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Abstract—We propose a novel and more flexible relevance
feedback for association rules which is based on a fuzzy notion
of relevance. Our approach transforms association rules into a
vector-based representation using some inspiration from docu-
ment vectors in information retrieval. These vectors are used
as the basis for a relevance feedback approach which builds a
knowledge base of rules previously rated as (un)interesting by
a user. Given an association rule the vector representation is
used to obtain a fuzzy score of how much this rule contradicts a
rule in the knowledge base. This yields a set of relevance scores
for each assessed rule which still need to be aggregated. Rather
than relying on a certain aggregation measure we utilize OWA
operators for score aggregation to gain a high degree of flexibility
and understandability.

I. INTRODUCTION

Association rule mining [1], [2] originally has been devel-
oped for market basket data analysis, where each basket, also
referred to as a transaction, consists of a set of purchased
items. The goal of association rule mining is to detect all those
items which frequently occur together and to form rules which
predict the co-occurrence of items. However, association rule
mining is not just bound to this specific purpose. It can be
applied, for example, to every relational database.

Nowadays, the discovery of association rules is a relatively
mature and well-researched topic. Many algorithms have been
proposed to ever faster discover and maintain association rules.
However, one of the biggest problems of association rules
still remains unresolved. Usually, the number of discovered
associations will be immense, easily in the thousands or even
tens of thousands. Clearly, the large numbers make rules
difficult to examine by a human user. Moreover, many of
the discovered rules will be obvious, already known, or not
relevant to a user. For this reason several methods have been
proposed to assist a user in detecting the most interesting or
relevant ones. The vast majority of these approaches either
calculate a relevance score or determine rules that contradict
a user’s prior knowledge based on Boolean logic.

In this paper we argue that such approaches only insuf-
ficiently reflect the way a user searches for relevant rules
because a user’s perception of relevance is not a static but
rather a dynamic process due to several reasons: firstly, when
a user starts to explore a set of discovered association rules
he only has a very vague notion about which rules might

be relevant to him. Secondly, while seeing more rules his
knowledge about the domain of interest changes, some aspects
might gain while others might lose importance. His notion
of relevance depends on these changes and thus changes too,
almost always becoming clearer.

The importance of user dynamics in assessing the relevance
of data mining results only recently gained attention in the re-
search community [19]. However, it is a rather well-researched
topic in the field of information retrieval. In fact, the way
a user builds up his internal notion of relevancy described
above is very similar to the models of user behaviour used
in information retrieval (cp. [3]). Based on these similarities
we present a new approach to the problem of finding the
most relevant rules out of a large set of association rules
which is inspired by ideas from information retrieval. Our
approach uses relevance feedback to acquire users’ preferences
and to build a knowledge base of what he considers to be
relevant and non-relevant, respectively. By calculating the
(dis-)similarity of each unexamined rule with the rules in
the knowledge base and aggregating the scores we obtain a
relevance score which—with each feedback provided—better
reflects the user’s notion of relevance.

The remainder of this paper is organised as follows: Section
II gives the background on association rules, Section III shows
the related work that is most relevant to our topic. Section IV
will further elaborate the link between information retrieval
and interestingness assessment of association rules. Section V
introduces a novel notion of association rules based on fea-
tures vectors which are inspired by document vectors from
information retrieval. This representation is closely related
to our notion of rule similarity explained in Section VI and
Section VII. The relevance scoring metric will be derived in
Section VIII before Section IX concludes the paper.

II. ASSOCIATION RULES

Formally, association rule mining is applied to a set D of
transactions T ∈ D. Every transaction T is a subset of a set
of items L. A subset X ⊆ L is called itemset. It is said that a
transaction T supports an itemset X if X ⊆ T .

An association rule r is an expression X → Y where X
and Y are itemsets, |Y| > 0 and X ∩ Y = ∅. Its meaning
is quite intuitive: Given a database D of transactions the rule



above expresses that whenever X ⊆ T holds, Y ⊆ T is likely
to hold too. If for two rules r : X → Y and r′ : X ′ → Y ,
X ⊂ X ′ holds, then it is said that r is a generalization of r′.
This is denoted by r′ ≺ r.

As usual, the reliability of a rule r : X → Y is measured by
its confidence conf(r), which estimates P (Y ⊆ T | X ⊂ T ),
or short P (Y | X ). The statistical significance of r is measured
by its support supp(r) which estimates P (X ∪ Y ⊆ T ), or
short P (XY). We also use the support of an itemset X denoted
by supp(X ).

III. RELATED WORK

The strength of an association rule learner to discover
all patterns is likewise its weakness. Usually the number of
discovered associations can be immense, easily in the thou-
sands or even tens of thousands. Clearly, the large numbers
make rules difficult to examine by a human user. Therefore
significant research has been conducted into methods which
assess the relevance, or interestingness, of a rule. Studies
concerning interestingness assessment can roughly be divided
into two classes. The first class are objective measures. These
are usually derived from statistics, information theory or
machine learning and assess numerical or structural properties
of a rule and the data to produce a ranking [18]. Objective
measures do not take any background information into account
and are therefore suitable if an unbiased ranking is required,
e.g. in off-the-shelf data mining tools. The second class are
subjective measures which incorporate a user’s background
knowledge. In this class a rule is considered interesting if it
is either actionable or unexpected.

Actionability of a rule means that the user “can act upon it
to his advantage” [16]. Their focal point is on rules that are
advantageous for the user’s goals. The actionability approach
needs detailed knowledge about the current goals and also
about the cost and risks of possible actions. Systems that utilise
it are hence very domain specific, like the KEFIR system
described in [13].

A rule is unexpected if it contradicts the user’s knowledge
about the domain. Systems that build upon this approach
require the user to express his domain knowledge – a some-
times difficult, long and tedious task. The methods are usually
based on pairwise comparison of a discovered rule with rules
representing the user knowledge. This comparison can be
logic-based [10], [11], [12] or syntax-based [8]. In logic-based
systems a contradiction is determined by means of a logical
calculus, whereas in syntax-based systems a rule contradicts
if it has a similar antecedent but a dissimilar consequence.

In [10], [11], [12] the authors connect belief models with
association rules. In particular, they assume that a belief sys-
tem has been provided by the user whereby beliefs are defined
as association rules. Based on this definition they provide a set
of conditions to verify whether a rule X → y is unexpected
with respect to the belief X → z on the rule database D.
They propose an algorithm ZoomUR which discovers the set
of unexpected rules regarding a specified set of beliefs. The
algorithm itself consists of two different discovery strategies:

ZoominUR discovers all unexpected rules that are refinements
(or specialisations). On the other hand, ZoomoutUR discovers
all unexpected rules that are more general.

In [8] the authors address the insufficiency of objective
interestingness measures by focusing on the unexpectedness
of generalised association rules. They assume that taxonomies
exist among association rules’ attributes. In subsequent work
[9], human knowledge is recognised to have different de-
grees of certainty or preciseness. Their system allows for
three degrees, notably general impressions, reasonably precise
concepts and precise knowledge. The interestingness Analysis
System (IAS) they propose accounts for these degrees and uses
the gathered knowledge to find rules which are unexpected
in regard to the expressed knowledge. IAS works iteratively:
first, the user specifies his knowledge or modifies previously
specified knowledge, supported by the specification language;
second, the system analyses the association rules according to
conformity and unexpectedness; and third, the user inspects the
analysis results (aided by visualisation), saves interesting rules
and discards uninteresting rules. In the first step, based on the
three preciseness categories, a user can express his knowledge,
with constraints for each category’s contents for syntax as well
as confidence and support values. In the second step, the IAS
uses this information by performing a syntax-based analysis
to find unexpected rules, i.e., those which do not conform
to the knowledge. Since each rule consists of an antecedent
and a consequent with boolean conformity (matches, does not
match the specified knowledge), the four resulting possibilities
are exploited to determine unexpected rules by calculating a
degree of match. Using those degrees of match, a re-ranking
of the rules is calculated. Finally, a visualisation is used to
present the results to the user.

IV. USING CONCEPTS FROM INFORMATION RETRIEVAL

Existing approaches to assess the relevance of association
rules strongly require a user to explicitly specify his existing
knowledge in advance. This leads to two major drawbacks.
In the first place, when specifying their existing knowledge,
domain experts often forget certain key aspects or may not
remember others which come into play under rarer circum-
stances. This problem can be termed ‘expert dilemma’ and has
already been observed by designers of expert systems in the
1980s [6]. Secondly, at the beginning of an analysis session
a user can only very vaguely specify what he considers to
be relevant. His notion of relevance only becomes clearer the
more rules he examines. This problem, that a user is incapable
of specifying his information need from scratch, is very well-
known in the field of information retrieval [3] where it lead
to the development of relevance feedback methods.

Relevance feedback is an intuitive technique that has been
introduced to information retrieval in the mid-1960s [14].
In information retrieval it is a controlled, semi-automatic,
iterative process for query reformulation, that can greatly
improve the usability of an information retrieval system [7].
Relevance feedback allows a user to express what he considers
to be relevant by marking rules as relevant and non-relevant,



respectively. Whenever a rule has been marked as relevant, it
is added to the set of relevant rules Rr. Whenever a rule is
marked as non-relevant, it is added to the set of non-relevant
rules Rn. For simplicity, we will assume that in each feedback
cycle exactly one rule is marked.

After each feedback cycle the remaining rules are compared
with the set of annotated rules and a new relevance score is
calculated. The set of annotated rules, in turn, can be seen
as a representation of the user’s notion of relevance. Hence
it also provides a solution to the first of the above-mentioned
drawbacks by supporting an iterative, easy way for a user to
specify his knowledge about a domain. For example, he may
annotate rules that are already known as non-relevant and some
novel rules as relevant.

In order to develop a feedback system for association rules
the following questions need to be answered:

• How do we represent association rules for the purpose of
relevance feedback?

• How do we score the likely relevance of a rule in relation
to a rule already marked as (non-)relevant?

• How do we aggregate those scores to an overall relevance
score?

We will provide answers to these questions in the subsequent
sections. In particular we are aiming at adapting established
methods from information retrieval.

V. RULE REPRESENTATION

To be the core building block of a relevance feedback
approach it is necessary to transform the rules into an equiva-
lent representation. In particular, such a representation should
have a couple of properties. Firstly, rather than relying on
generalisation and specialisation relationships among rules as
a key to rule similarity it should support a less crisp and
thus more flexible definition. For example, rules that have the
same consequent and share items in their antecedent should
be regarded as similar to a certain degree. Secondly, items
have a different importance to a user. For example, an item
that is contained in almost every rule does not contribute
much towards a user’s understanding of the domain, whereas
an item that is only contained in a few rules can contribute
considerably. This importance should be reflected in the rule
representation. Thirdly, it should be easy to extend the rule
representation by further numeric properties of a rule. For
example, recently there has been an increasing interest into
the change of a rule’s support and confidence values (e.g. [4]).
In this scenario the rule representation should incorporate
the timeseries of support or confidence in order to enable
similarity calculations based on rule change. To illustrate the
usage of further information about rules for relevance feedback
we will use the example of rule change throughout this paper.

A representation that fulfills all of the above requirements is
a feature vector ~r of an association rule r whose elements are
numerical values and which consists of three components: a
representation of the rule’s body, a representation of the rule’s
head and a rule’s time series. The latter component can easily

be replaced by other numeric features of a rule or completely
omitted. Formally, a feature vector thus is defined as

~r = (
body︷ ︸︸ ︷

r1, . . . , rb,

head︷ ︸︸ ︷
rb+1, . . . , rb+h,︸ ︷︷ ︸

symbolic

rb+h+1, . . . , rb+h+t︸ ︷︷ ︸
timeseries

) (1)

The different components can be seen as a projection of ~r and
will be referred to as follows:

~rbody = (r1, . . . , rb) (2)
~rhead = (rb+1, . . . , rb+h) (3)
~rsym = (r1, . . . , rb+h) (4)

~rtime = (rb+h+1, . . . , rb+h+t) (5)

To calculate the item weights ri we adapted the well-known
TF-IDF approach [15] from information retrieval. The TF-IDF
approach weights terms according to their appearance in a
document and in the overall document collection. A high term
weight, which is correlated with a high importance of that
particular term, is achieved if the term appears frequently in
the document (term frequency, TF) but much less frequently
in the document collection (inverse document frequency, IDF).
This approach filters out commonly used terms and tries to
capture the perceived relevance of certain terms.

This method, carried over to association rules, means that
items that appear in the vast majority of rules will get a very
low weight whereas items that are rather infrequent will get a
rather high weight. Since item appearance in rules is linked to
item appearance in a data set this also means that infrequent
attribute values in the data set will receive a high weight.

The term frequency tf of an item x in an association rule
r is calculated as follows:

tf(x, r) =

{
1 if x ∈ r,

0 otherwise.
(6)

The inverse document frequency idf of an item x in an
association rule r and in regard to a rule set R is calculated
as follows:

idf(x,R) = 1− ln |r : r ∈ R ∧ x ∈ r|
ln |R|

(7)

To generate feature vectors, a series of steps has to be
performed. For body and head separately, a set of items is
generated: Ibody = {x1, . . . , xb} and Ihead = {x1, . . . , xh}
where the xi are the items that occur in body or head of the
association rules in R, respectively. Each item of these sets
is assigned exactly one vector dimension in ~rbody or ~rhead.
Hence, the values for b and h in (1) are the cardinalities of
the respective itemsets: b = |Ibody| and h = |Ihead|

The symbolic part of the feature vector of an association
rule r will contain TF-IDF values. Let xi the i-th item of the
alphabetically ordered set Ibody . Then, the part for the rule’s
body in the feature vector is filled as follows:

ri = tf(xi, r) · idf(xi, R), i = 1, . . . , b (8)



~rhead is treated in the same way, except that xj is the j-th item
of the alphabetically ordered set Ihead

rb+j = tf(xj , r) · idf(xj , R), j = 1, . . . , h (9)

VI. PAIRWISE SIMILARITY

Our association rule feedback approach builds upon a notion
of similarity among rules, respectively rule consequences
(antecedences). For this reason a similarity measure needs to
be selected. As such we have chosen the cosine similarity. It
calculates the cosine of the angle between two n-dimensional
vectors r and s as follows:

sim(~r,~s) =
∑n

i=1 risi√
r2
i

√
s2

i

(10)

The cosine similarity compared to other similarity measures,
like ones based on the euclidian distance, has the advantage
that it does not take missing items in a rule into account.
For example, when measuring the similarity between a rule
Xy → z and its more general rule X → z only the item
weights contained in both rules (i.e. X and z) contribute
towards the similarity measure. This property of the cosine
measure is also the reason why it is frequently used in
information retrieval systems. When comparing, for example,
a query with a document it is desirable only to take the actual
words contained in the query into account and not each of the
many words the user did not specify.

The cosine measure is also suitable as a measure of time
series similarity which we use in this paper as an example of
further information about rules embedded into the rule vector.
For time series the cosine measure has the advantage only
to reflect the magnitude of the angle between two vectors
but—compared with other distance measures (e.g. Euclidean
distance)—to ignore the magnitude difference between the two
vectors. This means, it is robust w.r.t. different variation ranges
of the time series. It is, however, not robust w.r.t. shifts of
the time series mean value. Nevertheless, robustness can be
achieved by subtracting from both time series their respective
mean value prior to similarity calculation.

Since the cosine measure yields values in [0, 1], we will
express the dissimilarity of two vectors as

dissim(~r,~s) = 1− sim(~r,~s) (11)

VII. SIMILARITY AGGREGATION

So far we have discussed how to calculate pairwise similar-
ities between rules. Nevertheless, for the purpose of relevance
feedback it is necessary to measure the similarity of a (unrated)
rule r relative to a rule set R which may represent relevant
and non-relevant rules.

Generally, we define the similarity of a rule r relative to a
rule set R = {s1, . . . , sm} as

simrs(~r,R) = Ω({sim(~r,~s1), . . . , sim(~r,~sm)}) (12)

whereby Ω denotes a suitable aggregation operator which
we will describe in the next section. This score aggregation
approach is similar to the ones proposed in other publications,

like [5] and [17]. As in Section VI, the dissimilarity of a rule
relative to a rule set is defined as

dissimrs(~r,R) = 1− simrs(~r,R) (13)

A. The OWA Operator

Our choice of the aggregation operator Ω is guided by two
requirements: firstly, the user should be able to influence the
aggregation operator, either implicitly or explicitly. Secondly,
to obtain comparable results, our aggregation operator should
be able to emulate simple aggregation operators like min, max
or median.

These two requirements led us to the OWA family of
operators, which originate in the Fuzzy Domain and have been
introduced by [20]. They are strongly related to the concepts of
linguistic quantifiers, such as many, a few, most. Nevertheless,
[20] presented the connection to linguistic quantifiers, by
explaining how the weights that appeared in the OWA ex-
pression could be obtained by using the membership function
of any quantifier. In subsequent work [21], OWA operators
are presented as a way to compute the accomplishment of
linguistic quantifiers when used in conjunction with imprecise
properties.

An OWA operator Ω is a mapping Ω : S → R, where S
is a set of numerical values si with S 6= ∅ and |S| = n. The
OWA operator Ω has an associated weighting vector W =
(w1, w2, . . . , wn)T with wj ∈ [0, 1] and

∑n
j=1 wj = 1. It is

defined as

Ω({s1, s2, . . . , sn}) =
n∑

j=1

wjbj , (14)

with bj being the j-th largest of the si.
The most important feature of this operator is the ordering

of the arguments by value. The OWA operator is in a way
very general in that it allows different conventional aggregation
operators. This is achieved by appropriately setting the weights
in W – different arguments can be emphasised based upon
their position in the ordering.

Min, max, mean, and median are special cases for the
OWA operator and were described by [22]. They illustrate
the generality and flexibility of the OWA operator.

By setting the weights accordingly, the user can influence
the relevance score to suit the needs of his particular applica-
tion scenario.

It should be noted that, as the sets of relevant and non-
relevant rules grow, the weight vector of the OWA operator
has to grow accordingly. If none of the above special cases of
the OWA operator is used, an appropriate weight distribution
should be computed. This could be done using a concept
similar to a probability density function where mean and
variance are specified by the user, according to which of the
similarities he would like to emphasise.

B. Relative Importance of Recent Relevance Choices

The retrieval of relevant association rules is a consecutive,
iterative process. The user’s knowledge, his beliefs and as-
sumptions change during the relevance feedback cycle as he



sees new data. Therefore, the user’s latest choices should be
considered as having a higher priority over the first, relatively
uninformed, relevance choices. This concept can be captured
as the decay of a relevant or non-relevant rule’s importance
over time. The similarity aggregation should account for this
and thus should weight recently selected rules higher than
older ones.

Let t(r) be the age of a relevant or non-relevant association
rule r. This means, t(r) is the number of feedback cycles that
have been performed since the rule r was marked as being
(non-)relevant, thereby a newly selected rule receives t = 0.
Let δ ∈ [0, 1] a decay constant that controls the speed of decay.
Then two possibilities for the time-weighted importance τ are
as follows:

τexp(r) = (1− δ)t(r) (15)
τlin(r) = max(1− t(r) · δ, 0) (16)

with Equation 15 for an exponential type of decay and
Equation 16 for a linear decay down to a minimum of zero.
This concept can also be described as a kind of memory of
the relevance feedback engine. The higher the decay factor
δ, the faster the system forgets what has been chosen in an
earlier step. If we set δ = 1 then our approach would only
consider the user’s latest relevance decision in its relevance
score calculation. The value of δ = 0 would deactivate the
decay completely. Values of δ in between those bounds activate
a gradual decay. Using the time weighted importance we refine
our definition of a rule r its similarity relative to a rule set R
and yield

simrs(~r,R) = Ω({τ(~s1)sim(~r,~s1), . . . , τ(~sm)sim(~r,~sm)})
(17)

VIII. RELEVANCE SCORING

Based on the similarity measure we defined in the last
section we can develop a notion of a rule’s pairwise score,
i.e. its relevance score with respect to a certain rule that
was marked as relevant. While in information retrieval it is
mostly assumed that those documents which are similar to
(non-)relevant ones are (non-)relevant too, we use a slightly
different approach.

For rules marked as relevant we assume that once a user
has seen such a rule rather in being interested in similar
ones his attention is attracted by those which are similar
in certain features but dissimilar in others. This means, a
user aims for rules which have an element of surprise. For
example, a rule could have a very similar antecendent, but
a rather dissimilar consequent when compared to a relevant
one. It would therefore be surprising to a user because it is
an exception to his previous knowledge. This approach also
captures the case of rule contradiction employed by other
authors [8], [12], albeit in a fuzzy, less crisp way.

Table I shows six of such interesting combinations of rule
features. The example discussed above is named ω1 in this
table. Another example is ω2. It assigns a high score to those
rules that are very different in their symbolic representation,

similar

di
ss

im
ila

r

he
ad

bo
dy

tim
e

se
ri

es

sy
m

bo
lic

head - ω4 ω5 -
body ω1 - ω6 -

time series - - - ω2

symbolic - - ω3 -

TABLE I
INTERESTINGNESS MATRIX

but exhibit a similar time series. Such a combination can hint
at a unknown hidden cause for the observed changes, which
in turn are of interest to a user who typically will assume that
only similar rules change similarly. The remaining four entries
in Table I can be motivated in a similar way.

For rules marked as non-relevant we use an approach alike
the one used in information retrieval, i.e. rules that are similar
to non-relevant ones are also considered non-relevant.

Based on these considerations our calculation of the overall
relevance score is split into two parts: one each for the relevant
and non-relevant rules, respectively.

Our definition of the relevance of a rule with regard to the
set of relevant rules is rather straightforward and shown in
(18). To allow a user greater flexibility in using one of the
pairwise relevance scores shown in Table I we incorporate
them all. Their individual contribution to the final relevance
score is determined by the weights ω. To pick up on our
examples from the previous section, using ω1 a rule receives a
high relevance score if its body is similar to the rule bodies in
Rr and its head dissimilar to the rule heads in Rr. Likewise,
the score for ω2 is calculated by multiplying the similarity
of the rule/rule set combination for the time series with the
dissimilarity of the rule/rule set combination for the symbolic
representation. For example, by choosing ω1 = 0.5, ω2 = 0.5
and ωi = 0 for i = 3, . . . , 6 we can obtain a score which
accounts for both cases of relevance. In most cases, however,
it is very likely that only one of the six alternatives for pairwise
relevance scores will be employed.

Φ(~r,Rr) = ω1simrs(~rbody, Rr)dissimrs(~rhead, Rr)
+ ω2simrs(~rtime, Rr)dissimrs(~rsym, Rr)
+ ω3simrs(~rsym, Rr)dissimrs(~rtime, Rr)
+ ω4simrs(~rhead, Rr)dissimrs(~rbody, Rr)
+ ω5simrs(~rhead, Rr)dissimrs(~rtime, Rr)
+ ω6simrs(~rbody, Rr)dissimrs(~rtime, Rr) (18)

For the non-relevant rules we assume that rules in Rn spec-
ify a subspace of the rule space where more non-relevant rules
are located. To direct the user away from this subspace, rules
that are far away from it will receive a higher score, whereas
those in the vicinity will receive a low score. An unrated rule r
should therefore receive a high interestingness score the more



dissimilar it is from the set of non-relevant rules, i.e.

Ψ(~r,Rn) = dissim(~r,Rn) (19)

Our final relevance score of an unrated rule r under consid-
eration of the set of relevant and (non-)relevant rules consists
of two parts, Φ(~r,Rr) and Ψ(~r,Rn), which are both weighted
to give the user more influence on the scoring.

F (~r,Rr, Rn) = wrelΦ(~r,Rr) + wnrelΨ(~r,Rn) (20)

After every feedback cycle, i.e. after every update of Rr or
Rn, each unrated rule r is being reevaluated whereby a new
score F (~r,Rr, Rn) is assigned. Rules which previously have
been ranked as rather non-relevant can now receive a higher
score whereas others may lose their relevance.

IX. CONCLUSION

In this paper, we have dealt with the well-known issue of
finding interesting association rules out of a large set of rules.
Starting from the finding that interestingness and therefore
relevance requires subjectivity, we have tailored our relevance
assessment approach to incorporate relevance feedback from
the user. Thereby, our findings where guided and inspired by
similar problems in the field of information retrieval.

A user’s relevance decisions ultimately contain the user’s
knowledge and assumptions about the domain under con-
sideration. Using rule vectors as numerical representations
of association rules we derived a similarity-based notion of
relevance which we aggregated to a final relevance score using
an OWA operator. The use of the OWA operator provides a
user with a high level of flexibility in finding a relevance
scoring that suits his application area best. Likewise it is
interpretable and easy to understand.

Our relevance scoring approach can be used in a wide range
of application scenarios where association rules are involved.
In effect, we have created a relevance feedback engine that
adapts to each user as he explores the set of association rules.
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