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Abstract

In this paper, we want to moti-
vate the combination of kernel-based
methods with fuzzy rule extraction
methods to describe uncertain do-
mains by fuzzy models. We thus
introduce and motivate the concept
of a fuzzy support vector machine
(FSVM) to incorporate imprecise-
ness into kernel machines. Further-
more, we present the idea of a posi-
tive definite fuzzy classifier (PDFC),
the rules of which are obtained by
kernel-based models. We conclude
with two vague conceptions to asso-
ciate FSVM with PDFC to finally
obtain understandable and meaning-
ful fuzzy rules.

Keywords: Binary Classification,
Fuzzy Rule-Based Classifier, Fuzzy
Support Vector Machine.

1 Introduction

Kernel-based methods, and support vector
machines (SVMs) in particular [20], play one
of the most important roles in machine learn-
ing today. They are announced to both gen-
eralize considerably on unseen data and per-
form well on high-dimensional input spaces.
Nonetheless, the application of these methods
is not popular compared to intuitive learning
machines.

Especially in automation and control, the ap-
plication of models based on fuzzy set theory

(FST) [21] became substantive. The vague
and imprecise expressions that are used by hu-
man beings to describe processes can be mod-
eled gracefully by FST. Fuzzy classifiers (FCs)
based on linguistic rules provide a comprehen-
sive way to illustrate underlying concepts of
complicated systems. Nowadays, they can be
found in many real-world applications [14].

Several attempts have been made to find con-
nections between fuzzy models and kernel-
based methods. Essentially, two directions
can be distinguished in the research commu-
nity. First of all, we find approaches that try
to incorporate FST directly into SVMs, i.e.
Fuzzy Support Vector Machines (FSVMs), for
both classification [7, 12] and regression prob-
lems [18]. The main motivation is the fact
that SVMs are quite sensitive to outliers and
noise. FST provides an appropriate toolbox
of methods to tackle those problems, i.e., un-
certainty, impreciseness, and noisy data [8].

The second direction focuses on the genera-
tion of fuzzy classifiers based on the output
of kernel machines. In essence, we encounter
methods to extract fuzzy-rule based classifiers
from SV machines for both settings, i.e., clas-
sification [4, 5] and regression [6]. The objec-
tives are different compared to the first direc-
tion. Fuzzy models become cumbersome in
complex systems with dozens of input vari-
ables since they suffer from “the curse of di-
mensionality”. Thus combining the general-
ization of SVMs with the interpretability of
FCs might be a striking idea to overcome
these difficulties.

We claim that these two directions can be uni-
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fied with the goal to overcome the disadvan-
tages of these approaches. Therefore we will
briefly introduce the concept of both support
vector machines and its extension to FST in
Sect. 2. Afterwards we will give an overview
of rule-based fuzzy classifiers in Sect. 3. More-
over, we will present Positive Definite Fuzzy
Classifiers (PDFCs) since their rule bases can
be extracted from special kernel machines.
Applying model reduction methods to PDFCs
will enable us to obtain comprehensible and
interpretable fuzzy rules. Section 4 will raise
the question if it is feasible to unify FSVMs
and PDFCs since both are based on kernel
machines. Finally, we will conclude our report
by summarizing the main thoughts in Sect. 5.

2 Support Vector Machines

Let us start to formally introduce the ba-
sic concepts that we are going to talk about.
Therefore we must define the prerequisites of
the problems we are looking at. Suppose we
are given the input space X (not necessarily a
vector space) and the output space Y. Since
we deal with a binary classification problem,
Y = {±1}. We observe l training patterns
(xi, yi) ∈ S ⊆ X ×Y where i = 1, . . . , l. They
have been drawn i.i.d. from an unknown dis-
tribution.

Given numerical input variables, we can write
X ⊂ IRn and hence xi 7→ xi. Our goal
is to separate the data with a linear hyper-
plane {x : 〈w,x〉+ b = 0} where w ∈ IRn and
b ∈ IR are the norm vector and the bias of the
hyperplane, respectively. The decision func-
tion of a hyperplane classifier which shall pre-
dict y′ for any x corresponds to

f(x) = sgn (〈w,x〉+ b) . (1)

There is an infinite number of possible hy-
perplanes, however, we are looking for the
one that maximizes the margin between every
training pattern and the hyperplane. Such a
hyperplane is called optimal since it is unique
and has the best generalization performance
on unseen data. If all points (xi, yi) ∈ S
can be separated linearly by a hyperplane, we
can obtain the optimal hyperplane by solving

the following quadratic optimization problem
with linear inequality constraints:

minimize
w,b

τ(w) =
1
2
||w||

subject to yi(〈w,xi〉+ b) ≥ 1, ∀i = 1, . . . , l

Usually not all training patterns can be sepa-
rated perfectly. Therefore we introduce slack
variables ξi with i = 1, . . . , l in order to relax
the optimization problem to

minimize
w,b,ξ

τ(w, ξ) =
1
2
||w||+ C

l∑
i=1

ξi (2)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi (3)
and ξi ≥ 0, ∀i = 1, . . . , l. (4)

Here, ξ = (ξ1, . . . , ξl) corresponds to the slack
variables ξi and C is a global parameter that
has to be determined by the user. The big-
ger C, the easier training patterns may vio-
late the constraint (3). By introducing the
Lagrangian of the primal problem (2), we end
up solving the dual

maximize
α1,...,αl

l∑
i=1

αi − 1
2

l∑
i,i′=1

yiyi′αiαi′〈xi,xi′〉 (5)

subject to
l∑

i=1

yiαi = 0 (6)

and 0 ≤ αi ≤ C, ∀i = 1, . . . , l. (7)

In practice, only few problems can be solved
by a linear classifier. Hence the problem has
to be reformulated in a nonlinear way. This is
done by mapping the input space X to some
high-dimensional feature space H by Φ : X 7→
H where Φ satisfies Mercer’s condition [16].
We can thus solve our nonlinear optimiza-
tion problem linearly in H by computing the
scalar product K(x, x′) = 〈Φ(x), Φ(x′)〉 which
is called kernel. We must simply replace the
occurrence of the scalar product in Eq. (5)
with a chosen kernel function. Finally, the
discrimination function (1) becomes

f(x) = sgn

(
l∑

i=1

yiαiK(x, xi) + b

)
.

See [16] for a collection of kernel functions and
further details on SVMs.
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2.1 Fuzzy Support Vector Machines

The acquisition of data in most real-world
applications is usually imprecise, uncertain
and not complete. Therefore is is suitable to
embody the abstracted information by fuzzy
sets. Especially SV machines seem to be quite
sensitive to noise and points that were rather
improbably drawn from the underlying data
generating distribution.

The only free parameter of a SVM is C which
regularizes the penalty term in Eq. (2) and
hence the classification error. This parameter
is usually fixed for every input pattern dur-
ing the training process. A priori, all train-
ing patterns are treated the same which might
be crucial for the SVM regarding outliers and
noisy data points. So, the learning machine
may suffer from overfitting.

As a consequence, the concept of a fuzzy sup-
port vector machine (FSVM) has been intro-
duced [7, 12]. In particular, a membership
value µi is assigned to every training pattern
xi. Thus the training sample S is mapped to
a fuzzy training sample

Sf = {(x1, y1, µ1), . . . , (xl, yl, µl)}
where the membership values for positive and
negative class are denoted as µ+

i and µ−
i , re-

spectively. Both values are assigned indepen-
dently.

Similar to the constrained optimization prob-
lem of Eq. (2), FSVM tries to optimize the
same variables. However, it fuzzifies the
penalty term containing the regularizer C.
The optimal hyperplane using FSVM can ob-
tained solving

minimize
w,b,ξ,µ

τ(w, ξ, µ)=
1
2
||w||+ C

l∑
i=1

µm
i ξi (8)

subject to constraints (3) and (4) where µ =
(µ1, . . . , µl) and m regularizes the fuzziness of
the fuzzified penalty term. The dual problem
for FSVM can be obtained by deriving the
Lagrangian of Eq. (8) and hence only differs
in constraining the αi’s: Maximize (5) subject
to (6) and

0 ≤ αi ≤ Cµm
i , ∀i = 1, . . . , l.

In order to apply FSVM, the membership val-
ues µ have to be defined. In [7], the au-
thors suggested to learn these values as fol-
lows. First they removed outliers and then
fuzzified the remaining positive and negative
instances independently by some membership
functions. Finally, both sets were combined
to Sf .

3 Additive Rule-Based FCs

Whereas the last section gave an overview
how to incorporate uncertainty into a ker-
nel machine, this section explaines how fuzzy
rules can be obtained from such learning ma-
chines. Therefore we have to define a special
type of FC and special kernel functions (see
Sect. 3.1). Before we come to this point, let us
introduce fuzzy rules and classifiers that are
based on them.

Assume that every input dimension xj with
j = 1, . . . , n is associated with Kj linguistic
labels [11], e.g., warm, large, and low. All
those labels are represented by fuzzy sets Ak

j

for k = 1, . . . , Kj on the input axes, e.g., tem-
perature, size, and pressure. Furthermore, let
M zero-order Takagi-Sugeno fuzzy rules [19]
of the following form be given.

Rm : IF
n∧

j=1

xj is A
k(j,m)
j THEN bm (9)

Here, m = 1, . . . , M , the consequent bm ∈ IR,∧n
j=1 is the fuzzy conjunction over all n input

variables, i.e., product. The subscript k(j, m)
is an index function that determines which
of the fuzzy sets Ak

j applies in the mth rule.
The membership function of Ak

j is denoted as
µk

j : IR 7→ [0, 1].

Since we deal with additive fuzzy classifiers,
addition is selected as fuzzy aggregation in or-
der to compute the output. The well known
center-of-area (COA) method is used for de-
fuzzification s.t. the output F : IRn 7→ IR can
be computed as

F (x) =

∑M
m=1 bm

∏n
j=1 µ

k(j,m)
j (xj)∑M

m=1

∏n
j=1 µ

k(j,m)
j (xj)

. (10)
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Note that (10) is not defined if the denomina-
tor is zero. The authors of [4] elegantly add

R0 : IF
n∧

j=1

xj is A
k(j,0)
j THEN b0 (11)

whereas b0 ∈ IR and µk
0(xk) ≡ µk

0 ≡ 1 for
any k ∈ IN. This rule’s consequent b0 will
represent the bias of Eq. (1) as we will see
later. Adding (11) to (10), we eventually get

F (x) =
b0 +

∑M
m=1 bm

∏n
j=1 µ

k(j,m)
j (xj)

1 +
∑M

m=1

∏n
j=1 µ

k(j,m)
j (xj)

which can be directly used for binary classi-
fication by thresholding. We thus obtain the
binary decision rule

f(x) = sgn(F (x)). (12)

3.1 Positive Definite Fuzzy Classifiers

Note that (12) already resembles (1) to a high
degree. We will arrive at a decision function
based on kernels if all µk

j have been generated
by transformation of positive definite refer-
ence functions1 µj , i.e., µk

j (xj) = µj(xj − zk
j )

where zk
j ∈ IR. Fuzzy classifiers that fulfill

this criterion are called Positive Definite FCs
(PDFCs). The decision function of a PDFC
is comprised by

f(x) = sgn

(
M∑

m=1

bmK(x, zm) + b0

)

where zm = (zm
1 , . . . , zm

n )T and K(x, zm) =∏n
j=1 µj(xj − zm

j ) represents a Mercer kernel2

as introduced in Sect. 2. Many reference func-
tions but, e.g., the asymmetric triangle and
the trapezoid, are positive definite s.t. nu-
merous different PDFCs can be constructed.
Here, we only want to name the Gaussian
membership (reference) function

µk
j = exp

(
(xj − zk

j )2

2(σk
j )2

)
(13)

where zk
j and σk

j represent the center and the
width of the kth fuzzy set Ak

j .

1See [4] for definition of PD reference function.
2Note that Kj ≡ 1 ∀j = 1, . . . , n since zm

j ≡ zk
j .

3.2 FCs from Kernel Machines

Having established the link between a PDFC
and a SVM, we are able to extract fuzzy rules
directly from a kernel machine. In [4], the al-
gorithm that constructs a PDFC from a SVM
is rather näıve. However, we must note that
it seems to be the only procedure in the liter-
ature so far.

First, a positive definite reference function has
to be chosen to form a Mercer kernel. Apply-
ing SVM with this kernel in the next step, a
set of support vectors XSV = {x(m) : m =
1, . . . , M} ⊆ X , their corresponding weights
{y(m)α(m) : y(m) ∈ Y, 0 < α(m) ≤ C, m =
1, . . . , M} and the bias b (see Eq. (1)) are ob-
tained.

Ultimately the PDFC is found by mapping
every weighted SV to a fuzzy rule Rm, i.e.,
zm ← x(m) and bm ← y(m)α(m), where m =
1, . . . , M . The hyperplane bias b0 ← b.

There are some advantages applying SVM for
fuzzy rule generation. Whereas FCs very of-
ten fail in high-dimensional input spaces X ,
SVMs generalize very well in those spaces pro-
vided that the kernel has been selected in
a reasonable way. In particular, m is only
bounded by l. However, m ≈ l can be still
very large and thus the rule base will be ev-
erything but intuitive.

Still, we have to ask the question if a SVM can
generate a fuzzy rule base. Clearly, a SVM
with Gaussian kernel is functional equivalent
to a Gaussian RBF network [17]. Such a net-
work is then again comparable to fuzzy infer-
ence systems in terms of the decision func-
tion [9]. This might be a theoretical link
between a PDFC and a kernel machine, i.e,
SVM.

But what if we choose another reference func-
tion than the Gaussian one (13)? In this case
there is no theoretical justification for renam-
ing a basis function a “fuzzy set” in order
to obtain a comprehensible model [8]. Con-
trary to this statement, we found the follow-
ing claim [4]. Using an arbitrary reference
function for a kernel, the obtained FC will be
still related to a generalized SVM [13].
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3.3 Model Reduction Methods

The extracted rules by SV learning, as pro-
posed in the last section, will generalize quite
well if all constraints are met. Nevertheless
the interpretation of the rule base is cum-
bersome and hard since SV learning is not
intuitive to human beings. Therefore sev-
eral model reduction methods have been pro-
posed. We will discuss the most promising
ideas in the following.

In the year 2005, the incorporation of a fuzzy
partition given by domain experts was sug-
gested [15] to approximate the fuzzy rule base
received by SV learning. Not surprisingly,
this algorithm is called Interpretable Fuzzy Set
Approximation (IFSA). Only fuzzy rules that
have a large contribution are considered as
output rules. In fact, the membership degree
of every component xj ∈ IR of xm ∈ XSV

is evaluated at every component of the given
fuzzy partition. If this membership values is
below a user defined threshold, then the input
feature xj will be removed from the rule Rm.

Using standard benchmark data sets and one
real-world data set as well, two heavy im-
provements could be shown compared to [4].
First of all, the number of rules became
smaller. Second, the antecedents of the rules
only needed a subset of input features. Al-
though the performance of the approximation
heavily depends on the fuzzy partition, even
this enables the user to apply domain knowl-
edge to the learning step.

In 2007, a combination of three reduction
steps was proposed [10]. Initially, the SVM
is learned by the so-called reduced set (RS)
method that identifies only significant SVs.
The reduced SVs are then transformed to
fuzzy rules before the second step is applied.
Here, alike fuzzy sets are merged together
based on a similarity measure. The remain-
ing fuzzy rules are finally approximated by an
orthogonal least-square fit.

In the same year, another rule reduction
method called was proposed [3]. This al-
gorithm named Fuzzy Rule Extraction from
SVM (FREx-SVM) also needs a user defined

Table 1: Comparison of model reduction
methods based on the Iris data set.

METHOD M #µj ACC.
IFSA [15] 5 10 87.3%
combination [10] 27 81 -
FREx-SVM[3] 33.5 134 94%

fuzzy partition of all input variables. Com-
pared to IFSA [15], however, two different
evaluation criteria, i.e., fuzzy accuracy, and
fuzzy coverage, are utilized to reduce the rule
base.

In order to evaluate the performance, ev-
ery approach was tested on several data sets.
Taking the intersection of all tested data sets,
the famous Iris data set [2] is the only ap-
plication where results can be compared for
all three methods. The Iris data contain 3
classes, 50 instances per class and 4 numeric
attributes.

Based on the published results, Table 1 shows
three important evaluation criteria, i.e, the
number of generated rules M , the number
of membership functions #µj used in the IF
part of the rules, and the accuracy on test
data computed by the leave-one-out method.
The SV machines were trained using the one-
against-one approach in order to handle this
multi-class problem.

Not surprisingly, IFSA results in a small rule
base with M = 5 due to the well chosen fuzzy
partition. Nevertheless it is astonishing that
only 50% of all possible membership functions
and thus input features have been used to
construct rules. The other algorithms come
up with bigger rule bases since they either do
not have any user input (combination of tools)
or the given fuzzy partition is rather simple
(FREx-SVM).

Of course there do exist several fuzzy classi-
fier, e.g. eClass [1], that perform better on
the Iris data. They even result in less fuzzy
rules. Here we only concentrate on model re-
duction approaches, however, which are based
on SV learning. Exhaustive tests of the pro-
posed methods on more real-world data sets
have to be performed in future.
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4 Fuzzy Rule Extraction from
FSVM

So far, we presented two approaches to in-
tegrate uncertainty into kernel machines, i.e,
the fuzzy support vector machine, and the
PDFC that is based on SV learning. Whereas
the former model is trained on fuzzified input
data Sf , the latter one fuzzifies the model out-
put (the support vectors). FSVM elegantly
incorporates domain experts’ knowledge by
fuzzy partition in order to obtain the relevant
SVs. Using fuzzy models based on (9), we are
strongly interested in obtaining a few compre-
hensible rules that still generalize well.

We could not find any approach in literature
that tries to interlink FSVM and rule-based
FC with each other. Suppose the following
procedure. Experts initially specify a fuzzy
partition for every input feature. Then the
given training data is fuzzified based on the
domain knowledge. Consequently, a FSVM
can be modeled out of Sf . Eventually its sup-
port vectors are used to create fuzzy rules.

In Sect. 3.3, we suggested different ideas that
can be used to reduce the resulting fuzzy
rule base. Linking FSVM and PDFCs, we
strongly recommend to apply IFSA [15] since
it performed well in practice. Furthermore,
IFSA can simply reprocess the domain ex-
perts’ fuzzy partition with the objective to
obtain interpretable rules based on relevant
support vectors.

The relation between FSVM and the rule ex-
traction process, however, heavily depends on
the used kernel. In fact, the only kernel that
allows this combination using FSVM is the
Gaussian RBF kernel generated by Gaussian
reference functions (13). Yet there are sev-
eral alternatives to preserve the advantages
of both kernel machines and fuzzy classifiers.

Foremost, one could possibly extend FSVM to
generalized FSVM following the ideas of [13].
Thus arbitrary reference functions µj could be
used to construct a kernel machine. Another
potential idea is to define a optimization prob-
lem that directly outputs fuzzy points instead
of crisp support vectors. Reviewing relevant

literature on FSVM and fuzzy classifiers based
on SV learning, we claim that the unification
of both directions has neither been analyzed
nor implemented yet.

5 Conclusions

In this paper, we tried to close the gap be-
tween comprehensible fuzzy models that are
cumbersome in high-dimensional spaces and
kernel machines which perform well even in
infinite spaces. However, kernel-based classi-
fiers are sensitive to outliers and not easy to
understand. To overcome these adversities,
we basically suggested to combine both meth-
ods by incorporating uncertainty, e.g., a fuzzy
partition of all input features, into the kernel
machine.

Therefore we introduced the concept of fuzzy
support vector machines that assign member-
ship values to every training instance. Solv-
ing a quadratic optimization problem contain-
ing fuzzy numbers, the resulting model finally
outputs a smaller set of support vectors com-
pared to standard SV machines.

The second approach constructs fuzzy rules
based on support vector learning by one-to-
one mapping of a SV to a new fuzzy rule.
The initial set of rules usually has to be
reduced to guarantee comprehensibility and
interpretability of the fuzzy classifier. We
thence showed some model reduction meth-
ods and tried to compare them in terms of
their fuzzy output.

In order to take advantages of both ideas, we
finally suggested to link FSVM and fuzzy rule
extraction based on SV learning. We will fo-
cus our research on proving theoretical jus-
tifications and performing on potential real-
world problems to validate the proposed uni-
fication.
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