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f.klawonn@fh-wolfenbuettel.de

RUDOLF KRUSE

Faculty of Computer Science, University of Magdeburg,
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This paper presents different techniques to visualize high-dimensional fuzzy rule bases
in relation to the classified data. The degree of membership to influential rules can be
visualized for an entire data set. This enables the observer to detect conflicting or error-
prone rules as well as misclassified feature vectors. Results are shown on a benchmark
data set and on a weather data set that is used to predict flight durations on a major
European airport.
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1. Introduction

Fuzzy rules are a powerful instrument to model classification issues. The strength

of fuzzy rules is their simple interpretability and their easy extraction from data or

generation by hand. Nevertheless, if the data set is high-dimensional in the feature

space and the underlying data structure is rather complicated, a resulting rule

system can be fairly complex.

We propose in this paper to use multidimensional scaling (MDS) to map a

high-dimensional rule base on the plane.1 With MDS and related methods one tries

to find a low-dimensional representation of the data while preserving distances
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or — generally — dissimilarity between data as an objective function for such

transformations. The idea is to determine dissimilarity between the single rules

of the classifier and then to apply MDS in order to map the rule representatives.

This concept has been successfully applied on comparable issues.2, 3 Additionally,

classified feature vectors will be mapped while preserving membership degrees to

the two rules that yield the highest response to the respective feature vector. We

will apply this technique on a benchmark example to demonstrate various aspects

and benefits of the proposed tool. Furthermore we show results from applying this

method on weather data that is used to predict flight durations of arriving aircraft

at Frankfurt Airport.

The rest of the paper is organized as follows: In Section 2 we recall Sammon’s

mapping as a common representative for multidimensional scaling. In Section 3

we describe the proposed method. In Section 4 we present our results. Finally we

conclude with Section 5.

2. Multidimensional Scaling

Multidimensional scaling (MDS) is a method that estimates the coordinates of a

set of n objects Y = {y1, . . . , yn} ⊂ R
q in a feature space of specified (low) dimen-

sionality (q � p with q, p ∈ N) that come from data X = {x1, . . . , xn} ⊂ R
p

trying to preserve the distances and dissimilarity between pairs of objects respec-

tively. Different ways of computing dissimilarity and various functions relating the

dissimilarity to the actual data are commonly used. These dissimilarity values are

usually stored in a dissimilarity matrix

Dx =
(

dx
ef

)

, dx
ef = ‖xe − xf‖ , e, f = 1, . . . , n . (1)

The estimation of the coordinates will be carried out under the constraint that

the error between the dissimilarity matrix Dx of the data set and the dissimilar-

ity matrix Dy =
(

d
y
ef

)

, d
y
ef = ‖ye − yf‖ , e, f = 1, . . . , n of the corresponding

transformed data set will be minimized.

Thus, different error measures to be minimized can be considered, i.e. the ab-

solute error, the relative error or a combination of both. A commonly used error

measure, the so-called Sammon’s mapping

E =
1

n
∑

e=1

n
∑

f=e+1

dx
ef

n
∑

e=1

n
∑

f=e+1

(

d
y
ef − dx

ef

)2

dx
ef

(2)

describes the absolute and the relative quadratic error.4 To determine the trans-

formed data set Y by means of minimizing error E a gradient descent method can

be used. By means of this iterative method, the parameters yk to be optimized, will

be updated during each step proportional to the gradient of the error function E.
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Calculating the gradient of the error function leads to

∂E

∂yk

=
2

n
∑

e=1

n
∑

f=e+1

dx
ef

∑

f 6=k

d
y
kf − dx

kf

dx
kf

yk − yf

d
y
kf

. (3)

After random initialization for each projected feature vector yk a gradient descent

is carried out and the dissimilarity values d
y
ef as well as the gradients ∂E

∂yk
will

be recalculated again. The algorithm terminates when E becomes smaller than a

certain threshold. A crucial step when applying MDS to visualize a fuzzy rule base

is to determine the dissimilarity matrix. The following section discusses this issue.

3. Visualization and Classification of High-Dimensional Data

Instead of constructing an entire rule base by hand, one can automatically derive

rules from data. Fuzzy rules are often obtained from fuzzy clusters by projecting the

clusters to the coordinate spaces, but also various other techniques are commonly

used. Typically, fuzzy rules describe an inference scheme:

R : if antecedent then consequent

where the antecedent is described by the input variables:

x1 is A(1)
and . . . and x` is A(`)

and the consequent by a single output variable y is B1. Input variables are defined

by means of membership functions. A trapezoidal membership function is depicted

in Figure 1. Output variables, as they are considered here, are always singletons.

Singletons can be taken as the special forms of the trapezoidal function, where the

four parameters < ai, bi, ci, di > are identical.

Fig. 1. A trapezoidal membership function.

1There are also other concepts of fuzzy rules, e.g. where the rule consequent is employed as a
linear function of the input variables, which are not considered here.
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Despite the good interpretability of single fuzzy rules, the analysis of an entire rule

base can be a tedious task. Particularly if the data comprehend many attributes,

i.e. the input data is high-dimensional, interpretation becomes difficult.

When generating fuzzy rules from data, different rule styles are commonly

formed. For instance, an algorithm is proposed5 that generates fuzzy rules from

data, where each rule holds an independent membership function for each variable

of the data. The algorithm forms trapezoidal membership functions which are de-

fined by four parameters < ai, bi, ci, di > (see Figure 1). The rule’s core region for

attribute i is defined by parameter bi and ci. It describes the region of the mem-

bership function that is supported by training examples during the rule learning

phase. The rule’s support region for attribute i is defined by parameter ai and di.

The support region might be constrained as the figure shows, but also open to ±∞.

Having this rule style it is easy to derive rule center vectors (rule representatives)

for every single rule. Such a center vector vRe
can be determined by means of the

core region’s center for each attribute i of the rule

v
(i)
Re

= b
(i)
Re

+

∣

∣

∣
b
(i)
Re

− c
(i)
Re

∣

∣

∣

2
. (4)

As mentioned earlier, Sammon’s mapping produces low-dimensional layouts based

on a dissimilarity matrix. Dissimilarity of two rules Re and Rf can be defined by

means of the distance of the according pair of rule center vectors

def = ‖vRe
− vRf

‖.

The majority of rule construction algorithms tries to form rules that use a

minimal number of variables to describe the classification task.6, 7 Then rules cannot

be represented by means of center vectors and dissimilarity matrices cannot be

defined over distances between rule representatives. Nevertheless, dissimilarity of

rules can be defined anyhow.

Dissimilarity can be defined by comparing single membership functions of rule

pairs. Starting with an initially zero valued dissimilarity matrix, dissimilarity of a

rule pair can be then augmented if membership functions for the same variable do

not overlap

w
(i)
ef =

{

1 , if A
(i)
Re

∩ A
(i)
Rf

= ∅

0 , otherwise
(5)

def =
∑̀

i=1

w
(i)
ef . (6)

Dissimilarity of a rule pair that is not overlapping (that means any of the member-

ship functions are disjoint)

A
(i)
Re

∩ A
(i)
Rf

= ∅ , ∀i (7)
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Fig. 2. An exemplary rule base with individual membership functions for each variable.

or that predicts different classes

BRe
6= BRe

(8)

can also be augmented. A suchlike derived dissimilarity matrix can be used in a

straight forward manner with Sammon’s mapping.

Figures 2 and 3, both show a rule base with individual membership functions

for each variable and a rule base with a reduced number of membership variables,

respectively. It can be easily seen in Figure 3 that rules R3 and R4 are similar to

a certain degree since the membership functions for variable 2 are identical and

the membership functions for variable 5 overlap partly. Further, both rules predict

the same class in this example — namely class 3. Thus dissimilarity d34 will be

fairly low for this rule pair. Contrary, rule R8 and rule R9 are quite dissimilar

since several membership functions for identical variables do not or or almost not

overlap. Moreover, both rules predict different classes. For rule pairs whose rules

mainly cover different variables, dissimilarity can hardly be determined. Such a case

can be observed with rule pair (R4,R11). Only variable 2 gives a direct hint for

dissimilarity of this rule pair.

When learning classifiers based on high-dimensional data, the classifier itself

will also be high-dimensional somehow. Thus its visualization including the visual-

ization of the classified data is all but trivial. As discussed in the previous section,

Sammon’s mapping finds low-dimensional layouts trying to preserve a given dis-

similarity matrix. As mentioned earlier, a dissimilarity matrix can be easily defined

for arbitrary fuzzy rule bases. Thus, we can apply Sammon’s mapping in order to

find a 2-dimensional mapping of the rule base. Once the rule base is mapped on
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Fig. 3. An exemplary rule base with membership functions for a reduced number of variables.

the plane it remains to visualize the classified data. Due to dimension reduction we

cannot preserve all characteristics of the data exactly. Indeed, it is even better to

emphasize essential facts and to smooth dispensable information. In our example

it is of no importance to preserve the data structure, e.g. the relative position of

data points, but the degree of firing to the rules yielding the highest membership

degree to the respective data point. We propose to place each single data point

proportional to both rule representatives that yield the highest response.

In the following section we will demonstrate our visualization tool on a bench-

mark example and on a practical example originating from an active industrial

application as well.

4. Results

Figure 4(a) depicts the result of the proposed visualization tool on the Wine data

set. The Wine data set results from a chemical analysis of wines grown in the
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(a) 2D-Visualization of a rule classifier for the Wine data set.
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(b) 2D-Visualization of a rule classifier for the Aviation data set.

Fig. 4. 2D-Visualization of rule classifiers.
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same region in Italy but derived from three different cultivars. The analysis deter-

mined the quantities of 13 constituents found in each of the three types of wines.

For this example the fuzzy rule learning algorithm as described in Ref. 5 was

applied. Ten rules were obtained which classify the entire data set correctly. Rule

center vectors are visualized by big squares, diamonds and circles (2, 3, #). Connec-

tions between rule center vectors (drawn by a bold line) indicate their neighborhood

regarding the core region. Rules of the same class are visualized by the same sym-

bol. Additionally, data objects are visualized by means of small symbols. A feature

vector’s membership to a certain rule can be identified by means of its symbol and

its distance to rule center vectors.

The figure reveals some interesting facts. In consequence of placing vectors in

the plane depending on their membership degree to the two rules that yield the

highest response, classified feature vectors will be placed on an imaginary line that

connects two rule center vectors. Note, feature vectors may not only be represented

by neighboring rules corresponding to the core-based neighborhood definition whose

neighborhood is visualized by lines in the figure. As the figure reveals, for some

neighboring rules the data set contains no data that lie in the core regions of those

rules. Two out of ten rules represent data that lie not in any of the core regions

of these rules. If two rules yield similar membership degrees to a feature vector,

it will be placed in the middle between these rule center vectors. Of course, the

classification that will be done in such cases is not that confiding since the decision

comes randomly if no further information is available.

The depicted classifier is almost ideal. Despite of one conflicting 3-rule that

overlaps with one 2-rule and one #-rule no misclassifications occur. There are also

no rule pairs representing different classes that compete for the same data. Actually,

the visualization tool can provide much more insight into classifiers that comprise

problematic aspects. The following example will demonstrate some more prospects

of this technique.

As a second example the visualization tool is applied on data that originates

from an active industrial application. The data set describes the weather situation

at Frankfurt Airport. Recent studies concerned the prediction of aircraft flight

durations of arriving aircraft depending on the weather situation present at the

airport.8–10 Predicting the delay that an aircraft may have allows to retard flights

on other airports that depart to the airport but also to coordinate ground activities

such as baggage handling.

Figure 4(b) shows a visualization of the rule base from Figure 3 that is generated

by the NEFCLASS fuzzy rule learner.7 In this example the flight duration times

were grouped into three classes: short flights (#), medium flights (2) and long flights

(3). The visualization reveals that the rule base contains some overlapping rules —

rules that get non-zero membership degrees to a shared subset of data of the same

class — but also two conflicting rules that get non-zero membership degrees to a

shared subset of data of a different class. Misclassified data are visualized by circled

cross (⊗). Note, misclassified medium flights and long flights are suppressed here
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in order to keep the visualization clear. Eye-catching are some misclassified short

flights whose two highest membership degrees get rules that actually classify long

flights. Investigations on the raw traffic data have shown that the flight durations

for these flights where originally missing. These missing values were replaced by

the mean value which obviously does not suitably reflect the reality. There are also

some short flights that get high membership degrees to rules that classify medium

and long flights. Despite of bad weather conditions and demanding traffic at the

airport these aircraft could land very fast.

5. Conclusions

In this paper we have presented a visualization technique that provides a concise

view to fuzzy rule bases and to the classified data on an integrated mapping. As

an extension to earlier proposals, we also described new approaches to measure

dissimilarity. By means of this new tool meaningful interpretations can be extracted.

Neighboring, conflicting or overlapping rules can be found and outlier data can be

identified. We demonstrated these aspects with two practical examples. It would be

also interesting to see visualization of fuzzy systems on regression problems. While

the winner-takes-all principle is applied on classification problems, the weighted

average of all rules is determined with regression. Beside the research on further

dissimilarity measures, visualization of fuzzy regressors will be a challenge of future

work.
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