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Abstract

Precision agriculture (PA) and infor-
mation technology (IT) are closely
interwoven. The former usually
refers to the application of nowa-
days’ technology to agriculture. Due
to the use of sensors and GPS tech-
nology, in today’s agriculture many
data are collected. Making use of
those data via IT often leads to
dramatic improvements in efficiency.
For this purpose, the challenge is to
change these raw data into useful
information by using decision rules.
These rules include the management
know-how for (economic) optimal
recommendations. This paper deals
with suitable modeling techniques
for those agricultural data where the
objective is to uncover the existing
patterns. In consequence, yield pre-
diction is enabled based on cheaply
available site data. Based on this
prediction, economic or environmen-
tal optimization of, e.g., fertilization
can be carried out.

Keywords: Precision Agriculture,
Data Mining, Neural Networks, Pre-
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1 Introduction

Due to the rapidly advancing technology in
the last few decades, more and more of our
everyday life has been changed by information

technology. Information access, once cum-
bersome and slow, has been turned into “in-
formation at your fingertips” at high speed.
Technological breakthroughs have been made
in industry and services as well as in agri-
culture. Mostly due to the increased use of
modern GPS technology and advancing sen-
sor technology in agriculture, the term pre-
cision agriculture has been coined. It can be
seen as a major step from uniform, large-scale
cultivation of soil towards small-field, precise
planning of, e.g., fertilizer or pesticide usage.
With the ever-increasing amount of sensors
and information about their soil, farmers are
not only harvesting, e.g., potatoes or grain,
but also harvesting large amounts of data.
These data should be used for optimization,
i.e. to increase efficiency or the field’s yield, in
economic or environmental terms.

Until recently [13], farmers have mostly relied
on their long-term experience on the partic-
ular acres. With the mentioned technology
advances, sensors have cheapened data acqui-
sition on such a scale that it makes them in-
teresting for the data mining community. For
carrying out an information-based field culti-
vation, the data have to be transformed into
utilizable information in terms of manage-
ment recommendations as a first step. This
can be done by decision rules, which incorpo-
rate the knowledge about the coherence be-
tween sensor data and yield potential. In
addition, these rules should give (economi-
cally) optimized recommendations. Since the
data consist of simple and often even complete
records of sensor measurements, there are nu-
merous approaches known from data mining
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that can be used to deal with these data. One
of those approaches are artificial neural net-
works [4] that may be used to build a model
of the available data and help to extract the
existing pattern. They have been used before
in this context, e.g. in [1], [7] or [12].

The connection between information technol-
ogy and agriculture is and will become an
even more interesting area of research in the
near future. In this context, IT mostly cov-
ers the following three aspects: data collec-
tion, analysis and recommendation [6]. This
work is based on a dissertation that deals with
data mining and knowledge discovery in pre-
cision agriculture from an agrarian point of
view [15]. Hence this paper will also give
a short overview of the previous work. On
the other hand, since we are dealing with
the above-mentioned data records, the com-
puter science perspective will be applied. The
main research target is whether we can model
and optimize the site-specific data by means
of computational intelligence techniques. We
will therefore deal with data collection and
analysis.

The paper is structured as follows: Section 2
will provide the reader with details on the ac-
quisition of the data and some of the data’s
properties. Section 3 will give some back-
ground information on neural networks. In
Section 4 we will describe the experimental
layout and afterwards, we will evaluate the
results that were obtained. The last section
will give a brief conclusion.

2 Data Acquisition

The data available in this work have been ob-
tained in the years 2003 and 2004 on a field
near Köthen, north of Halle, Germany. All
information available for this 65-hectare field
was interpolated to a grid with 10 by 10 me-
ters grid cell sizes. Each grid cell represents a
record with all available information. During
the growing season of 2004, the field was sub-
divided into different strips, where various fer-
tilization strategies were carried out. For an
example of various managing strategies, see
e.g. [11], which also shows the economic po-

tential of PA technologies quite clearly. The
field grew winter wheat, where nitrogen fer-
tilizer was distributed over three application
times.

Overall, there are seven input attributes – ac-
companied by the yield in 2004 as the tar-
get attribute. Those attributes will be de-
scribed in the following. In total, there are
5241 records, thereof none with missing val-
ues and none with outliers.

2.1 Nitrogen Fertilizer – N1, N2, N3

The amount of fertilizer applied to each sub-
field can be easily measured. It is applied at
three points in time into the vegetation pe-
riod. Since the site of application had also
been designed as an experiment for data col-
lection, the range of N1, N2, and N3 in the
data is from 0 to 100 kg

ha , where it is normally
at around 60 kg

ha .

2.2 Vegetation – REIP32, REIP49

The red edge inflection point (REIP) is a
first derivative value calculated along the red
edge region of the spectrum, which is situ-
ated from 680 to 750nm. Dedicated REIP
sensors are used in-season to measure the
plants’ reflection in this spectral band. Since
the plants’ chlorophyll content is assumed to
highly correlate with the nitrogen availability
(see, e.g. [10]), the REIP value allows for de-
ducing the plants’ state of nutrition and thus,
the previous crop growth. For further infor-
mation on certain types of sensors and a more
detailed introduction, see [15] or [8]. Plants
that have less chlorophyll will show a lower
REIP value as the red edge moves toward the
blue part of the spectrum. On the other hand,
plants with more chlorophyll will have higher
REIP values as the red edge moves toward the
higher wavelengths. For the range of REIP
values encountered in the available data, see
Table 1. The numbers in the REIP32 and
REIP49 names refer to the growing stage of
winter wheat.
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2.3 Electric Conductivity – EM38

A non-invasive method to discover and map a
field’s heterogeneity is to measure the soil’s
conductivity. Commercial sensors such as
the EM-381 are designed for agricultural use
and can measure small-scale conductivity to
a depth of about 1.5 metres. There is no pos-
sibility of interpreting these sensor data di-
rectly in terms of its meaningfulness as yield-
influencing factor. But in connection with
other site-specific data, as explained in the
rest of this section, there could be coherences.
For the range of EM values encountered in the
available data, see Table 1.

2.4 Yield 2003/2004

Here, wheat yield is measured in t
ha . In 2003,

the range was from 1.19 to 12.38. In 2004, the
range was from 6.42 to 11.37, with a higher
mean and smaller standard deviation, see Ta-
ble 1.

2.5 Data Overview

A brief summary of the available data at-
tributes is given in Table 1.

Table 1: Data overview
Attr. min max mean std
N1 0 100 57.7 13.5
N2 0 100 39.9 16.4
N3 0 100 38.5 15.3

REIP32 721.1 727.2 725.7 0.64
REIP49 722.4 729.6 728.1 0.65
EM38 17.97 86.45 33.82 5.27

Yield03 1.19 12.38 6.27 1.48
Yield04 6.42 11.37 9.14 0.73

2.6 Points of interest

From the agricultural perspective, it is inter-
esting to see how much the influencable fac-
tor “fertilization” really determines the yield
in the current site-year. Furthermore, there
may be additional factors that correlate di-
rectly or indirectly with yield and which can

1trademark of Geonics Ltd, Ontario, Canada

Table 2: Overview on available data sets for
the three fertilization times (FT)
FT1 Yield03, EM38, N1
FT2 Yield03, EM38, N1, REIP32, N2
FT3 Yield03, EM38, N1, REIP32, N2,

REIP49, N3

not be discovered using regression or correla-
tion analysis techniques like PCA. To deter-
mine those factors we could establish a model
of the data and try to isolate the impact of
single factors. That is, once the current year’s
yield data can be predicted sufficiently well,
we can evaluate single factors’ impact on the
yield.

From the data mining perspective, there are
three points in time of fertilization, each with
different available data on the field. What
is to be expected is that, as more data is
available, after each fertilization step the pre-
diction of the current year’s yield (Yield04)
should be more precise. Since the data have
been described in-depth in the preceding sec-
tions, Table 2 serves as a short overview on
the three different data sets for the specific
fertilization times.

In each data set, the Yield04 attribute is the
target variable that is to be predicted. Once
the prediction works sufficiently well and is
reliable, the generation of, e.g., fertilization
guidelines can be tackled. Therefore, the fol-
lowing section deals with an appropriate tech-
nique to model the data and ensure prediction
quality.

3 Data Modeling

In the past, numerous techniques from the
computational intelligence world have been
tried on data from agriculture. Among those,
neural networks have been quite effective in
modeling yield of different crops ([12], [1]).
In [14] and [15], artificial neural networks
(ANNs) have been trained to predict wheat
yield from fertilizer and additional sensor in-
put. However, from a computer scientist’s
perspective, the presented work omits de-
tails about the ANN’s internal settings, such
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as network topology and learning rates. In
the following, an experimental layout will be
given that aims to determine the optimal pa-
rameters for the ANN given in earlier work.

3.1 Neural Networks Basics

The network type which will be optimized
here are multi-layer perceptrons (MLPs) with
backpropagation learning. They are gener-
ally seen as a practical vehicle for performing
a non-linear input-output mapping [4]. To
counter the issue of overfitting, which leads
to perfect performance on training data but
poor performance on test or real data, cross-
validation will be applied. As mentioned in
e.g. [5], the data will be split randomly into a
training set, a validation set and a test set.
Essentially, the network will be trained on
the training set with the specified parameters.
Due to the backpropagation algorithm’s prop-
erties, the error on the training set declines
steadily during the training process. However,
to maximize generalization capabilities of the
network, the training should be stopped once
the error on the validation set rises [2].

As explained in e.g. [3], advanced techniques
like Bayesian regularization [9] may be used to
optimize the network further. However, even
with those advanced optimization techniques,
it may be necessary to train the network start-
ing from different initial conditions to ensure
robust network performance. For a more de-
tailed and formal description of neural net-
works, we refer to [3] or [4].

3.2 Variable Parameters

For each MLP there is a large variety of pa-
rameters that can be set. However, one of
the most important parameters is the net-
work topology. For the data set described
in Section 2, the MLP structure should cer-
tainly have up to seven input neurons and
one output neuron for the predicted wheat
yield. Since we are dealing with more than
5000 records, the network will require a cer-
tain amount of network connections to be able
to learn the input-output mapping sufficiently
well. Furthermore, it is generally unclear how

many layers and how many neurons in each
layer should be used [2]. Therefore, this ex-
periment will try to determine those network
parameters empirically. Henceforth, it is as-
sumed that two layers are sufficient to ap-
proximate the data set. A maximum size
of 32 neurons in the first and second hidden
layer has been chosen – this provides up to
1024 connections in between the hidden lay-
ers, which should be sufficient. The range of
the network layers’ sizes will be varied sys-
tematically from 2 to 32. The lower bound of
two neurons has been chosen since one neu-
ron with a sigmoidal transfer function does
not contribute much to the function approx-
imation capabilities. Those limits are still
within reasonable bounds for an off-line cross-
validation process.

3.3 Fixed Parameters

In preliminary experiments which varied fur-
ther network parameters systematically, a
learning rate of 0.5 and a minimum gradient of
0.001 have been found to deliver good approx-
imation results without overfitting the data.
All of the network’s neurons have been set
to use the tanh transfer function, the initial
network weights have been chosen randomly
from an interval of [−1, 1]. Data have been
normalized to an interval of [0, 1].

3.4 Network Performance

The network performance with the different
parameters will be determined by the mean
of the squared errors on the test set since
those test data will not be used for training.
Overall, there are three data sets for which a
network will be trained. The network topol-
ogy is varied from 2 to 32 neurons per layer,
leaving 961 networks to be trained and eval-
uated. The network’s approximation quality
can then be shown on a surface plot.

4 Results and Discussion

To visualize the network performance appro-
priately, a surface plot has been chosen. In
each of the following figures, the x- and y-
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Figure 1: MSE for first data set
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Figure 2: MSE for second data set
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Figure 3: MSE for third data set
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Figure 4: MSE difference from first to second
data set
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Figure 5: MSE difference from second to third
data set
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Figure 6: MSE difference from first to third
data set
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axes show the sizes of the first and second
hidden layer, respectively. Figures 1, 2 and
3 show the mean squared error vs. the dif-
ferent network sizes, for the three fertiliza-
tion times (FT), respectively. For the first
FT, the mse on average is around 0.3, at the
second FT around 0.25 and at the third FT
around 0.2. It had been expected that the
networks’ prediction improves once more data
(in terms of attributes) become available for
training. There is, however, no clear tendency
towards better prediction with larger network
sizes. Nevertheless, a prediction accuracy of
between 0.45 and 0.55 t

ha at an average yield
of 9.14 t

ha is a good basis for further devel-
opments with those data and the trained net-
works.

Furthermore, there are numerous networks
with bad prediction capabilities in the region
where the first hidden layer has much fewer
neurons than the second hidden layer. Since
we are using feedforward-backpropagation
networks without feedback, this behaviour
should also be as expected: the information
that leaves the input layer is highly condensed
in the first hidden layer if it has from two to
five neurons – therefore, information is lost.
The second hidden layer’s size is then unable
to contribute much to the network’s general-
ization – the network error rises.

For the choice of network topology, there is
no general answer to be given using any of the
data sets from the different FTs. What can
be seen is that the error surface is quite flat.
During our experiments, we observed that at
smaller network layer sizes the variance of
the mse during the cross-validation was quite
high, shown via outliers during the prediction.
This variance declined towards larger hidden
layers. Therefore a layout with 16 neurons in
both hidden layers should be an acceptable
tradeoff between mean squared error, its vari-
ance and computational complexity.

4.1 Difference Plots

Figures 4, 5 and 6 show the difference between
the networks’ mean squared errors vs. the
different network sizes, respectively. There-

fore, they illustrate the networks’ perfor-
mance quite clearly. In the majority of cases,
the networks generated from later data sets,
i.e. those with more information, can predict
the target variable better than the networks
from the earlier data sets.

5 Conclusion

This paper contributes to finding and evalu-
ating models of agricultural yield data. Start-
ing from a detailed data description, we built
three data sets that could be used for train-
ing. In earlier work, neural networks had been
used to model the data. Certain parameters
of the ANNs have been evaluated, most im-
portant of which is the network topology it-
self. We built and evaluated different net-
works. For the data at hand we suggest a
certain network structure that yielded opti-
mal results under the given circumstances.

5.1 Future Work

In subsequent work, we will make use of ANNs
to model site-year data from different years.
It will be evaluated whether the data from one
year are sufficient to predict subsequent years’
yields. It will also be interesting to study to
which extent one field’s results can be carried
over to modeling a different field. The im-
pact of different parameters during cropping
and fertilization on the yield will be evaluated.
Finally, controllable parameters such as fertil-
izer input can be optimized, environmentally
or economically. On the theoretical side, we
will evaluate different networks such as RBF
nets and possibly SOMs to further substanti-
ate the use of MLPs for our work.
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