
Mining Temporal Patterns in an Automotive Environment

Steffen Kempe
Daimler AG

Group Research
Steffen.Kempe@daimler.com

Rudolf Kruse
University of Magdeburg

Dept. of Knowl. and Language Engineering
Kruse@iws.cs.uni-magdeburg.de

Abstract

Mining frequent temporal patterns
from interval-based data proved to
be a valuable tool for generating
knowledge in the automotive busi-
ness. Many problems in our do-
main contain a temporal component
and thus can be formulated by us-
ing interval sequences. In this pa-
per we present three substantially
different applications which can all
be addressed by the same mining
task: mining of frequent temporal
patterns. We show that contempo-
rary approaches for temporal pat-
tern mining are not addressing this
task sufficiently and present our al-
gorithmic solution FSMTree. Fur-
ther, we discuss the assessment of
temporal rules which can be derived
from the set of frequent patterns.

Keywords: frequent temporal pat-
terns, industrial application.

1 Introduction

Mining sequences from temporal data is a well
known data mining task which gained much
attention in the past (see e.g. [2, 7]). In all
these approaches, the temporal data is con-
sidered to consist of events. Each event has a
label and a timestamp. Hence, two events can
either happen one after the other or exactly
at the same time. In the following, we want
to focus on temporal data where an event has

a temporal extension. These temporally ex-
tended events are called temporal intervals.
Each temporal interval can be described by a
triplet (b, e, l) where b and e denote the be-
ginning and the end of the interval and l its
label.

At Daimler we are interested in analyzing se-
quences of temporal intervals in order to fur-
ther extend the knowledge about our prod-
ucts, to improve customer satisfaction, or to
assist the development process. In the follow-
ing, we will describe three application exam-
ples from different business areas which can
all be represented by using temporal intervals.

Application one: Quality monitoring of a ve-
hicle fleet. A major task for any vehicle manu-
facturer is to monitor the quality of the prod-
uct in the field. Temporal data mining can
support this task by identifying sequences of
faults or combinations of faults and vehicle
configurations which occur more often than
others. In this case one interval sequence de-
scribes the history of one vehicle. The con-
figuration of a vehicle, e.g. whether it is an
estate car or a limousine, can be described by
temporal intervals. The build date is the be-
ginning and the current day is the end of such
a temporal interval. Other temporal intervals
contain information about garage stopovers or
the installation of additional equipment. The
frequent patterns from a set of interval se-
quences (i.e. from a vehicle fleet) can be used
by an engineer to introduce product changes
if necessary.

Application two: Analytical customer rela-
tionship management. Many of our customers

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 521–528

Torremolinos (Málaga), June 22–27, 2008

are rebuyers, i.e. they buy a vehicle, keep it for
a certain period of time, sell it, and buy a new
vehicle. These customers are especially valu-
able as they show a high brand loyalty. Min-
ing the information that we have about these
“good” customers might help us to determine
where we have cross- and upselling potential
for other customers. The information about
the customers comes from two sources. The
first source is the sale itself. Here the vehicle
type (model line, special option codes, etc.)
and sales type (whether leasing or full buy was
preferred) are of particular interest. The sec-
ond source are questionnaires which were sent
to the customers. The questionnaires range
from micro-economic questions (age, size of
household, income, etc.) to customer satis-
faction (repair shops, marketing, etc.). The
patterns found are useful to guide marketing
or commercial actions.

Application three: Mining CAN-Bus data.
The popularity of electronic systems (naviga-
tion, mobile phones, antiblock system, etc.)
has led to a steady increase in the number of
electronic control units (ECU) within a ve-
hicle. Most of the ECUs are communicat-
ing with each other over a CAN-Bus System
(Controller Area Network). During the devel-
opment of new ECUs or a new model line the
network traffic of the CAN-Bus is particularly
analyzed as it contains the status and all sta-
tus changes of the connected ECUs. There
is also information about the general driving
conditions available (e.g. speed, gear, steer-
ing angle, etc.). All these information can be
expressed by using interval sequences. Then
one interval sequence belongs to one trip of
one vehicle. Mining these sequences for fre-
quent patterns helps to identify typical driv-
ing situations for the ECUs. In case of an
ECU malfunction temporal patterns can also
support electronic diagnostics by pointing out
the conditions and their relations under which
the malfunction occurred.

Despite their different application areas all
three examples share a common problem set-
ting. There are instances (vehicles, cus-
tomers, trips) which are described by a se-
quence of temporal intervals. The mining task

is to find all frequent temporal patterns within
these interval sequences. The rest of this pa-
per is organized as follows. In the next Sec-
tion we introduce related work in the field
of mining frequent temporal patterns from
interval-based data. We argue that the com-
monly used definitions for the support of tem-
poral patterns are not feasible for our applica-
tion examples. Therefore, we formally define
our understanding of the mining task. Af-
terwards in Section 3 we briefly present our
algorithm for mining frequent temporal pat-
terns — FSMTree. In Section 4 we describe
open issues regarding the assessment of tem-
poral rules which can be derived from the set
of frequent patterns.

2 Related Work and Foundations

Previous investigations on discovering pat-
terns from interval sequences include the work
of Höppner [4], Kam and Fu [5], Papapetrou
et al. [8], and Winarko and Roddick [10].
These approaches can be divided into two dif-
ferent groups.

The main difference between both groups is
the definition of support. Höppner defines
the temporal support of a pattern. This defini-
tion is closely related to the frequency in [7].
The temporal support can be interpreted as
the probability to see an instance of the pat-
tern within a time window if the time window
is randomly placed on the interval sequence.
All other approaches count the number of in-
stances for each pattern. The pattern counter
is incremented once for each sequence that
contains the pattern. If an interval sequence
contains multiple instances of a pattern then
these additional instances will not further in-
crement the counter. This way of counting
instances of a pattern was introduced in [2].

For our applications neither of the sup-
port definitions turned out to be satisfying.
Höppner’s temporal support of a pattern is
hard to interpret in our domain, as it is gen-
erally not related to the number of instances
of this pattern in the data. Also neglect-
ing multiple instances within one interval se-
quence is infeasible in our applications. Thus,

522 Proceedings of IPMU’08

we extended the approach of minimal occur-
rences in [7] to the demands of temporal in-
tervals (see below). In contrast to previous
approaches, this support definition allows at
the same time: 1. to count the number of pat-
tern instances, 2. to handle multiple instances
of a pattern within one interval sequence, and
3. to apply time constraints.

Counting the pattern instances as many times
as they occur is a demand that is shared in
all our applications. The reason is that the
patterns have to be interpreted by a domain
expert before further actions are started. For
a domain expert the number of pattern in-
stances is important information which is at
the same time easily understandable. Apply-
ing time constraints is a demand that arises in
the quality monitoring application. Here a se-
quence of faults that extends over a long time
is less likely to bear a causal connection than
a sequence that extends over a short time.
Hence, a desired time constraint is to count
only pattern instances which do not extend
longer than a user defined threshold.

As mentioned above we represent a temporal
interval as a triplet. Based on the temporal
intervals we define interval sequences.

Definition 2.1 (Temporal Interval) Given a
set of labels l ∈ L, we say the triplet (b, e, l) ∈
R×R×L is a temporal interval, if b ≤ e. The
set of all temporal intervals over L is denoted
by I.

Definition 2.2 (Interval Sequence) Given
a sequence of temporal intervals, we say
(b1, e1, l1), (b2, e2, l2), . . . , (bn, en, ln) ∈ I
is an interval sequence, if (1)
∀(bi, ei, li), (bj , ej , lj) ∈ I, i 6= j :
bi ≤ bj ∧ ei ≥ bj ⇒ li 6= lj and (2)
∀(bi, ei, li), (bj , ej , lj) ∈ I, i < j :
(bi < bj) ∨ (bi = bj ∧ ei < ej) ∨ (bi = bj ∧ ei =
ej ∧ li < lj) hold. A given set of interval
sequences is denoted by S.

Equation 1 above is referred to as the max-
imality assumption [4]. The maximality as-
sumption guarantees that each temporal in-
terval A is maximal, in the sense that there
is no other temporal interval in the sequence

sharing a time with A and carrying the same
label. Equation 2 requires that an interval se-
quence has to be ordered by the beginning
(primary), end (secondary) and label (ter-
tiary, lexicographically) of its temporal inter-
vals.

Without temporal extension there are only
two possible relations. One event is before (or
after as the inverse relation) the other or they
coincide. Due to the temporal extension of
temporal intervals the possible relations be-
tween two intervals become more complex.
There are 7 possible relations (respectively
13 including inverse relations). These inter-
val relations have been described by Allen in
[3] and are depicted in Figure 1. Each rela-
tion of Figure 1 is a temporal pattern on its
own that consists of two temporal intervals.
Patterns with more than two temporal inter-
vals are straightforward. One just needs to
know which interval relation exists between
each pair of labels. Using the set of Allen’s
interval relations I, a temporal pattern is de-
fined by:

Definition 2.3 (Temporal Pattern) A pair
P = (s,R), where s : 1, . . . , n → L and
R ∈ In×n, n ∈ N, is called a “temporal pattern
of size n” or “n-pattern”.

Figure 2 shows an example of an interval se-
quence. The corresponding temporal pattern
is given in Figure 2.b.

Figure 1: Allen’s Interval Relations

Proceedings of IPMU’08 523

a) b) A B A
A e o b
B io e m
A a im e

Figure 2: a) Example of an Interval Sequence
b) Example of a Temporal Pattern (e stands
for equals, o for overlaps, b for before, m for
meets, io for is-overlapped-by, etc.)

Note that a temporal pattern needs not nec-
essarily be valid in the sense that it must be
possible to construct an interval sequence for
which the pattern holds true. On the other
hand, if a temporal pattern holds true for an
interval sequence we consider this sequence as
an instance of the pattern.

Definition 2.4 (Instance) A temporal pat-
tern P = (s,R) holds true for an interval se-
quence S = (bi, ei, li)1≤i≤n, if ∀i, j : s(i) =
li ∧ s(j) = lj ∧R[i, j] = ir([bi, ei], [bj , ej]) with
function ir returning the relation between two
given intervals. We say that the interval se-
quence S is an instance of temporal pattern
P . We say that an interval sequence S′ con-
tains an instance of P if S ⊆ S′, i.e. S is a
subsequence of S′.

Obviously a temporal pattern can only be
valid if its labels have the same order as their
corresponding temporal intervals have in an
instance of the pattern. Next, we define the
support of a temporal pattern.

Definition 2.5 (Minimal Occurrence) For a
given interval sequence S a time interval
(time window) [b, e] is called a minimal oc-
currence of the k-Pattern P (k ≥ 2), if 1. the
time interval [b, e] of S contains an instance
of P, and 2. there is no proper subinterval
[b′, e′] of [b, e] which also contains an instance
of P. For a given interval sequence S a time
interval [b, e] is called a minimal occurrence
of the 1-Pattern P, if 1. the temporal interval
(b, e, l) is contained in S, and 2. l is the Label
in P.

Definition 2.6 (Support) The support of a
temporal pattern P for a given set of interval
sequences S is given by the number of minimal

occurrences of P in S: SupS(P) = |{[b, e] :
[b, e]is a minimal occurrence of P in S ∧ S ∈
S}|.

As an illustration consider the pattern A be-
fore A in the example of Figure 2.a. The time
window [1, 11] is not a minimal occurrence as
the pattern is also visible e.g. in its subwin-
dow [2, 9]. Also the time window [5, 8] is not
a minimal occurrence. It does not contain an
instance of the pattern. The only minimal oc-
currence is [4, 7] as the end of the first and the
beginning of the second A are just inside the
time window.

The mining task is to find all temporal pat-
terns in a set of interval sequences which sat-
isfy a defined minimum support threshold.
Note that this task is closely related to fre-
quent itemset mining, e.g. [1].

3 Algorithmic Solution: FSMTree

The main idea is to generate all frequent tem-
poral patterns by applying the Apriori scheme
of candidate generation and support evalua-
tion [1]. These two steps are alternately re-
peated until no more candidates are gener-
ated. The Apriori scheme starts with the fre-
quent 1-patterns and then successively derives
all k-candidates from the set of frequent (k-
1)-patterns.

The candidate generation is achieved by join-
ing any two frequent patterns of size k, which
share a common (k-1)-pattern (see e.g. [4, 6]).
However, in this paper we focus on the sup-
port evaluation of the candidate patterns, as
it is the most time consuming part of the al-
gorithm. FSMTree uses finite state machines
which subsequently take the temporal inter-
vals of an interval sequence as input to find
all instances of a candidate pattern. This ap-
proach is also favored in [7].

It is straightforward to derive a state machine
from a temporal pattern. For each label in the
temporal pattern a state is generated. The
state machine starts in an initial state. The
next state is reached if we input a temporal in-
terval with the same label as the first label of
the temporal pattern. From now on the next

524 Proceedings of IPMU’08

states can only be reached if the shown tempo-
ral interval carries the same label as the state
and its interval relation to all previously ac-
cepted temporal intervals is the same as spec-
ified in the temporal pattern. If the state ma-
chine reaches its last state it also reaches its
final accepting state. Consequently the tem-
poral intervals that have been accepted by the
state machine are an instance of the temporal
pattern. The minimal time window in which
this pattern instance is visible can be derived
from these temporal intervals. Figure 4 de-
picts an example of four state machines that
are combined in a single datastructure.

The main idea to find all pattern instances is
to use a set of state machines. At first, the
set only contains the state machines that are
derived from the candidate patterns. Subse-
quently, each temporal interval from the inter-
val sequence is shown to every state machine
in the set. If a state machine can accept the
temporal interval, a copy of the state machine
is added to the set. The temporal interval
is shown only to one of these two state ma-
chines. Hence, there will always be a copy of
the initial state machine in the set trying to
find a new instance of the pattern. In this way
we can also handle situations in which single
state machines do not suffice. Consider the
pattern A meets B and the interval sequence
(1, 2, A), (3, 4, A), (4, 5, B). Without using
look ahead a single state machine would ac-
cept the first temporal interval (1, 2, A). This
state machine is stuck as it cannot reach its
final state because there is no temporal in-
terval which is-met-by (1, 2, A). Hence the
pattern instance (3, 4, A), (4, 5, B) could not
be found by a single state machine. Here this
is not a problem because there is a copy of the
first state machine which will find the pattern
instance.

Figures 3 and 4 give an example of FSMTree’s
support evaluation. There are four candidate
patterns (Figure 3.a – 3.d) for which the sup-
port has to be evaluated on the given interval
sequence in Figure 3.e.

In an initialization step FSMTree effi-
ciently organizes all state machines within a
prefixtree-like datastructure. Figure 4 depicts

a) b)

c) d)

e)

Figure 3: a) – d) four candidate patterns of
size 3 e) an interval sequence

the prefixtree for the candidate patterns of
Figure 3. Each path of the tree is a state
machine which belongs to one of the candi-
dates. But here different state machines can
share states if their candidate patterns share
a common pattern prefix.

For the support evaluation FSMTree main-
tains a list of nodes from the prefix tree. In
the first step the list only contains the root
node of the tree. Afterwards all temporal in-
tervals of the interval sequence are processed
subsequently. Each time a node of the set can
accept the current temporal interval its corre-
sponding child node is added to the set. In
the example FSMTree will need 11 nodes in
order to find all three pattern instances.

4 Temporal Rules

The discovery of frequent temporal patterns
is only the first part to support our applica-
tions. Like in frequent itemset mining we have
to derive rules from the frequent patterns to
gain additional information. A temporal rule
consists of two parts: the antecedent and the
consequence. Both parts are temporal pat-
terns but the antecedent is a subpattern of
the consequence.

Consider the example in Figure 2. If we re-
move the last label of the temporal pattern
we get the subpattern A overlaps B. The com-
bination of both patterns in a temporal rule
is depicted in Figure 5. This temporal rule
“forecasts” the existence of a third label A
that is-met-by B and after the first A.

We derive such rules in the same way as asso-

Proceedings of IPMU’08 525

Figure 4: FSMTree: prefix tree of state machines based on the candidates of Figure 3

ciation rules are derived from frequent item-
sets [1]. For each frequent temporal pattern
we use the set of all its subpatterns to gen-
erate temporal rules. However, in our appli-
cations we can restrict ourselves to temporal
rules which make a prediction in the future.

It is important to point out some differences
between association rules and temporal rules.
In an association rule X ⇒ Y , X and Y de-
note disjoint itemsets (X ∩ Y = ∅). The in-
tersection of X and Y is empty because the
semantics of association rules allows only one
possible relation between the items of X and
Y — they are in the same transaction. There-
fore the rule could be verbalized as “If a
transaction contains the items of X then it
also contains the items of Y”. In a temporal
rule the relations between the labels of the
antecedent and the predicted labels are more
complex. If the consequence pattern of Fig-
ure 5 would only contain the predicted labels
(i.e. the 1-pattern A) then we would not know
whether e.g. A is-overlapped-by, is-finished-
by, or is-met-by B. Hence, in a temporal rule
the antecedence pattern must be subpattern
of the consequence pattern to completely ex-
plain the relations between the predicted la-
bels and the labels of the antecedence.

A B
A e o
B io e

=⇒
A B A

A e o b
B io e m
A a im e

Figure 5: Example of a Temporal Rule

For association rules there are many rule mea-
sures available which help to identify strong
correlations between items, e.g. lift, gini-
index, J-measure, conviction, etc. (see [9] for
an overview). The most basic measures are
the support and the confidence of a rule. Fol-
lowing the well known paths of association
rules these measures can be directly trans-
ferred to temporal rules. Thus, for a tem-
poral rule X ⇒ Y the support simply states
how often the rule is correctly applicable,
Sup(X ⇒ Y) = Sup(Y). The confidence
gives the ratio of how often a rule is cor-
rectly applicable to the number of times it
is applicable (only antecedence holds true),
Conf(X ⇒ Y) = Sup(Y)

Sup(X) .

Unfortunately, it turns out that more sophis-
ticated measures are often not transferable
to temporal rules in our application setting.
Figure 6.a shows the 2×2-contingency table
for the association rule X ⇒ Y . The con-
tingency table simply gives the supports of
X, Y and their opposites X, Y alone and
in any combination (XY , XY ,XY and XY).
In fact, this small table contains all infor-
mation (like a priori and conditional prob-
abilities of the antecedence or consequence)
that is necessary to compute contemporary
rule measures [9]. Figure 6.b shows the re-
sult if we transfer the idea of a contingency
table to temporal rules. The columns denote
the predicted pattern and its inverse. In con-
trast to association rules, where predicted and
consequence pattern are the same, we have
to extract the predicted pattern by removing
the antecedence from the consequence pat-

526 Proceedings of IPMU’08

a) Y Y

X |XY | |XY | |X|
X |XY | |XY | |X|

|Y | |Y | ∑
= N

b) Y \X Y \X
X |Y | |X| − |Y | |X|
X |Y \X| − |Y | - -

|Y \X| - -

Figure 6: Contingency tables for the a) asso-
ciation and b) temporal rule X ⇒ Y (|X| is
used as abbreviation for Sup(X))

tern (denoted by Y \X). The last entry of
the first row and column give the support
of the antecedence and the predicted pat-
tern, Sup(X) and Sup(Y \X). The first en-
try within the table denotes how often an-
tecedence and predicted pattern occur to-
gether. Since, X is a subpattern of Y this
information is given by Sup(Y). The sec-
ond entry in the first row (column) denotes
how often the antecedence (predicted pattern)
occurred without being a part of the conse-
quence pattern. This entry can be calculated
by the difference between Sup(X) and Sup(Y)
(and Sup(Y \X)−Sup(Y) respectively). We
failed to fill out the remaining entries due to
semantical problems. For association rules
e.g. Sup(X) denotes the number of transac-
tions in the database which do not contain X.
This value is given by Sup(X)= N − Sup(X)
where N is the number of transactions in the
database. This way of calculating Sup(X)
is possible as a transaction can contain an
itemset at most once. For temporal rules
N is the number of interval sequences in the
database. Unfortunately, the number of in-
terval sequences is not the basic set upon
which the remaining entries can be calculated.
The reason is that we allow counting multi-
ple instances of a pattern within one inter-
val sequence. Consider e.g. a set of interval
sequences where the pattern X is contained
several times in each sequence. Then follows
Sup(X)> N and calculating Sup(X) the as-
sociation rule way leads to Sup(X)< 0. Since
the support is a nonnegative function we can-
not use the number of interval sequences as

a basic set. Hitherto we have not found a
solution to complete the entries in the contin-
gency table of a temporal rule which is at the
same time consistent with the needs of our
applications (i.e. counting a pattern multiple
times within an interval sequence). We con-
sider this problem an open issue and it will be
a focus of our future work.

We cannot evaluate any rule measure that is
based on one of the missing entries at the mo-
ment. E.g. the j-measure (which is favored in
[4]) is not calculable as it needs the a priori
probability of X, P (X) = Sup(X)

N . Therefore,
our practical approach was to concentrate on
a rule measure (besides support and confi-
dence) that can be calculated upon the given
contingency table. Our starting point was the
confidence of a temporal rule X ⇒ Y . Usu-
ally, the confidence is interpreted as the prob-
ability that the rule makes a correct predic-
tion. Another valid interpretation for tempo-
ral rules is that it gives the average number of
times a given instance of X can be completed
to an instance of Y . A high confidence does
not mean that there is a high correlation be-
tween the antecedence and the predicted pat-
tern because the predicted pattern may sim-
ply occur very often in the data. Therefore we
discount the confidence by the average num-
ber of times the predicted pattern occurs in
an interval sequence Avg(Y \X)= Sup(Y \X)

N .
We call the resulting measure lift because the
way calculating it corresponds to association
rules (Lift(X ⇒ Y) = Sup(XY)N

Sup(X)Sup(Y)).

Lift(X ⇒ Y) =
Conf(X ⇒ Y)

Avg(Y \X)

=
Sup(Y)N

Sup(X)Sup(Y \X)

Nevertheless, the interpretation of lift values
is different from association rules. For associ-
ation rules it describes how often the occur-
rence of the antecedence increases the occur-
rence of the consequence. This interpretation
may be false for temporal rules depending on
the dataset used. On the other hand rules
with high lift values are still more likely to ex-
press causal correlations than low values. For
this reason we gained an important benefit for

Proceedings of IPMU’08 527

our applications by using it as a ranking for
large sets of temporal rules.

5 Conclusion

In this paper we presented three different
applications of temporal data mining. Al-
though the applications originate from differ-
ent business areas of our automotive environ-
ment they are all subject of the same min-
ing task — the discovery of frequent patterns
from interval-based data. We showed that
contemporary approaches are not addressing
this task sufficiently from the viewpoint of our
applications where we have to count the in-
stances of a pattern as many times as they
occur. Hence, we defined our understand-
ing of the mining task which uses the num-
ber of minimal occurrences as support defi-
nition for temporal patterns. Next, we de-
scribed FSMTree an algorithm based on the
Apriori-approach for mining all frequent tem-
poral patterns from a given set of interval se-
quences.

In the last Section we focused on temporal
rules. Temporal rules are derived from the set
of frequent patterns in the same way as associ-
ation rules are derived from frequent itemsets.
Despite this connection we pointed out impor-
tant differences between both rule types. Es-
pecially the assessment of temporal rules with
the well known rule measures remains an open
issue in our settings. Briefly described, for
a given temporal pattern X it is easy to ob-
tain Sup(X). But counting a pattern multiple
times in an interval sequence makes Sup(X)
hard to interpret as it cannot be calculated as
N − Sup(X) anymore. Thus, many classical
rule measures are not calculable. Neverthe-
less, we managed to introduce the lift measure
for temporal rules. The lift is closely related
to the classical lift and proved to be very valu-
able in our applications if used as a way to
rank a set of temporal rules.

References

[1] R. Agrawal and R. Srikant. Fast algo-
rithms for mining association rules. In

Proc. of the 20th Int. Conf. on Very
Large Databases, pages 487–499, 1994.

[2] R. Agrawal and R. Srikant. Mining se-
quential patterns. In Proc. of the 11th
Int. Conf. on Data Engineering, pages 3–
14, 1995.

[3] J. F. Allen. Maintaining knowledge
about temporal intervals. Commun.
ACM, 26(11):832–843, 1983.

[4] F. Höppner and F. Klawonn. Finding
informative rules in interval sequences.
Intelligent Data Analysis, 6(3):237–255,
2002.

[5] P.-S. Kam and A. W.-C. Fu. Discover-
ing temporal patterns for interval-based
events. In Data Warehousing and Knowl-
edge Discovery, 2nd Int. Conf., pages
317–326, 2000.

[6] S. Kempe and J. Hipp. Mining se-
quences of temporal intervals. In 10th
Europ. Conf. on Principles and Practice
of Knowledge Discovery in Databases,
pages 569–576, 2006.

[7] H. Mannila, H. Toivonen, and A. I.
Verkamo. Discovery of frequent episodes
in event sequences. Data Mining
and Knowledge Discovery, 1(3):259–289,
1997.

[8] P. Papapetrou, G. Kollios, S. Sclaroff,
and D. Gunopulos. Discovering frequent
arrangements of temporal intervals. In
5th IEEE Int. Conf. on Data Mining,
2005.

[9] P.-N. Tan, V. Kumar, and J. Srivastava.
Selecting the right interestingness mea-
sure for association patterns. In Int.
Conf. on Knowledge Discovery and Data
Mining, pages 32–41, 2002.

[10] E. Winarko and J. F. Roddick. Discover-
ing richer temporal association rules from
interval-based data. In Int. Conf. on
Data Warehousing and Knowledge Dis-
covery, pages 315–325, 2005.

528 Proceedings of IPMU’08

