
Fuzzy Learning Vector Quantization
with Size and Shape Parameters

Christian Borgelt, Andreas N̈urnberger, and Rudolf Kruse

Dept. of Knowledge Processing and Language Engineering
Otto-von-Guericke-University of Magdeburg

Universiẗatsplatz 2, D-39106 Magdeburg, Germany
{borgelt,nuernb,kruse}@iws.cs.uni-magdeburg.de

Abstract— We study an extension of fuzzy learning vector
quantization that draws on ideas from the more sophisticated
approaches to fuzzy clustering, enabling us to find fuzzy clusters
of ellipsoidal shape and differing size with a competitive learning
scheme. This approach may be seen as a kind of online fuzzy
clustering, which can have advantages w.r.t. the execution time of
the clustering algorithm. We demonstrate the usefulness of our
approach by applying it to document collections, which are, in
general, difficult to cluster due to the high number of dimensions
and the special distribution characteristics of the data.

I. I NTRODUCTION

It is not difficult to see that classicalc-means clustering
[8], [5] and standardlearning vector quantizationapplied to
clustering [19], [20] are very similar: a point that one method
converges to is a stable point of the other, in particular, if
learning vector quantization is applied in batch mode. Classical
c-means clustering has been generalized tofuzzy clustering
[2], [3], [14], just as learning vector quantization has been
generalized tofuzzy learning vector quantization[30], [16],
[15]. Hence the idea suggests itself to transfer some ideas
that have been developed in fuzzy clustering with the aim of
achieving a higher flexibility, to competitive learning.

In this paper we consider how shape and size parameters
can be introduced into a fuzzified competitive learning scheme.
In this way we arrive at competitive learning clustering al-
gorithms that may be seen as online versions of the more
sophisticated fuzzy clustering approaches, like the Gustafson-
Kessel algorithm [13] or the fuzzy maximum likelihood esti-
mation (FMLE) algorithm [11]. The basic idea of this transfer
is that the update of a reference vector in competitive learning
can be seen as an exponential decay of information gained
from data points processed in earlier steps—a scheme that
may just as well be applied to a cluster-specific covariance
matrix describing the size and shape of a cluster.

Such online clustering has at least two advantages for the
application domain we consider here, that is, for clustering
collections of documents. The first is that it can be faster
than standard fuzzy clustering, due to the fact that the cluster
parameters are updated more often, while the greater part of
the overhead comes from the computations of the distances
between the data points and the cluster centers. Secondly, this
approach to clustering makes it easier to handle documents that

become available in a truly online fashion, because updates
need only few documents, not the whole collection.

This paper is organized as follows: in Section II we briefly
review some basics of fuzzy clustering. In Section III we
transfer fuzzy clustering ideas to fuzzy learning vector quanti-
zation. We develop online update rules for the size and shape
parameters of a reference vector, captured in a covariance
matrix. In Section IV we present experimental results on a
collection of web pages and finally, in Section V, we draw
conclusions from our discussion.

II. FUZZY CLUSTERING

While most classical clustering algorithms assign each da-
tum to exactly one cluster, thus forming a crisp partition of the
given data, fuzzy clustering allows fordegrees of membership,
to which a datum belongs to different clusters [2], [3], [14].
Most fuzzy clustering algorithms are objective function based:
they determine an optimal (fuzzy) partition of a given data set
X = {~xj | j = 1, . . . , n} into c clusters by minimizing an
objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ijd

2
ij

subject to the constraints
n∑

j=1

uij > 0, for all i ∈ {1, . . . , c}, and (1)

c∑
i=1

uij = 1, for all j ∈ {1, . . . , n}, (2)

where uij ∈ [0, 1] is the membership degree of datum~xj

to cluster i and dij is the distance between datum~xj and
cluster i. The c × n matrix U = (uij) is called thefuzzy
partition matrix andC describes the set of clusters by stating
location parameters (i.e. the cluster center) and maybe size and
shape parameters for each cluster. The parameterw, w > 1,
is called thefuzzifier or weighting exponent. It determines
the “fuzziness” of the classification: with higher values for
w the boundaries between the clusters become softer, with
lower values they get harder. Usuallyw = 2 is chosen. Hard
clustering results in the limit forw → 1.

Constraint (1) guarantees that no cluster is empty. Con-
straint (2) ensures that each datum has the same total influence
by requiring that the membership degrees of a datum must
add up to 1. Because of the second constraint this approach
is usually calledprobabilistic fuzzy clustering, since with it
the membership degrees for a datum formally resemble the
probabilities of its being a member of the corresponding
clusters. The partitioning property of a probabilistic clustering
algorithm, which “distributes” the weight of a datum to the
different clusters, is due to this constraint.

Unfortunately, the objective functionJ cannot be minimized
directly. Therefore an iterative algorithm is used, which al-
ternately optimizes the membership degrees and the cluster
parameters [2], [3], [14]. That is, first the membership degrees
are optimized for fixed cluster parameters, then the cluster
parameters are optimized for fixed membership degrees. The
main advantage of this scheme is that in each of the two
steps the optimum can be computed directly. By iterating
the two steps the joint optimum is approached (although, of
course, it cannot be guaranteed that the global optimum will
be reached—the algorithm may get stuck in a local minimum).

The update formulae are derived by simply setting the
derivative of the objective functionJ w.r.t. the parameters to
optimize equal to zero (necessary condition for a minimum).
Independent of the chosen distance measure we thus obtain the
following update formula for the membership degrees [14]:

uij =
d
− 2

w−1
ij∑c

k=1 d
− 2

w−1
kj

. (3)

That is, the membership degrees represent the relative inverse
squared distances of a data point to the different cluster
centers, which is a very intuitive result.

The update formulae for the cluster parameters, however,
depend on what parameters are used to describe a cluster
(location, shape, size) and on the chosen distance measure.
Therefore a general update formula cannot be given. Here we
briefly review the three most common cases: The best-known
fuzzy clustering algorithm is the fuzzyc-means algorithm,
which is a straightforward generalization of the classical crisp
c-means algorithm. It uses only cluster centers for the cluster
prototypes and relies on theEuclidean distance, i.e.,

d2
ij = d2(~xj , ~µi) = (~xj − ~µi)>(~xj − ~µi),

where ~µi is the center of thei-th cluster. Consequently it
is restricted to finding spherical clusters of equal size. The
resulting update rule is

~µi =

∑n
j=1 uw

ij~xj∑n
j=1 uw

ij

. (4)

That is, the new cluster center is the weighted mean of the data
points assigned to it, which is again a very intuitive result.

The Gustafson-Kessel algorithm [13] uses theMahalanobis
distance, i.e.,

d2
ij = d2(~xj , ~µi) = (~xj − ~µi)>Σ−1

i (~xj − ~µi),

where ~µi is the cluster center andΣi is a cluster-specific
covariance matrix with determinant 1. This matrix describes
the shape of the cluster, thus allowing for ellipsoidal clusters
of equal size. This leads to same update rule (4) for the clusters
centers. The covariance matrices are updated according to

Σi = |Σ∗
i |−

1
m Σ∗

i , where

Σ∗
i =

∑n
j=1 uw

ij(~xj − ~µi)(~xj − ~µi)>∑n
j=1 uw

ij

andm is the number of dimensions of the data space.Σ∗
i is

called thefuzzy covariance matrix, which is simply normalized
to determinant 1 to meet the abovementioned constraint.
Compared to standard statistical estimation procedures, this
is also a very intuitive result. It should be noted that the
restriction to clusters of equal size may be relaxed by simply
allowing general covariance matrices. However, depending
on the characteristics of the data, this additional degree of
freedom can deteriorate the robustness of the algorithm.

Finally, the fuzzy maximum likelihood estimation (FMLE)
algorithm [11] is based on the assumption that the data was
sampled from a mixture ofc multivariate normal distributions
as in the statistical approach of mixture models [9], [4]. It
uses a (squared) distance that is inversely proportional to
the probability that a datum was generated by the normal
distribution associated with a cluster. This approach leads to
similar update rules. Details can be found, for example, in [14].

It is worth noting that of both the Gustafson-Kessel as well
as the FMLE algorithm there exist so-calledaxes-parallel
version, which restrict the covariance matricesΣi to diag-
onal matrices. In this way they only allow for axes-parallel
ellipsoids [17]. These variants have certain advantages w.r.t.
robustness and execution time.

III. L EARNING VECTORQUANTIZATION

Learning vector quantization [19], [20], in its classical form,
is a competitive learning algorithm that has been developed
in the area of artificial neural networks. It can be applied
to classified as well as unclassified data. Here we confine
ourselves to unclassified data, where the algorithm consists
in iteratively updating a set ofc so-calledreference vectors
~µi, i = 1, . . . , c, each of which is represented by a neuron.
For each data point~xj , j = 1, . . . , n, the closest reference
vector (the so-called “winner neuron”) is determined. Then this
reference vector (and only this vector) is updated according to

~µ
(new)
i = ~µ

(old)
i + η1

(
~xj − ~µ

(old)
i

)
, (5)

whereη1 is a learning rate. This learning rate usually decreases
with time in order to avoid oscillations and to enforce the
convergence of the algorithm.

Membership degrees can be introduced into this basic
algorithm in two different ways. In the first place, one may
employ an activation function for the neurons, for which a
radial function like the

Cauchy function f(r) =
1

1 + r2
or the

Gaussian function f(r) = e−
1
2 r2

may be chosen. The argumentr is the (radial) distance from
the reference vector. In this case all reference vectors are up-
dated for each data point, with the update being weighted with
the value of the activation function. However, this scheme,
which is closely related topossibilistic fuzzy clustering[21],
usually yields unsatisfactory results. The reason is that there is
no dependence between the clusters, so that they tend to end
up at the center of gravity of all data points. This corresponds
to the fact that in possibilistic fuzzy clustering the objective
function is truly minimized only if all clusters are identical
[28], [29]. Useable results are obtained only if the method gets
stuck in a local minimum, which is an undesirable situation.

An alternative is to rely on a normalization scheme as in
probabilistic fuzzy clustering. That is, one computes the weight
for the update of a reference vector as the relative inverse
(squared) distance from this vector (cf. the computation of the
membership degrees in fuzzy clustering, see formula (3)), or
as therelative activation of a neuron. That is, we use

~µ
(new)
i = ~µ

(old)
i + η1 uw

ij

(
~xj − ~µ

(old)
i

)
(6)

with uij defined as in equation (3). In this waybatch learning
vector quantization, in which an update is performed only
after a full traversal of the data set, is almost equivalent to
fuzzy clustering. It can be made fully equivalent by using the
(neuron-specific) learning rateη1 = 1/

∑n
j=1 uw

ij .
Furthermore we associate with each neuron not only a

reference vector~µi, but also a covariance matrixΣi. This
matrix describes the shape and (if we do not require it to have
to determinant 1) the size of the represented cluster. It should
be noted that we may also require this matrix to be diagonal
in order to improve the robustness of the algorithm.

In order to find an update rule for the covariance matrix,
we observe that the above equation (5) may also be written as

~µ
(new)
i = (1− η1) ~µ

(old)
i + η1 ~xj .

This shows that the update can be seen as an exponential
decay of information gained from data points processed earlier.
Transferring this idea to the covariance matricesΣi and
drawing on equation (5) leads directly to

Σ(new)
i = (1− η2)Σ

(old)
i + η2 (~xj − ~µi)(~xj − ~µi)>, (7)

where η2 is a learning rate. Usuallyη2 differs from the
learning rateη1 for the reference vectors (it should be chosen
much smaller thanη1). In the fuzzy case this update may be
weighted, as the update of the reference vectors, byuw

ij .
This update rule is very similar to Gustafson–Kessel cluster-

ing, especially if we use batch update. However, we are more
interested in an online rule, updating the cluster parameters
more often. In this case we face the problem that it is too
expensive to update the covariance matrices after each training
pattern. Therefore we suggest a scheme, in which the update is
performed after a user-specified number of data points, which
may be adapted depending on the size of the data set. However,
such an approach makes it a little difficult to choose a proper
learning rate, especially since the weights (sum of degrees of
membership) may differ for each cluster.

TABLE I

CATEGORIES ANDTHEMES OF THE USED BENCHMARK DATA SET.

Dataset Character Dataset Category Associated Theme

A Commercial Banks Banking & Finance
B Building Societies Banking & Finance
C Insurance Agencies Banking & Finance
D Java Programming Languages
E C / C++ Programming Languages
F Visual Basic Programming Languages
G Astronomy Science
H Biology Science
I Soccer Sport
J Motor Racing Sport
X Sport Sport

As a solution we propose a scheme that is again inspired
by the similarity of learning vector quantization to fuzzy
clustering, namely that a batch scheme often can be made
equivalent by using a special (neuron-specific) learning rate
(see above). That is, we update a reference vector according to

~µ
(new)
i = (1− η∗1) ~µ

(old)
i + η∗1

∑
j∈J

uw
ij~xj ,

whereJ is the index set of the processed training patterns and

η∗1 =

 η1, if
∑

j∈J uw
ij ≤ 1

η1∑
j∈J uw

ij

, otherwise.

The covariance matrices are updated by an analogous formula.
In our experiments this rule exhibited a very stable behaviour.

IV. EXPERIMENTS

For our experimental studies we chose a data set derived
from the document collection of web pages used in [27].1

This collection consists of 11,000 web pages classified into
11 equally-sized categories each containing 1,000 web docu-
ments. To each category one of four distinct themes, namely
Banking and Finance, Programming Languages, Science and
Sport, was assigned (as shown in Table I).

Of course, before we can apply our algorithm to this doc-
ument collection, some preprocessing is necessary to obtain
a proper representation of the documents. The type of input
needed for the clustering algorithms studied here requires a
representation using thevector space model[24], which rep-
resents documents as vectors in anm-dimensional space. That
is, each documentj is described by a numerical feature vector
~xi = (xj1, . . . , xjm), each element of which usually represents
a word (or group of words) of the document collection.

The simplest way of encoding documents in the vector space
model is to use binary vectors. That is, a vector element is set
to one if the corresponding word is used in the document
and to zero if it is not. However, in order to improve the
performance usually term weighting schemes are employed.
The weights reflect the importance of a word in a specific

1This collection is available for download from
http://www.pedal.rdg.ac.uk/banksearchdataset/index.htm.

document of the considered collection. Large weights are as-
signed to terms that are used frequently in relevant documents
but rarely in the whole document collection [25]. In [26] a
weighting scheme was proposed that has meanwhile proven
its usability in practice many times, namely

xjk =
tfjk idfk√∑m

l=1

(
tfjl idf l

)2
. (8)

Here m is the number of terms that are used to represent
the documents.tfjk is the so-calledterm frequency, i.e., the
number of occurences of termk in documentj. Finally, idfk

is the so-calledinverted document frequency. It is defined as
idfk = log n

nk
with n being the total number of documents and

nk the number of documents containing termk. (For a more
detailed discussion of the vector space model and weighting
schemes see, for example, [1], [12], [25], [24].)

With such an encoding the similarityS of two documents
is usually computed as the inner product of the document
vectors (which — if we assume normalized vectors — equals
the cosine between the two document vectors), i.e.

S(~xj , ~xk) =
m∑

l=1

xjl · xkl. (9)

In connection to the clustering schemes we consider here it is
important to note that for normalized vectors the scalar product
is not much different in behavior from the Euclidean distance.
The reason is that for two vectors~x and~y it is

cos ϕ =
~x~y

|~x| · |~y|
= 1− 1

2
d2

(
~x

|~x|
,

~y

|~y|

)
.

This makes it possible to apply the fuzzy clustering and
fuzzy learning vector quantization schemes discussed above
and enables us to work with a Mahalanobis distance.

Having defined the encoding scheme of the documents we
need to select the terms used to describe the documents. This
is done as follows: to reduce the number of words and thus
the dimensionality of the document vectors, the number of
words describing the documents can be reduced by filtering
stop words and by stemming the appearing words. The idea
of stop word filtering is to remove words that bear little or no
content information, like articles, conjunctions, prepositions
etc. Furthermore, words that occur extremely often provide
little information about how to distinguish documents. The
same holds for words that occur very rarely, so that these
words can be discarded as well [10].

Stemming methods try to build the basic forms of words, i.e.
strip the plural “s” from nouns, the “ing” from verbs, or other
affixes. A stem is a natural group of words with equal (or very
similar) meaning. After the stemming process, every word is
represented by its stem in the vector space description. Thus
a feature of a document vector~xj now describes a group of
words. A well-known stemming algorithm has been proposed
originally in [23]. It is based on a set of production rules to
iteratively transform (English) words into their stems.

To further reduce the number of words, indexing or keyword
selection algorithms may be used (see, for example, [6], [31]).

Then only the selected keywords are used to describe the
documents. A simple but very efficient method in this direction
is to extract keywords based on their entropy. For instance,
in the approach discussed in [18], for each wordk in the
vocabulary theentropyas defined by [22] was computed:

Wk = 1 +
1

log2 n

n∑
j=1

pjk log2 pjk with pjk =
tfjk∑n
l=1 tf lk

.

Here tfjk is the frequency of wordk in documentj, and
n is the total number of documents. The entropy can be
seen as a measure of the importance of a word in the given
domain context or a measure of how well a word is suited
to separate documents by keyword search. Based on this
interpretation, words that have a high entropy relative to their
overall frequency are selected. That is, of two words occurring
equally often the one with the higher entropy is preferred.
Empirically this procedure has proven to yield a set of relevant
words that are suited to serve as index terms [18].

In order to obtain a fixed number of terms that cover the
document collection well, we applied a greedy strategy: from
an arbitrary document in the collection select the term with
the highest relative entropy as an index term. Then mark this
document and all other documents containing this term. Next
select from an arbitrary unmarked document the term with
the highest relative entropy as an index term. Again mark this
document and all other documents containing this term. Repeat
this process until all documents are marked, then unmark all
of them and start over. The process is terminated when the
desired number of index terms has been selected.

For the web page collection we had, after stemming and stop
word filtering, 163,860 words. This set was further reduced
by removing terms that are shorter than 4 characters or that
occur less then 15 or more than11, 000/12 ≈ 917 times in
the document collection. Thus we made sure that no words
that perfectly separate one class from another are used in
the describing vectors. From the remaining 10,626 words we
finally selected 400 words by applying the greedy index-term
selection approach described above. Based on these words we
determined a vector space description for each document.

Equipped with this encoding of the documents we can
now turn to our actual clustering experiments, for which we
selected subsets of the 50, 100, 150, ..., 350, 400 most frequent
words in the subset to be clustered. To assess the clustering
performance, we computed the performance on the same data
sets as used by [27], i.e., we clustered the union of the
dissimilar data sets A and I, and the semantically more similar
data sets B and C. In a third experiment we used all classes
and tried to find clusters describing the four main themes, i.e.,
banking, programming languages, science, and sport.

For our experiments we used c-means, fuzzy clustering and
fuzzy learning vector quantization methods with and without
cluster centers normalized to unit length, with and without
variances (i.e., spherical clusters and axes-parallel ellipsoids—
diagonal covariance matrices—of equal size), and with the
inverse squared distance or the Gaussian function for the

c-means fuzzyc-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Fig. 1. Classification accuracy over
number of keywords on commercial
banks versus soccer (top row: only
cluster centers normalized to length 1,
bottom row: free cluster centers with
adaptable variances). The right axis
shows the execution time in seconds
(grey dots and lines at the bottom of
each diagram).

c-means fuzzyc-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Fig. 2. Classification accuracy on
building companies versus insurance
agencies (top row: only cluster centers
normalized to length 1, bottom row:
free cluster centers with adaptable vari-
ances). The right axis shows the exe-
cution time in seconds (grey dots and
lines at the bottom of each diagram).

c-means fuzzyc-means vector quantization
100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

Fig. 3. Classification accuracy on ma-
jor themes (four clusters; top row: only
cluster centers normalized to length 1,
bottom row: free cluster centers with
adaptable variances). The right axis
shows the execution time in seconds
(grey dots and lines at the bottom of
each diagram).

activation. The fuzzy learning vector quantization algorithm
updated the cluster parameters once for every 100 documents.2

The results for some parameterizations of the algorithms are
shown in Figures 1 (categories A vs. I), 2 (categories B vs.
C), and 3 (all four major themes). The top row always shows
the results for cluster centers, normalized to length 1, without
variances. The bottom row shows the result for free centers
with adaptable variances (diagonal covariance matrices). All
results represent ten runs, which differed in the initial cluster

2All experiments were carried out with a program written in C and compiled
with gcc 3.3.3 on a Pentium 4C 2.6GHz system with 1GB of main memory
running S.u.S.E. Linux 9.1. The program and its sources can be downloaded
free of charge at http://fuzzy.cs.uni-magdeburg.de/˜borgelt/cluster.html.

positions and the order in which documents were processed.
For the experiments with variances we restricted the maximum
ratio of the variances to1.22 : 1 = 1.44 : 1, which seemed to
yield the best results over all three clustering experiments.

The dotted lines show the default accuracy (obtained if
all documents are assigned to the majority class). The grey
horizontal lines in each block, which are also marked by
diamonds to make them more easily visible, show the average
classification accuracy (computed from a confusion matrix by
permuting the columns so that the minimum number of errors
results) in percent (left axis). The black crosses indicate the
performance of single experiments. The small grey dots and
lines at the top of each diagram show the performance of a

Näıve Bayes Classifier trained with the corresponding subset
of words. The Näıve Bayes Classifier can be seen as an upper
limit, while the default accuracy is a lower baseline. The bigger
grey dots and lines close to the bottom show the average
execution times in seconds (right axis).

For all data sets the clustering process for fuzzyc-means and
(fuzzified) learning vector quantization is much more stable
than c-means. However, all methods seem to switch between
two strong local minima for the semantically similar data sets
B and C. However, the fuzzy approaches clearly seem to prefer
one of them, namely the one performing better.

The introduction of variances slightly improves the per-
formance of fuzzyc-means in all cases. However, the per-
formance for c-means is only improved for the two class
problem with data sets A and I and the four class problem. The
performance of fuzzy learning vector quantization is improved
for the semantically more similar data sets B and C and the
four class problem. However, the most remarkable observation
is that fuzzy learning vector quantization needs only about
2
3 of the time needed by fuzzy clustering to obtain a result
of almost equal quality. The reason is that due to the more
frequent updates of the cluster parameters, fuzzy learning
vector quantization converges faster, needing only about half
the number of iterations in all experiments. The execution
time, however, is not cut to 50%, because the more frequent
updates eat up part of the gains.

V. CONCLUSIONS

In this paper we transferred some ideas from fuzzy cluster-
ing, in particular the use of a covariance matrix to describe the
shape and the size of a cluster, to learning vector quantization.
We developed a fuzzy competitive learning scheme for these
new reference vector parameters and applied our algorithm
to the difficult task of clustering document collections. Our
experiments showed that this approach can be used success-
fully for clustering collections of documents, with the learning
vector quantization scheme leading to shorter execution times.
In addition, it enables a truly “online” clustering, since only
a fraction of the documents is needed for each update.

REFERENCES

[1] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval.
Addison-Wesley/Longman, Reading, MA, USA, 1999

[2] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York, NY, USA 1981

[3] J.C. Bezdek, J. Keller, R. Krishnapuram, and N. Pal.Fuzzy Models
and Algorithms for Pattern Recognition and Image Processing. Kluwer,
Dordrecht, Netherlands 1999

[4] J. Bilmes. A Gentle Tutorial on the EM Algorithm and Its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models.
University of Berkeley, Tech. Rep. ICSI-TR-97-021, 1997

[5] H.H. Bock. Automatische Klassifikation. Vandenhoeck & Ruprecht,
Göttingen, Germany 1974

[6] S. Deerwester, S.T. Dumais, G.W. Furnas, and T.K. Landauer. Indexing
by latent semantic analysis.Journal of the American Society for
Information Sciences41:391–407. J. Wiley & Sons, New York, NY,
USA 1990

[7] A.P. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm.Journal of the Royal Statistical
Society (Series B)39:1–38. Blackwell, Oxford, United Kingdom 1977

[8] R.O. Duda and P.E. Hart.Pattern Classification and Scene Analysis.
J. Wiley & Sons, New York, NY, USA 1973

[9] B.S. Everitt and D.J. Hand.Finite Mixture Distributions. Chapman &
Hall, London, UK 1981

[10] W.B. Frakes and R. Baeza-Yates.Information Retrieval: Data Structures
& Algorithms. Prentice Hall, Upper Saddle River, NJ, USA 1992

[11] I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy Clustering.IEEE
Trans. Pattern Analysis & Machine Intelligence11:773–781. IEEE
Press, Piscataway, NJ, USA, 1989

[12] W.R. Greiff. A Theory of Term Weighting Based on Exploratory Data
Analysis. Proc. 21st Ann. Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval (Sydney, Australia), 17–19. ACM
Press, New York, NY, USA 1998

[13] E.E. Gustafson and W.C. Kessel. Fuzzy Clustering with a Fuzzy
Covariance Matrix. Proc. 18th IEEE Conference on Decision and
Control (IEEE CDC, San Diego, CA), 761–766, IEEE Press, Piscataway,
NJ, USA 1979

[14] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler.Fuzzy Cluster
Analysis. J. Wiley & Sons, Chichester, England 1999

[15] N.B. Karayiannis and J.C. Bezdek. An Integrated Approach to Fuzzy
Learning Vector Quantization and Fuzzyc-Means Clustering. IEEE
Trans. on Fuzzy Systems5(4):622–628. IEEE Press, Piscataway, NJ,
USA 1997

[16] N.B. Karayiannis and P.-I. Pai. Fuzzy Algorithms for Learning Vector
Quantization. IEEE Trans. on Neural Networks7:1196–1211. IEEE
Press, Piscataway, NJ, USA 1996

[17] F. Klawonn and R. Kruse. Constructing a Fuzzy Controller from
Data. Fuzzy Sets and Systems85:177-193. North-Holland, Amsterdam,
Netherlands 1997

[18] A. Klose, A. Nürnberger, R. Kruse, G.K. Hartmann, and M. Richards.
Interactive Text Retrieval Based on Document Similarities.Physics and
Chemistry of the Earth, Part A: Solid Earth and Geodesy25:649–654.
Elsevier, Amsterdam, Netherlands 2000

[19] T. Kohonen. Learning Vector Quantization for Pattern Recognition.
Technical Report TKK-F-A601. Helsinki University of Technology,
Finland 1986

[20] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Heidelberg,
Germany 1995 (3rd ext. edition 2001)

[21] R. Krishnapuram and J. Keller. A Possibilistic Approach to Clustering,
IEEE Transactions on Fuzzy Systems, 1:98-110. IEEE Press, Piscataway,
NJ, USA 1993

[22] K.E. Lochbaum and L.A. Streeter. Combining and Comparing the
Effectiveness of Latent Semantic Indexing and the Ordinary Vector
Space Model for Information Retrieval.Information Processing and
Management25:665–676. Elsevier, Amsterdam, Netherlands 1989

[23] M. Porter. An Algorithm for Suffix Stripping. Program: Electronic
Library & Information Systems14(3):130–137. Emerald, Bradford,
United Kingdom 1980

[24] G. Salton, A. Wong, and C.S. Yang. A Vector Space Model for
Automatic Indexing.Communications of the ACM18:613–620 ACM
Press, New York, NY, USA 1975

[25] G. Salton and C. Buckley. Term Weighting Approaches in Automatic
Text Retrieval. Information Processing & Management24:513–523.
Elsevier, Amsterdam, Netherlands 1988

[26] G. Salton, J. Allan, and C. Buckley. Automatic Structuring and Retrieval
of Large Text Files. Communications of the ACM37:97–108. ACM
Press, New York, NY, USA 1994

[27] M.P. Sinka, and D.W. Corne. A large benchmark dataset for web
document clustering.A. Abraham, J. Ruiz-del-Solar, and M. Köppen
(eds.), Soft Computing Systems: Design, Management and Applications,
881–890. IOS Press, Amsterdam, The Netherlands 2002

[28] H. Timm and R. Kruse. A Modification to Improve Possibilistic Cluster
Analysis. Proc. IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE 2002,
Honolulu, Hawaii). IEEE Press, Piscataway, NJ, USA 2002

[29] H. Timm, C. Borgelt, C. D̈oring, and Rudolf Kruse. An Extension to
Possibilistic Fuzzy Cluster Analysis.Fuzzy Sets and Systems147(1):3–
16. Elsevier, Amsterdam, Netherlands 2004

[30] E.C.-K. Tsao, J.C. Bezdek, and N.R. Pal. Fuzzy Kohonen Clustering
Networks.Pattern Recognition27(5):757–764. Pergamon Press, Oxford,
United Kingdom 1994

[31] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann, San
Mateo, CA, USA 1999

