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Abstract

Typicality degrees were defined in
supervised learning as a tool to
build characteristic representatives
for data categories. In this paper, an
extension of these typicality degrees
to unsupervised learning is proposed
to perform clustering. The proposed
algorithm constitutes a Gustafson-
Kessel variant and makes it possible
to identify ellipsoidal clusters with
robustness as regards outliers.
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1 Introduction

Typicality degrees [10, 6] were defined in a
prototype building procedure, as a means
to construct characteristic representatives of
data categories: according to this approach,
a point is typical of a category if it both re-
sembles the other members of the category
and differs from members of other categories.
A prototype based on such typicality degrees
then highlights the common features of the
group members, but also their discriminative
features compared to other categories. These
properties make it a particularly appropriate
data representative to characterise and sum-
marise the category.

In this paper, typicality degrees are extended
to the unsupervised learning framework, so as
to perform clustering, i.e. to identify relevant
subgroups in the data set. The underlying
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idea is that the characterisation of a data sub-
group using both common and discriminative
features corresponds to the aim of identify-
ing clusters that are both homogeneous and
distinct one from another: compactness is di-
rectly related to the common features and se-
parability to the discriminative ones.

Therefore a typicality-based clustering algo-
rithm, called TBC, is proposed. It relies
on the Gustafson-Kessel principles [3], which
makes it possible to identify ellipsoidal clus-
ters and not only spherical ones, through the
automatic extraction of the cluster covariance
matrices. TBC replaces the membership de-
grees used in the original Gustafson-Kessel al-
gorithm by typicality degrees and relies on a
method to compute the latter in the unsuper-
vised learning framework.

Section 2 recalls the principles of some fuzzy
clustering algorithms and justifies the typi-
cality based approach. Section 3 recalls the
typicality degree definition in the supervised
learning framework and section 4 extends it
to the unsupervised case, describing the pro-
posed clustering algorithm. Section 5 illus-
trates the obtained results on an artificial data
set and section 6 concludes the paper.

2  Fuzzy clustering

This section briefly discusses properties of
some classic fuzzy clustering algorithms. We
first recall the Gustafson-Kessel algorithm
and then comment on some of its variants
based on different definitions for the data
weighting scheme.



In the following, we denote X = {z;,i = 1..n}
the data set containing n data points, and c
the number of clusters.

Gustafson-Kessel clustering algorithm
The Gustafson-Kessel algorithm [3] associates
each cluster with both a point and a ma-
trix, respectively representing the cluster cen-
tre and its covariance. Whereas the origi-
nal fuzzy c-means make the implicit hypothe-
sis that clusters are spherical, the Gustafson-
Kessel algorithm is not subject to this con-
straint and can identify ellipsoidal clusters.

More precisely, denoting f;- the influence of
point ¢ on cluster r (see below for some defi-
nitions), the cluster centre and covariance ma-
trix are computed as
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m is a user-defined parameter called fuzzifier.
The cluster centre is computed as a weighted
mean of the data, the weights depending on
the considered algorithm, as detailed in the
following. The covariance matrix is defined
as a fuzzy equivalent of classic covariance.
Through eq. (2), a size constraint is imposed
on the covariance matrix whose determinant
must be 1. As a consequence, the Gustafson-
Kessel algorithm can identify ellipsoidal clus-
ters having approximately the same size.

This cluster parameter updating step is alter-
nated with the update of the weighting coeffi-
cients until a convergence criterion is met. In
the following, we discuss some classic choices
for these weights. They are based on compari-
son between data and cluster centres, and rely
on the distance defined as

dir = (@i —wp) A7 2 —wp)  (3)

Fuzzy c-means (FCM) In the FCM algo-
rithm, the f;, coefficients, usually denoted wu;;,
are defined as membership degrees
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where m is a user-defined parameter. These
membership degrees indicate the extent to
which a point belongs to a cluster, or more
precisely the extent to which it is shared be-
tween the clusters: the quantities involved in
the definition are relative distances that com-
pare the distance to a cluster centre d;, to the
distance to other centres d;;.

Due to this relative definition, the influence
of a point does not decrease with the absolute
distance to the centres (see e.g. [8]). This im-
plies that FCM is sensitive to outliers: the lat-
ter are considered as equally shared between
the clusters and can highly influence the clus-
ter parameters.

Possibilistic c-means (PCM) PCM [5]
constitutes a more robust algorithm that re-
laxes the constraint causing the relative def-
inition of membership degrees in FCM. The
fir coefficients they are based on, usually de-
noted t;-, measure the absolute resemblance
between data points and cluster centres
-1
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where 7, is a parameter that evaluates the
cluster diameter and can be defined a priori
or defined from initialisations [4]. Outliers,
that are far away from all clusters are then
associated with small weights for all clusters
and thus do not influence their parameters.

PCM suffers from a coincident cluster prob-
lem (see e.g. [4]): in some cases, clusters are
confounded whereas natural subgroups in the
data are overlooked. Moreover, it has been
shown that the objective function global mi-
nimum is obtained when all clusters are co-
incident [12]. Satisfying results are obtained
with PCM because the optimisation scheme
leads to local minima and not the global min-
imum. This property is not satisfying from a
theoretical point of view.

Possibilistic Fuzzy c-means To solve the
PCM coincident cluster problem, Pal et al.
[8, 9] propose to combine PCM and FCM:
they argue that both possibilistic and mem-
bership coefficients are necessary to perform



clustering, respectively to reduce the outlier
influence and to assign data points to clusters.
Therefore, they take into account both rela-
tive and absolute resemblance to cluster cen-
tres. In the PFCM [9] algorithm, the combi-
nation is performed through a weighted sum,
in the form

fir = aul™t + bt (6)

where u;,- are the membership degrees defined
in eq. (4) and ;- the possibilistic coefficients
defined in eq. (5) with 7, replaced by 7,/b. a,
b, m1 and mo are user-defined parameters.

The algorithm proposed in this paper also
takes into account two components to deter-
mine the importance of a data point: it con-
siders the combination of other elements that
provide more complementary information and
considers a different aggregation scheme, as
indicated in the following section, and thus
leads to different results.

Other approaches There exist many other
approaches to solve the merging cluster pro-
blem or that of the outlier sensitivity: the
cluster repulsion method [12] e.g. includes
in the objective function an additional term
to impose repulsion between clusters and pre-
vent their merging. The noise clustering al-
gorithm [2] has a rejecting process for outliers
or noisy data, McLachlan and Peel [7] use t-
student distributions to better model outliers
thanks to heavier tailed distributions.

In this paper, we examine the solution pro-
vided when considering the typicality degree
framework, whose principles appear relevant
for clustering, as described in the next section.

3 Typicality degrees

Principle Typicality degrees were first in-
troduced to build fuzzy prototypes to charac-
terise categories [10]: a prototype is an ele-
ment chosen to represent a data set and sum-
marise it. The method proposed by Rifqi [10]
to construct fuzzy prototypes uses the notion
of typicality defined by Rosch [11]: according
to this approach, the typicality of a point de-
pends on its resemblance to other members

of the category (internal resemblance) and its
dissimilarity to members of other categories
(external dissimilarity). The prototype de-
rived from such typicality degrees then under-
lines both the common points of the category
members and their discriminative features as
opposed to other categories.

The prototype construction method can be
decomposed into three steps: computation of
(i) the internal resemblance and external dis-
similarity, (ii) typicality degrees and (iii) the
prototype itself.

Internal resemblance and external dis-
similarity For a given data point x belong-
ing to a category C, its internal resemblance
R(z,C) and external dissimilarity D(z,C)
are respectively defined as its average resem-
blance to the other members of the category
and its average dissimilarity to points belong-
ing to other categories:

R(z,C) = avg(p(z,y),y € C) (7)
D(z,C) = avg(é(z,y),y € C) (8)

p (resp. 9) is a resemblance (resp. dissimi-
larity) measure, i.e. a function that takes as
input two data points and returns a value in
the interval [0, 1] that measures the similarity
(resp. difference) between the two points [1].

Typicality degree The typicality degree of
point z for category C' is then defined as the
aggregation of the internal resemblance and
external dissimilarity, as

T(x70) = (,D(R(:L',C),D(:L',C)) (9)

where ¢ denotes an aggregation operator such
as the average mean or the symmetric sum for
instance. It determines the semantics of the
prototype, e.g. its being rather a central or
discriminative element (see [6] for discussion).

Prototype computation Lastly, the pro-
totype is computed as the aggregation of the
most typical data, as

pc = Tﬂ({%T(iﬂa C) > T}) (10)

where 7 is a user-defined threshold and v an
aggregation operator: for fuzzy data, it is a



fuzzy aggregator that takes as input fuzzy sets
and returns a fuzzy set [10]. For crisp data, it
can be a weighted mean, or a more complex
operator that aggregates crisp values into a
fuzzy set, so as to build a prototype having
an imprecise description [6].

4 Typicality degrees for clustering

4.1 Justification

The previous definition of typicality degrees
implies that, for specific choices of the aggre-
gator ¢, two kinds of points can have low ty-
picality: (i) outliers, that are far away from
the core points of the category and thus have
low internal resemblance, (ii) points located in
overlapping areas between categories, as they
are not distinct enough from other categories
and thus have low external dissimilarity.

Now these two cases correspond to points that
should have low influence on cluster parame-
ter in a clustering task: clusters are expected
to be compact and separable, which means
they should be robust against outliers and
not concentrated in overlapping areas where
the distinction between clusters may be dif-
ficult. Typicality degrees are directly related
to these two desired properties, thus it seems
justified to adapt them to unsupervised learn-
ing to perform clustering.

4.2 Proposed algorithm architecture

The underlying idea of the typicality-based
clustering algorithm, TBC, is to use typicality
degrees as weighting coefficients to determine
the cluster parameters. TBC is not based on
the optimisation of a cost function, but di-
rectly on update functions to be alternated:
it consists in alternatively computing typica-
lity degrees for each data point, and updating
the cluster parameters according to eq. (1)
and (2) using these typicality degrees. These
two steps are alternated until convergence of
the centre positions.

The cluster parameter update process is then
the same as in the Gustafson-Kessel algorithm
(cf. eq. (1-2)). In the following, the typica-
lity degree update process is described, as an

adaptation of the previous methodology when
the available information are cluster centres,
covariance matrices and typicality degrees ob-
tained from the previous step.

4.3 Assignment computation

Assignment computation role The com-
putation of typicality degrees relies on a crisp
partition of the data: the typicality degree of
a point is non-zero only for the category it
belongs to; moreover assignment is necessary
to compute internal resemblance and external
dissimilarity.

In the clustering case, clusters must be ques-
tioned, thus typicality is computed with re-
spect to all clusters and not only the one a
point is assigned to.

Thus the assignment is only used for the com-
putation of internal resemblance and external
dissimilarity: for a given point x, and a cluster
C, the internal resemblance is defined as the
average resemblance between z and points as-
signed to C. When, in turn, typicality degrees
are computed for points assigned to C, they
are computed for all clusters and not only
with respect to C. The assignment remains
only a hypothesis.

Assignment definition As seems natural,
TBC assigns points to clusters according to
their maximal typicality degree: a point is as-
signed to the cluster it is most typical of.

A special case is considered for points for
which all typicality degrees are small (below
0.1 in our tests): such points, that corre-
spond to outliers, should not be assigned to
any cluster, as they are not typical of any. In-
deed, if they were assigned to a cluster, they
would arbitrarily lower the internal resem-
blance value for all points in the cluster: they
would correspond to an especially low resem-
blance value and would thus distort the aver-
age value computation (see eq. (7)), disturb-
ing the whole process. It is to be noted that
these points are still involved in the cluster
parameter estimation, with low influence due
to their low typicality degrees. Their special
handling only concerns the assignment step.



4.4 Comparison measure choice

Having defined a crisp partition of the data
according to previously obtained typicality
degrees, internal resemblance and external
dissimilarity can be computed for all points
and all clusters. To that aim, comparison
measures must be defined, they involve the
available cluster covariance matrices.

Resemblance measure Resemblance
measures are normalised functions that
indicate the extent to which two points
are similar [1]. By analogy with PCM (see
eq. (5)), the Cauchy function is used

1
p(z,y) = m
n
The resemblance measure is applied to points
belonging to the same cluster, therefore it
should be adapted to each cluster: one re-
semblance measure per cluster is considered
by using for each cluster the distance asso-
ciated to its covariance matrix (see eq (3)).
The normalising coefficient 7 is also deter-
mined locally: its square root corresponds to
the distance from which the resemblance value
is smaller than 0.5. Its value is chosen as be-
ing half the cluster diameter.

At the beginning of the process these cluster
diameters are not known, as neither clusters
nor their covariance matrices are known. As
inappropriate normalisation factors could bias
the resemblance measure and lead to inappro-
priate resemblance values, we apply the same
process as for PCM: after convergence of the
alternating scheme, the initial values for these
parameters are updated and the alternating
scheme is applied again with the new values.

Dissimilarity measure Dissimilarity mea-
sures are normalised functions that indicate
the extent to which two points are different
one from another [1]. A measure also based
on a Cauchy function is used

1
1 _I_ d2($,y)

n
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with a different distance function d and an-
other normalisation coefficient 7: the dis-

similarity measure is used to compute exter-
nal dissimilarities, i.e. it has an inter-cluster
meaning. Therefore, d is here chosen to be the
Fuclidian distance, and 7 is defined so that
the dissimilarity is 0.9 for points such that
their distance equals half the data diameter.

4.5 Aggregation operator choice

Typicality degrees are then deduced from in-
ternal resemblance and external dissimilarity
by aggregation. In the supervised case, many
choices are possible, depending on the desired
semantics of the prototype [6].

In the clustering case, the aggregator should
be a conjunctive operator, so that points are
considered as typical only if they possess both
high internal resemblance and external dis-
similarity. Otherwise, outliers may have high
typicality degrees for all clusters due to their
high external dissimilarity (in the supervised
case, this can be interesting if a discrimina-
tive prototype is desired). Therefore a t-norm
is chosen (Lukasiewicz t-norm in the tests,
¢(a,b) = max(a +b—1,0)).

4.6 Overall algorithm

TBC can be summarised as follows. It only
requires the user to set a single argument,
the number of clusters. After an initialisation
step through a few iterations of FCM, initial
values for the data partition and the cluster
diameters are estimated and used for the com-
putation of an initial typicality degree matrix.
The iterating loop is then applied a first time.
Cluster diameters are then updated, and the
loop is applied a second time.

The iterating loop consists in alternatively
computing typicality degrees and cluster pa-
rameters (centres and covariance matrices)
until convergence of the centre positions.
Typicality degrees are computed as detailed
above. The cluster parameter update equa-
tions are the same as in the Gustafson-Kessel
algorithm (cf. eq. (1) and (2)), using as influ-
ence coefficients the typicality degrees.



Figure 1: Results obtained with FCM.

5 Numerical experiments

5.1 Considered setup

Experiments were performed to compare the
proposed TBC algorithm with the Gustafson-
Kessel algorithm with fuzzy and possibilistic
partitions (respectively denoted GKfcm and
GKpcem) and the adaptation of the PFCM [9]
algorithm to the detection of ellipsoidal clus-
ters (denoted GKpfcm). The latter consists
in applying the update equations for cluster
parameters (eq. (1-2)), using as weighting co-
efficients the coefficients as defined in eq. (6).

The considered artificial dataset consists of
two Gaussian distributed clusters and a small
outlying group in the upper right corner (see
figures). The lower and upper Gaussian clus-
ters respectively have for centres and covari-
ance matrices,

w1 0 O 447 0
[m]:[o 2.5]21:22:[ 0 022
For the figures, points are assigned accord-
ing to the maximal value of their coefficient
(membership degree, possibilistic coefficient
or typicality degree depending on the consid-
ered method). In the GKpfcm case, assign-
ment is performed using the membership de-
grees. Each symbol depicts a different clus-
ter, the plus sign represents the cluster cen-
tres, the ellipses represents the covariance ma-
trix, the dashed one is the true covariance. In
the case of GKpcm and TBC, stars represent
points for which no assignment is relevant, i.e.

points for which coefficients are smaller than
0.1 for both clusters.

Figure 2: Results obtained with the proposed
typicality-based clustering algorithm TBC.

Parameters were chosen as ¢ = 2, m = 2
for GKfcm and GKpem, a = 1, b = 5,
m = n = 1.5 for GKpfcm, corresponding to
values leading to the best results.

5.2 Obtained results

Figure 1 shows the results obtained using the
fuzzy c-means to underline the necessity of ex-
tracting the covariance matrices to detect the
expected subgroups: FCM cannot adapt to
the elongated clusters and produces a coun-
terintuitive result.

Figures 2 and 3 show the obtained partitions
with the Gustafson-Kessel variants, table 1
the values of the cluster parameters. The indi-
cated errors are computed as the square root
sum of the square difference with the true pa-
rameters (w; and X;, i = 1..2).

Table 1 shows that TBC is indeed compe-
titive, it produces the best estimates for the
cluster parameters. In particular, it leads to a
clearly smaller error value for the covariance
matrices: the estimates are very close to the
true values for wy; and X1 and better for the
second cluster than the ones provided by the
other algorithms.

GKpcm fails to identify the expected clus-
ters (see also fig. 3b) because it produces two
confounded clusters that do not reflect the
dataset structure. Still, it can be seen that
the outlying data are recognised as specific
data: they are not assigned to any of clus-
ter, as the coefficients are very small for both
clusters. Likewise, the extreme points of the
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Figure 3: Results obtained with (a) GKfem, (b) GKpem, (¢) GKpfem.
Algorithm GKfem GKpcm GKpfem TBC
Cont 0.15 0.03 0.01 0.1 0.06 —0.01 0.05 —0.04

entres —0.08 2.56 0.00 0.85 —0.11 254 —0.09 255
Centre error 0.11 0.84 0.06 0.05
Covari ) 3.00 0.14 1.07 —0.10 3.77 0.10 445 0.04
ovariance 0.14 0.34 —0.10  0.94 0.10 0.27 0.04 0.23
Covari ) 3.23 0.27 1.08 —0.10 3.30 0.28 5.19 0.13
ovariance 0.27 0.33 ~0.10 0.94 0.28 0.33 0.13 0.20
Cov. error 1.98 4.91 1.43 0.75

Table 1: Cluster parameters and error obtained by GKfcm, GKpem, GKpfem and TBC.

two elongated clusters are considered as spe-
cial points and not assigned to the clusters.

It can be seen that GKfcm is influenced by
the outliers, in particular, the covariance ma-
trices are attracted by the outlying group (see
fig. 3a and table 1). Its influence is especially
noticeable in the estimation of the covariance
between the two attributes of the upper Gaus-
sian: the latter gets a high value, because the
outlying group distorts the estimation. On
the contrary, TBC is not biased towards these
values, which explains its very low error value.
For GKfcm, the error is due to the member-
ship degree normalisation process: the latter
cannot take simultaneously small values for
both clusters. The outlying points have mem-
bership degrees around 0.6 and 0.4 for the up-
per and lower Gaussian cluster respectively.

In order to better interpret the results of the
GKpfem algorithm, figure 4a represents the
weighting coefficient values for all data as a
function of their position on the y-axis: it can
be seen that, for GKpfcm, data in the outlying
group have a weight comparable to the major
part of the data in the bigger clusters. In TBC
case (fig. 4b), their typicality is significantly

lower, which explains their lower influence.

As regards the comparison between GKpfcm
and TBC, it is moreover to be noted that
the weighting coefficients can be exploited di-
rectly in the case of TBC, to characterise
the data set further, whereas they do not
have an intuitive interpretation in the case of
GKpfcm. This is due to the fact that GKpfcm
combines information about absolute and re-
lative resemblance, whereas typicality degrees
are based on more complementary compo-
nents.

Figure 4 also shows that typicality degrees
take into account both internal resemblance
and external dissimilarity: the typicality de-
grees curves are not symmetric as compared
to the mean of the clusters. Indeed, points
located between the two clusters tend to have
smaller typicality degrees, because they are
not distinct enough from points belonging to
other clusters. This is the reason why some
points are not assigned (see fig. 2) in the area
between the two Gaussian clusters. Glob-
ally unassigned points correspond to points
having either a too low internal resemblance
(outliers) or a too low external dissimilarity.
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Figure 4: Values of the weighting coefficients
used in GKpfem (eq. (6)) and typicality de-
grees for all data points as a function of their
position on the y-axis. Note that the scale
differs from one graph to the other.

This property can lead to a cluster repulsion
effect: data located in such a way between
cluster only apply a small attraction on the
cluster centres that are thus not attracted to-
wards overlapping areas. This effect is simi-
lar to that introduced by [12] in the objective
function: in TBC, it follows from the defini-
tion of the weighting coefficient and it is not
expressed in the cluster centre definition.

6 Conclusion

This paper presented the extension of the
typicality degree framework to unsupervised
learning to perform clustering. First results
indicate promising properties of the proposed
algorithm and justify the proposed approach.
A more comprehensive study of the algorithm
is necessary to validate it.

One limitation of TBC comes from the fact
that typicality degrees are based on a crisp
partition of the data. This imposes an as-
signment step that could favourably be re-
placed by a more flexible definition of typi-
cality degrees based on membership degrees.
It must be noted that this step requires a pre-
cise study: membership degrees are related to
the resemblance to the cluster centre, which is
related to the notion of internal resemblance.
It is thus necessary to examine the role of the
latter in the computation of the internal re-
semblance involved in the process itself.
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