higher interpretative

power: their meaning can be directly understood, whereas

the semantics of the PFCM coefficients are less clear. The

definition of cluster representatives as points maximising

these coefficients does not seem justified.

V. EXPERIMENTAL RESULTS

In this section we illustrate the results obtained using

the typicality-based algorithm and the associated cluster

characterisation through most typical examples. Tests are

performed using vector and tree data, that are respectively

artificial and real data.

A. Artificial Data with Euclidian Distance

We first consider a simple 2 dimensional dataset repre-

sented on figure 2 to illustrate the previously mentioned

differences between the proposed typicality-based algorithm,

FCM, PCM and PFCM. The dataset is constituted of two

spherical Gaussian clusters centred around (0, 4) and (0, 0)
respectively, and a small outlying group. All algorithms are

applied to find 2 clusters, the FCM and PCM fuzzifier is

m = 2, for PFCM, the parameters are a = 1, b = 1, m = 7
η = 1.5 (see [13] for the notations). Data assignment is

performed according to the maximal weighting coefficient

values (in the PFCM case, membership degrees are used, as

indicated in [13]) and is illustrated on figure 2: each symbol

depicts a different cluster, for PCM and PFCM, the stars

represent points for which no assignment is relevant, because

all coefficients values are smaller than 0.1. The plus sign

represents the cluster centres (replaced by the most typical

example for each cluster for the proposed algorithm). Table II

gives the numerical values of the centre coordinates.

As can be observed on figure 2a, the FCM results are

influenced by the outliers that attract the centres to the right

side, centres do not have a 0 abscissa. PCM results are

more robust; on this dataset, no cluster merging occurs. As

compared to FCM, PFCM provides better cluster centres that

are not attracted by the outliers: this is due to the combination

with PCM that reduces the outlier influences. The assignment

based on membership degrees does not recognise the outlying

group as such and assigns its points to the two main clusters.

Yet it is to be noted that the possibilistic coefficients are

almost zero for these points, indicating their specificity. Still

the combined coefficients, obtained as weighted sum of the

FCM and PCM coefficients do not have an interpretable

semantic.

The proposed typicality-based algorithm detects the two

groups and identifies the outliers that do not influence the

abscissa of the clusters centres. These results illustrate the

repulsing effect of the proposed algorithm: the most typical

points in each cluster are clearly forced apart on the y-axis.

Indeed, they aim at characterising the groups, underlying the

common points of their members but also their distinctive

features. They do not correspond to the group average, that

only takes into account the internal resemblance (as is the

case for PCM), but characterise the groups one as opposed to

the other, so as to provide a more interpretable summarisation

of the dataset. Note that if this effect is judged too important,

other aggregation operators can be used instead of the MICA

aggregator.

B. Ring Data

The proposed algorithm also makes it possible to handle

data for which the Euclidian distance is not appropriate: we

consider for instance the ring data illustrated on figure 3,

constituted of a noisy ring that surrounds a cluster whose

distribution follows a Gaussian law. An outlying subgroup is

present in the upper right corner.

As the Euclidian distance favours spherical convex clus-

ters, it is not adapted to handle this dataset. Therefore, we

propose to use a Gaussian kernel k(x, y) = exp(− d2(x,y)
2σ2 ),

with σ2 = 0.8. Figure 3b represents the obtained clusters

(as before, stars represent points assigned to the fictitious

cluster). The obtained partition corresponds to the expected
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Fig. 3. Ring dataset and clustering result obtained using the proposed
typicality-based algorithm.
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Fig. 4. Most typical data points for the two clusters of the ring dataset.

one: the two major clusters are detected and the outlying

group is identified as such. Some other points are assigned

to the fictitious cluster: they correspond to points located

between the two clusters, whose assignments is not clear.

In order to characterise the obtained clusters, we apply the

method proposed in section III-D and retrieve only the points

whose typicality degree is higher than a fixed threshold. The

latter is defined for each cluster so as to get around 30%

of the cluster as representatives. The obtained points are

represented on figure 4. This visual exploitation gives a quite

reliable representation, where one can recognise the structure

of the dataset.

C. Structured Data

Lastly we consider structured data, in the form of XML

data representing student results to several exams, as trees

identical to the one showed on figure 5: each student is

described by his marks for several subjects, the XML structure

indicates relationships between these subjects. For instance,

it distinguishes between courses and internships, and opposes

theoretical courses to practical ones. It is to be noted that the

structure is the same for all students, only the leave content

varies from one student to the other. Students could be rep-

resented as vectors of their results, but the available structure

provides useful information that should be exploited.

Indeed, it indicates that attributes are not independent, sug-

gesting to enrich the classic Euclidian distance that performs

an attribute per attribute comparison: two attributes belonging

to the same branch of the tree convey a similar meaning and

their values should also be compared. Therefore, in [16], we

proposed to consider the kernel defined as

k(x, y) =

d
∑

i=1

d
∑

j=1

λijxiyj

Theoretical

subjects

Practical 

subjects

InternshipCourses

6 95 88/10 6 9

9

Fig. 5. Example of considered XML data.

with λij = δij +
l

P + 1 − p(i, j)
(1 − δij)

where d denotes the number of fields in the XML structure,

l < 1 is a user-defined parameter, P the depth of the

XML tree and p(i, j) the depth of the deepest common

node for fields i and j. This corresponds to a weighted

Euclidian scalar product, where the weights are derived from

the structure. When the values for the same attribute are

compared, i.e. i = j, λij = 1 as in the standard case. If

the values of two different attributes are compared, i 6= j,
the weight of this comparison is λij 6= 0, taking a value that

depends on the XML structure: if the 2 fields i and j have

nothing in common, their deepest common node is the root,

p(i, j) = 1, which leads to λij = l/P . If they belong to the

same branch of the tree, λij = l because p(i, j) = P − 1.

Thus they have a higher influence in the comparison of the

corresponding values in the kernel definition.

This kernel corresponds to a linear transformation of the

vectorial representation of the students. The kernel advan-

tage in this framework is that it is much easier to encode

the available additional information about the relationships

between attributes in the kernel, as weights, rather than make

explicit the associated transformation [16].

We applied the proposed clustering algorithm to a real

dataset describing 42 students using the XML structure indi-

cated on figure 5, choosing to look for 3 clusters, and setting

l = 0.6. Figure 6 presents the obtained clusters, representing

students as vectors of their field values with parallel coor-

dinates, although this representation leads a visual bias as it

suggests an attribute by attribute interpretation.

The comparison and interpretation of this graphical rep-

resentation is not so easy. Therefore, we retrieve the most

typical student of each group, and represent the three of

them on the same graph (see fig. 7). Knowing that typicality

takes into account both the common and distinct features,

we can compare them and thus characterise the three ob-

tained groups: the first cluster, represented by the typical

example in plain line, corresponds to the best students, that

have in particular good results for the theoretical part. The

second group, represented by the dashed line, corresponds

on the contrary to the students having more difficulties for

theoretical subjects as well as for the second practical exam.

The third group corresponds to middle students, who are

only slightly less good than those in the first group. These

representative most typical members of the groups thus help
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Fig. 6. Clustering results for XML data represented as the sequences of their field values (parallel coordinates).

interpreting the clustering results and summarising the initial

dataset in an interpretable way.

Looking back to the whole data, and exploiting the pre-

vious interpretation, one can notice that the proposed kernel

indeed leads to some correlation between the attributes: it

can be seen in the first group that the second and third exam

compensate one for another. Students in this group do not all

have excellent result on the second exam, some compensate

a lower result by the third exam.

VI. CONCLUSION

This paper presents a clustering algorithm based on ty-

picality degrees to take into account both the common and

discriminative features of the clusters to be identified. It

provides relevant clusters that are indeed compact and sepa-

rable and offers a means to characterise the obtained clusters

and facilitate their interpretation, leading to a summarisation

of the initial dataset. The proposed method can be applied

independently of the data nature and the considered distance,

it only requires the definition of normalised resemblance and

dissimilarity measures.

The performed experiments confirm the expected pro-

perties of the proposed algorithm and justify the proposed

approach. A more comprehensive study of the algorithm is

necessary to validate it. In particular, the result quality was

here visually judged, a more objective criterion is necessary.

The proposed method makes the assumption that the

number of clusters is known, which is a limiting hypothesis.

The combination with an objective quality criterion would

make it possible for instance to test several values and select

the most appropriate one.

Another limitation of the proposed algorithm is the fact

that it requires a crisp partition of the data. It would be

interesting to render the assignment step more flexible, and

to allow gradual membership degrees. It must be noted that

this step requires a precise study: membership degrees are

related to resemblance to cluster centres, i.e. to internal

resemblance. Thus the role of the membership degree on

the computation of the internal resemblance involved in the

typicality degree must be examined thoroughly, to clearly

determine the influence of each of them.
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