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Abstract

An encompassing, self-contained introduction to the foundations of the broad field of fuzzy clustering is presented. The fuzzy
cluster partitions are introduced with special emphasis on the interpretation of the two most encountered types of gradual cluster
assignments: the fuzzy and the possibilistic membership degrees. A systematic overview of present fuzzy clustering methods is
provided, highlighting the underlying ideas of the different approaches. The class of objective function-based methods, the family of
alternating cluster estimation algorithms, and the fuzzy maximum likelihood estimation scheme are discussed. The latter is a fuzzy
relative of the well-known expectation maximization algorithm and it is compared to its counterpart in statistical clustering. Related
issues are considered, concluding with references to selected developments in the area.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Cluster analysis is a technique for classifying data, i.e., to divide a given set of objects into a set of classes or
clusters based on similarity. The goal is to divide the data set in such a way that cases assigned to the same cluster
should be as similar as possible whereas two objects from different clusters should as dissimilar as possible. Thus
one tries to model the human ability to group similar objects or cases into homogeneous classes or categories. The
motivation for finding and building classes in this way can be manifold (Bock, 1974). Cluster analysis is primarily a
tool for discovering previously hidden structure in the set of unordered objects. In that case one assumes that a “true”
or natural grouping exists in the data. However, the assignment of objects to the classes and the description of these
classes are unknown. By collecting similar objects into clusters one tries to reconstruct the unknown grouping in the
hope that every found cluster represents an actual type or category of objects. Cluster analysis can as well be used as a
method for data reduction. Then it is merely aiming at a simplified representation of the set of objects which allows for
dealing with a manageable number of homogeneous groups instead of with a vast number of single objects. Only some
mathematical criteria can decide on the composition of clusters when classifying data sets automatically. Therefore,
clustering methods are endowed with distance functions that measure the dissimilarity of presented examples. As a
result, one yields a partition of the data set into clusters regarding the chosen dissimilarity relation.
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This introductory article is organized as follows: Section 2 motivates the use of gradual assignments of data to clusters
in cluster analysis. The introduced notion of membership degrees and fuzzy clusters is substantiated by the theory of
fuzzy sets. Section 3 introduces the two major types of gradual assignments: the fuzzy memberships and the possibilistic
membership degrees. Definitions and examples of the two kinds of fuzzy data partitions are given. Section 4 is dedicated
to fuzzy clustering algorithms. Approaches that are based on a global criteria for optimality of clustering results are
presented in Section 4.1. These algorithms minimize the objective functions they are based on using an alternating
optimization (AO) scheme in order to yield either fuzzy (Section 4.1.1) or possibilistic clustering models (Section
4.1.2). The fuzzy and the possibilistic variants of the objective function-based algorithms are compared in Section 4.2.
The alternating cluster estimation (ACE) framework is presented in Section 4.3. The ACE methodology allows the
formulate a separate class of algorithms which is patterned on AO but abandons the formulation and minimization of
criterion functions for clustering. Instead, the user is given the flexibility to choose desired fuzzy set shapes for the
clusters that meet application-specific requirements. Fuzzy maximum likelihood estimation (FMLE) is the matter of
Section 4.4 as well as a comparison to its close relative—the expectation maximization (EM) algorithm. Section 5
concludes the paper pointing to related issues and selected developments in the field.

2. What is fuzzy with fuzzy clustering?

Clustering methods can be distinguished regarding how they assign data to clusters, i.e., what type of partitions they
form. In classical cluster analysis each datum must be assigned to exactly one cluster. These classical methods yield
exhaustive partitions of the example set into non-empty and pairwise disjoint subsets. Such hard assignment of data to
cluster can be inadequate in presence of data points that are equally distant to two or more clusters. Such special data
points can represent hybrid-type or mixture objects which are equally similar to two or more types. A hard partition
forces the full assignment of such data points to one of the clusters, although they should equally belong to all of them.
For improved expressiveness of cluster solutions, some of these “crisp” cluster analysis techniques allow overlapping
clusters. Then each datum must be assigned to at least one cluster, but with the possibility of simultaneous assignment
to further clusters. Even though membership in multiple clusters is allowed, the hard cluster assignments in traditional
clustering methods do not reflect the (un-)certainty with which data are assigned to the different classes.

Fuzzy cluster analysis therefore allows gradual memberships of data points to clusters in [0, 1]. This gives the
flexibility to express that data points belong to more than one cluster at the same time. Furthermore, these membership
degrees offer a much finer degree of detail of the data model. Aside from assigning a data point to clusters in (equal)
shares, membership degrees can also express how ambiguously or definitely a data point should belong to a cluster.
The concept of these membership degrees is substantiated by the definition and interpretation of fuzzy sets. A fuzzy set
� of a set X is a mapping (Zadeh, 1965):

� : X → [0, 1]. (1)

Let �A be a fuzzy set of the set X and let B be a classical subset of X, B ⊂ X. Then the value �A(x) is called grade of
membership or membership degree of x to �A. It specifies to what extent the object x satisfies some imprecise property
A modeled by �A (or to what degree it fits to a vague concept A defined by its corresponding membership function �A).
While for the conventional subset B some object x either belongs to B (x ∈ B) or not (x /∈ B), the fuzzy set of �A allows
smooth transitions for the membership of the elements of its universe X between �A(x) = 1 (full membership) and
�A(x)=0 (not a member). A value of �A(x) close to 0 means a low degree of membership, a value close to 1 means high
degree of belonging of x to the fuzzy set. From the definition it is obvious that fuzzy sets are actually functions. They
can be seen as generalization of characteristic functions of classical sets. Characteristic functions indicate membership
to the set with 1, and otherwise with 0, if the given element is not a member of the set. Fuzzy sets, however, allow
all degrees of belonging in [0, 1]. In applications of fuzzy sets their values lying in the unit interval are either defined
by people who use fuzzy sets for modeling vague concepts (like linguistic terms) or they come from data. Then the
membership functions are fitted to the data for obtaining hopefully accurate and useful models of the process from
whence the data are derived.

In fuzzy clustering the memberships of data points to clusters have been fuzzified to allow fine grained solution
spaces in form of fuzzy partitions of the set of given examples X = {�x1, . . . , �xn}. Whereas the clusters �i of data
partitions have been classical subsets in traditional methods, they are now represented by the fuzzy sets ��i

of the
data set X. Complying to fuzzy set theory, the cluster assignment uij is now the membership degree of a datum �xj to
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Fig. 1. The first example for a fuzzy partitioning by Ruspini (1969).

cluster �i , such that: uij = ��i

(�xj

) ∈ [0, 1]. Since memberships to clusters are fuzzy, there is not a single label that is
indicating to which cluster a data point belongs to. Instead, fuzzy clustering methods associate a fuzzy label vector to
each data point �xj that states its memberships to the c clusters:

�uj = (
u1j , . . . , ucj

)T. (2)

The c × n matrix U = (
uij

)= (�u1, . . . , �un) is then called a fuzzy partition matrix. There are two commonly used types
of fuzzy data partitions that can be distinguished by the set of constraints that the gradual memberships have to satisfy.
The definitions and differentiated interpretations of the partition types are given in the next section.

Example. Ruspini (1969) was the first researcher who suggested the use of fuzzy sets in clustering in 1969. His
idealized and first example of a fuzzy classification of the simple “butterfly” data set with two clusters is shown in
Fig. 1 (it is kind of the butterfly that started everything). The data points in the figure are associated with their label
vectors, which state the membership degrees to the left and to the right cluster. The “cores” of the left and the right
cluster are the outer left and the outer right column of examples, respectively. Ruspini (1969) noted the following
advantages over a conventional clustering representation: points in the center of a cluster can have a degree equal to 1,
while boundary points between the core and some other class can be identified as such (i.e., their membership degree
to the class they are closer to is not equal to 1). “Bridges” or stray points may be classified as undetermined with a
degree of indeterminacy proportional to their similarity to core points. The characteristics of the data set in Fig. 1 help
to depict the higher expressiveness of fuzzy partitions. The equidistant data point in the middle of the figure would
have to be arbitrarily assigned with full weight to one of the clusters if classical (“crisp”) partitions were allowed only.
In this fuzzy partition, however, it can be associated with the equimembership vector (0.5, 0.5)T. Crisp data partitions
can further not express the difference between data points in the center and those that are rather at the boundary of a
cluster. Both kind of points would be fully assigned to the cluster they are most similar to.

3. Fuzzy partitions

Fuzzy data partitions are meant to provide a much richer means for representing cluster structure. The fuzzy clustering
methods described in the next section are thus enabled to find more realistic models, since boundaries between many
classes are in fact very badly delineated (i.e., really fuzzy). In the field of fuzzy clustering two types of fuzzy cluster
partitions have evolved. They differ in the constraints they place on the membership degrees and how the membership
values should be interpreted. We begin our discussion with the most widely used type, the probabilistic fuzzy partitions,
since they have been proposed first. Notice that in literature they are sometimes just called fuzzy partitions (dropping
the word “probabilistic”). We use the subscript f for the probabilistic fuzzy approaches and, in the sequel, p for the
possibilistic models. Latter constitute the second type of fuzzy partitions. Both can be seen as generalizations of classical
(hard) data partitions.

Definition 3.1 (Probabilistic fuzzy cluster partition). Let X={�x1, . . . , �xn} be the set of given examples and let c be the
number of clusters (1 < c < n) represented by the fuzzy sets ��i

, (i = 1, . . . , c). Then we call Uf = (
uij

)= (
��i

(�xj

))
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Fig. 2. A situation in which the probabilistic assignment of membership degrees is counterintuitive for datum �x2.

a (probabilistic) fuzzy cluster partition of X if

n∑
j=1

uij > 0 ∀i ∈ {1, . . . , c} (3)

and
c∑

i=1

uij = 1 ∀j ∈ {1, . . . , n} (4)

hold. We interpret uij ∈ [0, 1] as the membership degree of datum �xj to cluster �i relative to all other clusters.

Constraint (3) guarantees that no cluster is empty. This corresponds to the requirement in classical cluster analysis
that no cluster, a subset of X, is empty. Condition (4) ensures that the sum of the membership degrees for each datum
equals 1. This means that each datum receives the same weight in comparison to all other data and, therefore, that
all data are (equally) included into the cluster partition. This is related to the requirement in classical clustering that
partitions are formed exhaustively. As a consequence of both constraints no cluster can contain the full membership of
all data points.

Example. Ruspini’s fuzzy classification of the “butterfly” data set in the previous section (in tandem with its intended
meaning) is a (probabilistic) fuzzy data partition.

Condition (4) corresponds to a normalization of the memberships per datum. Thus the membership degrees for a
given datum formally resemble the probabilities of its being a member of the corresponding cluster. Although often
desirable, the “relative” character of the probabilistic membership degrees can be misleading (Timm et al., 2004).
Fairly high values for the membership of datum in more than one cluster can lead to the impression that the data
point is typical for the clusters. But this is not always the case. Consider, for example, the simple case of two clusters
shown in Fig. 2. Datum �x1 has the same distance to both clusters and thus it is assigned a membership degree of about
0.5. This is plausible. However, the same degrees of membership are assigned to datum �x2 even though this datum
is further away from both clusters and should be considered less typical. Because of the normalization, however, the
sum of the memberships has to be 1. Consequently, �x2 receives fairly high membership degrees to both clusters. For
a correct interpretation of these memberships one has to keep in mind that they are rather degrees of sharing than of
typicality, since the constant weight of 1 given to a datum must be distributed over the clusters. A better reading of the
memberships, avoiding misinterpretations, would be (Höppner et al., 1999): “If the datum �xi has to be assigned to a
cluster, then with the probability uij to the cluster i.”

Probabilistic memberships are somewhat counterintuitive and do not reflect how typical the data point is, especially
if the data point is further away from just one cluster or even the bulk of all clusters. Dropping the normalization
constraint (4) in Definition 3.1 would allow more intuitive membership degrees for these data points, which could just
depend on their similarity (or typicality) to a cluster. In that case datum �x2 in Fig. 2 could receive lower degrees of
membership to both clusters than the equimembership of 0.5 of �x1, since this datum is further away from both clusters
and therefore less representative for both of them.

Definition 3.2 (Possibilistic cluster partition). Let X = {�x1, . . . , �xn} be the set of given examples and let c be the
number of clusters (1 < c < n) represented by the fuzzy sets ��i

, (i = 1, . . . , c). Then we call Up = (
uij

)= (
��i

(�xj

))
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Fig. 3. Iris data set classified with probabilistic fuzzy c-means algorithm. Attributes petal length and petal width.

Fig. 4. Iris data set classified with possibilistic fuzzy c-means algorithm. Attributes petal length and petal width.

a possibilistic cluster partition of X if

n∑
j=1

uij > 0 ∀i ∈ {1, . . . , c} (5)

holds. We interpret uij ∈ [0, 1] as the degree of representativity or typicality of the datum �xj to cluster �i .

With this definition one tries to achieve a more intuitive assignment of degrees of membership avoiding the undesirable
normalization effect discussed above. The membership degrees for one datum now resemble the possibility (in the sense
of possibility theory, Dubois and Prade, 1988) of its being a member of the corresponding cluster (Krishnapuram and
Keller, 1993; Davé and Krishnapuram, 1997).

Example. Fig. 3 illustrates a probabilistic and Fig. 4 shows a possibilistic classification of the Iris data set (Fisher, 1936;
Blake and Merz, 1998). The gray scale indicates the membership to the closest cluster. While probabilistic memberships
rather divide the data space, possibilistic membership degrees only depend on the typicality to the respective closest
clusters. The displayed partitions of the data set are optimal in the sense of being quite good solutions of the clustering
problem. Finding good cluster partitions is the matter of the next section.
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4. Fuzzy clustering algorithms

There is a large variety of methods that have been proposed in an even larger amount of papers and books all aiming
at finding the fuzzy clusters that might exist in some given example set. For the presentation of such a wide field of
methods, it is fruitful to focus on their underlying ideas, since the methods can be put into different classes regarding
the principles they are based on. It should then be sufficient to present most prominent representatives of each class in
detail, and to refer to the literature for the specialties.

At first we take a closer look on methods that try to find a good fuzzy partition and cluster prototypes (that represent
the clusters) using global criteria for optimality in form of an objective function. The clustering task can then be
formulated as a function optimization problem. The objective function depends on both the cluster prototypes and the
memberships of data points to the clusters. It cannot be optimized directly and therefore anAO scheme is usually applied
that optimizes one group of parameters (e.g., the membership degrees) holding the other group (e.g., the prototypes)
fixed and vice versa. This iterative updating scheme (grouped coordinate descent) is repeated in the hope to approach
the global optimum of the criterion function. The user then yields a fuzzy data partition and descriptions of clusters
that are considered optimal regarding the chosen objective function.

The AO scheme for optimizing an objective function gave rise to the second class of methods called ACE. This
family of algorithms is presented secondly. They generalize the AO updating scheme and the user can choose among
multiple update equations for the prototypes and membership degrees. Consequently, the iterated steps for estimating
the cluster prototypes and the memberships do not necessarily reflect the optimization of a particular criterion function.
In this way, the user is given more freedom to use prototypes that satisfy some desirable properties as well as to
choose membership functions for the clusters that have better suited shapes for a particular application. Solving the
clustering problem within this framework trades in mathematical interpretability for having the flexibility of tailoring
new clustering algorithms for specific needs.ACE is justified by the observation that convergence is seldom a problem in
practical examples (local minima or saddle points can be avoided). It should be explicitly stated that theACE framework
encompasses all those algorithms that follow from the minimization of objective functions as long as their respective
update equations are chosen. These follow from the necessary conditions for an optimum of the objective function.

The large variety of fuzzy clustering approaches exists due to modifications of the objective functions. These modi-
fications are aiming at improvements of the results with respect to particular problems (e.g., noise, outliers; see Section
5.2). Other objective functions are tailored for specific applications. In this section we present the unmodified forms
of the objective functions. We thereby focus on the differences between probabilistic and possibilistic variants of the
algorithms. They are likewise regarded in the following subsections. Since we want to highlight the cross-references
to statistical clustering approaches, we discuss the FMLE algorithm in the third subsection. It is a relative of the EM
algorithm. FMLE is widely known in the fuzzy community and lies on the boundary to “strongly” probabilistic clus-
tering as it is pursued in the statistical community. We discuss whether this cross-fertilization led to a well performing
clustering approach by citing some empirical evidence that we gathered in Döring et al. (2004).

4.1. Objective function-based algorithms

In objective function-based clustering each cluster is represented by a cluster prototype. This prototype consists of
a cluster center (whose name already indicates its meaning) and maybe some additional information about the size
and the shape of the cluster. The cluster center is an instantiation of the attributes used to describe the domain, just as
the data points in the data set to divide. However, the cluster center is computed by the clustering algorithm and may
or may not appear in the data set. The size and shape parameters determine the extension of the cluster in different
directions of the underlying domain.

The degrees of membership to which a given data point belongs to the different clusters are computed from the
distances (i.e., dissimilarity) of the data point to the cluster centers w.r.t. the size and the shape of the cluster (as stated
by the additional prototype information). Since clusters are required to be as homogeneous as possible, the problem
to divide a data set X = {�x1, . . . , �xn} ⊆ Rp into c clusters can be stated as to assign data to clusters such a way that
the sum of the (squared) distances between the clusters (i.e., their prototypes) and the data points assigned to them is
minimal. This is the basic idea of the applied objective functions J in fuzzy clustering.
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4.1.1. Probabilistic fuzzy clustering
Most probabilistic fuzzy clustering algorithms that determine an optimal (probabilistic) fuzzy partition of a given

data set X into c clusters minimize the objective function (Bezdek, 1973):

Jf

(
X, Uf , C

)=
c∑

i=1

n∑
j=1

um
ij d

2
ij , (6)

subject to the constraints (3) and (4) of the probabilistic membership degrees in Uf . dij is the distance between datum
xj and cluster i. The set of clusters C comprises all properties of the clusters by stating location parameters (i.e., the
cluster center �ci) and maybe size and shape parameters for each cluster. The condition (3) avoids the trivial solution of
minimization problem (uij =0 for all i ∈ {1, . . . , c} and j ∈ {1, . . . , n}). The partitioning property of any probabilistic
clustering algorithm, which “distributes” the weight of a datum to the different clusters, is due to the normalization
constraint (4). The parameter m, m > 1, is called the fuzzifier or weighting exponent.

Strictly speaking, the objective function-based methods use a generalization of the least-squared error functional
that has already been known from the hard c-means algorithm. This algorithm and its target function, however, lead to
hard (“crisp”) assignments of data points to the clusters (Duda and Hart, 1973). Dunn introduced a fuzzy version of
the c-means algorithm in order to treat data belonging to several clusters accordingly (Dunn, 1974). He showed that
for m = 1 cluster assignments are hard when minimizing Jf even though they are not constrained in {0, 1}. Thus he
proposed to weight the memberships with u2

ij , since this function of the uij leads to the desired fuzzification of the
resulting data partition. The generalization for exponents m > 1 has been proposed in Bezdek (1973), but usually m=2
is chosen. m determines the “fuzziness” of the classification: with higher values for m the boundaries between clusters
become softer, with lower values they get harder.

Unfortunately, the objective function Jf cannot be minimized directly. Therefore, an iterative algorithm is used,
which alternately optimizes the membership degrees and the cluster parameters. That is, first the membership degrees
are optimized for fixed cluster parameters, then the cluster parameters are optimized for fixed membership degrees:

Ut = jU (Ct−1) , t > 0 (7)

and

Ct = jC (Ut ) . (8)

The main advantage of this scheme is that in each of the two steps the optimum can be computed directly. By iterating
the two steps the joint optimum is approached (although it cannot be guaranteed that the global optimum will be
reached—the algorithm may get stuck in a local minimum of the objective function Jf ).

The update formulae jU and jC are derived by simply setting the derivative of the objective function Jf w.r.t.
the parameters to optimize equal to zero (taking into account the constraint (4)). Independent of the chosen distance
measure the following update formula for the membership degrees is obtained from Jf (Höppner et al., 1999):

uij = d
−2/(m−1)
ij∑c

t=1 d
−2/(m−1)
tj

. (9)

This update equation clearly shows the relative character of the (probabilistic) fuzzy membership degree. It depends
not only on the distance of the datum �xj to cluster i, but also on the distances between this data point and other clusters.

The update formulae jC for the cluster parameters depend, of course, on the parameters used to describe a cluster
(location, shape, size) and on the chosen distance measure. Therefore, a general update formula cannot be given. For the
“classical” objective function-based algorithms (and their specific cluster parameters as well as distance measures) the
respective update equations are developed later. Notice that the clustering models can, of course, not only be optimized
using AO algorithms. Reformulation of the criterion function (Hathaway and Bezdek, 1995; Bezdek et al., 1999a) and
the optimization with genetic algorithms (Babu and Murty, 1994; Klawonn and Keller, 1998) are possible as well.

4.1.2. Possibilistic fuzzy clustering
In possibilistic fuzzy clustering one tries to achieve a more intuitive assignment of degrees of membership by

dropping the normalization constraint (4), which allows the memberships to express typicality. However, this leads to
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the mathematical problem that the above objective function is now minimized by assigning uij =0 for all i ∈ {1, . . . , c}
and j ∈ {1, . . . , n}, i.e., data points are not assigned to any cluster and all clusters are empty. In order to avoid this trivial
solution, a penalty term is introduced, which forces the membership degrees away from zero. That is, the objective
function Jf is modified to

Jp

(
X, Up, C

)=
c∑

i=1

n∑
j=1

um
ij d

2
ij +

c∑
i=1

�i

n∑
j=1

(
1 − uij

)m, (10)

where �i > 0 (i = 1, . . . , c) (Krishnapuram and Keller, 1993). The first term leads to a minimization of the weighted
distances. The second term suppresses the trivial solution since this sum rewards high memberships (close to 1) that
make the expression

(
1 − uij

)m becomes approximately 0. Thus, the desire for (strong) assignments of data to clusters
is expressed in the objective function Jp. In tandem with the first term the high membership can be expected especially
for data that are close to their clusters, since with high degree of belonging the weighted distance to a closer cluster
is smaller than to clusters further away. The cluster specific constants �i are used to balance the contrary objectives
expressed in the two terms of Jp. It is a reference value stating at what distance to a cluster a data point should receive
higher membership to it. These considerations mark the difference to probabilistic clustering approaches. While in
probabilistic fuzzy clustering each data point has a constant weight of 1, possibilistic clustering methods have to learn
the weights of data points.

The formula for updating the membership degrees that is derived from the possibilistic objective function Jp by
setting its derivative to zero is (Krishnapuram and Keller, 1993)

uij = 1

1 +
(
d2
ij

/
�i

)1/(m−1)
. (11)

First of all, this update equation clearly shows that the membership of a datum �xj to cluster i depends only on its
distance dij to this cluster. Small distance corresponds to high degree of membership, whereas larger distances (i.e.,
strong dissimilarity) results in low membership degrees. Thus, the uij have typicality interpretation.

Eq. (11) further helps to explain the parameters �i of the clusters. Considering the case m = 2 and substituting �i

for d2
ij yields uij = 0.5. It becomes obvious that �i is a parameter that determines the distance to the cluster i at which

the membership degree should be 0.5. Since that value of membership can be seen as definite assignment to a cluster,
the permitted extension of the cluster can be controlled with this parameter. Depending on the clusters’ shape the �i

have different geometrical interpretation. If hyper-spherical clusters are considered,
√

�i is their mean diameter. In
shell clustering

√
�i corresponds to the mean thickness of the contours described by the cluster prototype information

(Höppner et al., 1999). If such properties of the clusters to search for are known prior to the analysis of the given data,
�i can be set to the desired value. If all clusters have the same properties, the same value can be chosen for all clusters.
However, the information on the actual shape property described by �i is often not known in advance. In that case
these parameters must be estimated. Good estimates can be found using a probabilistic fuzzy clustering model of the
given data set. The �i are then estimated by the fuzzy intra-cluster distance using the memberships matrix Uf as it
has been determined by the probabilistic counterpart of the chosen possibilistic algorithm (Krishnapuram and Keller,
1993). That is, for all clusters (i = 1, . . . , n):

�i =
∑n

j=1 um
ij d

2
ij∑n

j=1 um
ij

. (12)

Update equations jC for the prototypes are as well derived by simply setting the derivative of the objective function Jp

w.r.t. the prototype parameters to optimize equal to zero (holding the membership degrees Up fixed). Looking at both
objective functions it can be inferred that the update equations for the cluster prototypes in the possibilistic algorithms
must be identical to their probabilistic counterparts. This is due to the fact that the second additional term in Jp vanishes
in the derivative for fixed (constant) memberships uij . As already mentioned, several fuzzy clustering algorithms can
be distinguished depending on the additional size and shape information contained in the cluster prototypes, the way
in which the distances are determined. The most prominent and widely used algorithms are described in the next
paragraphs altogether with their prototypes, capabilities, and typical practical application.
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4.1.3. Classical fuzzy AO algorithms
Fuzzy c-means (FCM) algorithm: The FCM algorithm recognizes a known or given number of c hyper-spherical

clouds of points in a given p-dimensional data set X = {�x1, . . . , �xn} ⊆ Rp. The clusters are assumed to be of approxi-
mately the same size. The prototypes of the FCM model are rather simple. Each cluster is only represented by its center
�ci . The Euclidean distance between a datum and a prototype is used as a measure for dissimilarity of a data point to a
cluster. The minimization of either objective function from above (Eq. (6) or (10)) with respect to the cluster prototypes
leads to (Höppner et al., 1999):

�ci =
∑n

j=1 um
ij �xj∑n

j=1 um
ij

. (13)

The choice of the optimal cluster center points for given memberships of the data to the clusters has the form of a
generalized mean value computation from which the algorithm has its name. Given this update equations for the cluster
centers and using either Eq. (9) or (11) for the updates of the memberships leads to the specific AO scheme of the
probabilistic or the possibilistic FCM, respectively.

The general form of the AO scheme of coupled equations (7) and (8) starts with an update of the membership matrix
in the first iteration of the algorithm (t =1). The first calculation of memberships is based on an initial set of prototypes
C0. Even though the optimization of an objective function could mathematically also start with an initial but valid
membership matrix (in the sense of Definition 3.1 or 3.2), a C0 initialization is easier and therefore common practice
in all fuzzy clustering methods. Basically, FCM can be initialized by prototypes that have been randomly placed in
the input space. For a better coverage of the data space with initial clusters, however, Latin hyper-cube sampling
is recommendable especially for more complex algorithms (McKay et al., 1979). It is further common practice to
start more complicated clustering methods with initial prototypes that result from simpler algorithms. This approach
acknowledges the fact that the optimization of complex models is rather sensitive to their initialization. The higher
number of prototype parameters to optimize in complex models leads to a higher vulnerability to get stuck in a local
minimum of an objective function. Thus, the probability to yield only sub-optimal clustering results can be reduced.
The repetitive updating in the AO scheme can be stopped if the number of iterations t exceeds some predefined number
of maximal iterations tmax. However, AO is usually stopped when the changes in the prototypes are smaller than some
termination accuracy. In analogy to the initialization, termination of AO is better implemented using the prototypes.
Detecting the stabilization of prototypes C requires less comparisons than measuring the change in the partition matrix U.

The probabilistic FCM algorithm is known as a stable, reliable, and fast classification method. It is quite insensitive
to its initialization and it is not likely to get stuck in a local minimum of its objective function in practice. Due to
its simplicity and low computational demands, the probabilistic FCM is a widely used initializer for other clustering
methods. On the theoretical side, it has been proved that either the iteration sequence itself or any convergent subsequence
of the probabilistic FCM converges in a saddle point or a minimum—but not in a maximum—of the objective function
(Bezdek, 1981). For a number of other clustering techniques convergence proofs were also provided, but unfortunately
no general result on the convergence for all probabilistic techniques that are based on AO of Jf is known at the moment
(Höppner et al., 1999).

Gustafson–Kessel (GK) algorithm: In this locally adaptive fuzzy clustering algorithm the clusters prototypes are
endowed with a fuzzy covariance matrix in addition to the center vectors for detecting ellipsoidal clusters, C =
{Ci |Ci = {�ci, �i} , i = 1, . . . , c} (Gustafson and Kessel, 1979). The eigenstructure of the positive-definite p × p

matrices �i represents the shape of the cluster i. The sizes of the clusters, if known in advance, can be controlled
using the constants �i > 0 demanding that det (�i ) = �i . Usually, the clusters are assumed to be of equal size setting
det (�i )= 1. Since each cluster can have its special size and shape, the distance of a datum to a particular cluster has to
take into account its specific expansion. Consequently, the dissimilarity is calculated respecting the parameters in Ci :

d2 (�xj , Ci

)= det (�i )
1/p
(�xj − �ci

)T�−1
i

(�xj − �ci

)
. (14)

Using this distance measure in Jf or Jp, the objective function also depends on the parameters Ci . The respec-
tive update equations derived from differentiation of the objective function lead to Eq. (13) for the center vectors
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Fig. 5. FCV analysis.

and to:

�i =
∑n

j=1 uij

(�xj − �ci

) (�xj − �ci

)T∑n
j=1 uij

(15)

for the fuzzy covariance matrix of cluster i. Of course, initialization of the GK algorithm with a few iterations of the
probabilistic FCM is strongly recommended. Compared to FCM the algorithm of Gustafson and Kessel exhibits higher
computational demands due to the matrix inversions. A restriction to axis-parallel cluster shapes reduces computational
costs. Axis-parallel ellipsoids are usually preferred when clustering is applied for the generation of fuzzy rule systems
(Höppner et al., 1999).

Other non-point-prototypes clustering models: There is a large variety of models with more complex prototypes.
Solid clustering algorithms search for “cloud-like” clusters such as the GK algorithm. They are mainly of interest in data
analysis applications. Another area of application of fuzzy clustering algorithms is image recognition and analysis. So-
called shell clustering algorithms are used for segmentation and the detection of special geometrical contours in images
such as borders of circles and ellipses. All of the following examples are objective function-based algorithms and have
probabilistic as well as possibilistic variants (Figs. 5–10) (Höppner et al., 1999). However, the used distance measure
has been modified for detecting the special cluster forms. The fuzzy c-varieties (FCV) and the fuzzy c-elliptotypes
algorithm are able to recognize lines, planes or hyper-planes (Fig. 5). This algorithm can also be used for the construction
of locally linear models of data with underlying functional interrelations. The adaptive fuzzy c-elliptotypes (AFCE)
algorithm assigns disjoint line segments to different clusters (Fig. 6). Circle contours can be detected by the fuzzy
c-shells and the fuzzy c-spherical shells algorithm. Since objects with circle shaped boundaries in 3D are projected into
the picture plane the recognition of ellipses can be necessary. The fuzzy c-ellipsoidal shells algorithm is able to solve
this problem. The fuzzy c-quadric shells algorithm (FCQS) is furthermore able to recognize hyperbolas, parabolas or
linear clusters. Its flexibility can be observed in Figs. 7 and 8. The shell clustering techniques have also been extended to
non-smooth structures such as rectangles and other polygons. See Figs. 9 and 10 for examples of the fuzzy-c-rectangular
(FCRS) and fuzzy-c-2-rectangular shells (FC2RS) algorithm. The interested reader may be referred to Höppner et al.
(1999) and Bezdek et al. (1999a) for a complete discussion of this branch of methods.

4.2. Possibilistic vs. probabilistic models and algorithms

Aside from the different interpretation of memberships, there are some general properties that distinguish the results
of the possibilistic and probabilistic fuzzy clustering approaches.

Example. Figs. 3 and 4 illustrate a probabilistic and a possibilistic FCM classification of the Iris data set into three
clusters (Fisher, 1936; Blake and Merz, 1998). The displayed partitions of the data set are the result of alternatingly
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Fig. 6. AFCE analysis.

Fig. 7. FCQS analysis.

Fig. 8. FCQS analysis.
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Fig. 9. FCRS analysis.

Fig. 10. FC2RS analysis.

optimizing Jf and Jp (Timm et al., 2004). On the left, the data set is divided into three clusters. On the right, the
possibilistic FCM algorithm detects only two clusters, since the two of the three clusters in the upper right of Fig. 4
are identical. Note that this behavior is specific to the possibilistic approach. In the probabilistic counterpart the cluster
centers are driven apart, because a cluster, in a way, “seizes” part of the weight of a datum and thus leaves less that may
attract other cluster centers. Hence sharing a datum between clusters is disadvantageous. In the possibilistic approach
there is nothing that corresponds to this effect.

Cluster coincidence: One of the major characteristics in which the approaches differ lies in the fact that probabilistic
algorithms are forced to partition the data while the corresponding possibilistic approaches are not compelled to do so.
The former distribute the total membership of the data points (sums up to one), whereas the latter are rather required to
determine the data point weights by themselves. Probabilistic algorithms attempt to cover all data points with clusters,
since sharing data point weight is disadvantageous. In the possibilistic case, there is no interaction between clusters.
Thus, the found clusters in possibilistic models can be located much closer to each other than in a probabilistic clustering.
Clusters can even coincide, which has been widely observed (Barni et al., 1996; Krishnapuram and Keller, 1996). This
leads to solutions in which one cluster being actually present in a data set can be represented by two clusters in the
possibilistic model. In worse cases there is data left in other regions of the input space that has cluster structure, but
which is not covered by clusters in the model. Then possibilistic algorithms show the tendency to interpret data points
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in such left over regions as outliers by assigning low memberships for these data to all clusters (close to 0) instead of
further adjusting the possibly non-optimal cluster set (Höppner et al., 1999).

This described behavior is exhibited, since Jp treats each cluster independently. Every cluster contributes to some
amount to the value of the objective function Jp regardless of other clusters. The resulting behavior has been re-
garded by stating that possibilistic clustering is a rather mode-seeking technique, aimed at finding meaningful clusters
(Krishnapuram and Keller, 1996). The number c of known or desired clusters has been interpreted as an upper bound,
since cluster coincidence in effect leads to a smaller number of clusters in the model (Höppner et al., 1999). For reducing
the tendency of coinciding clusters and for a better coverage of the entire data space usually a probabilistic analysis
is carried out before (exploiting its partitional property). The result is used for the prototype initialization of the first
run of the possibilistic algorithm as well as for getting the initial guesses of the �i (and c). After the first possibilistic
analysis has been carried out, the values of the �i are re-estimated once more using the first possibilistic fuzzy partition.
The improved estimates are used for running the possibilistic algorithm a second time yielding the final cluster solution
(Höppner et al., 1999).

Cluster repulsion: Dealing with the characteristics of the possibilistic clustering techniques as above is a quite good
measure. However, there are theoretical results, which put forth other developments. We discovered that the objective
function Jp is, in general, truly minimized only if all cluster centers are identical (Timm et al., 2004). The possibilistic
objective function can be decomposed into c independent terms, one for each cluster. This is the amount by which
each cluster contributes to the value of Jp. If there is a single optimal point for a cluster center (as it will usually
be the case, since multiple optimal points would require a high symmetry in the data), all cluster centers moved to
that point results in the lowest value of Jp for a given data set. Consequently, other results than all cluster centers
being identical are achieved only because the algorithm gets stuck in a local minimum of the objective function. In the
example of the possibilistic FCM model in Fig. 4 the cluster on the lower left in the figure has been found, because it is
well separated and thus forms a local minimum of the objective function. This, of course, is not a desirable situation.
Good solutions w.r.t the minimization of Jp unexpectedly do not correspond to what we regard as a good solution
of the clustering problem. Hence the possibilistic algorithms can be improved by modifying the objective function
in such a way that the problematic property examined above is removed. In Timm et al. (2004), this has been tried
with an additional term for Jp that implements cluster repulsion forces. The strength of the repulsion of clusters can
be controlled with a parameter that is balancing the two objectives in clustering: homogeneity within the clusters vs.
heterogeneity between the clusters. The results show that the proposed modifications lead to better detection of the
shape of very close or overlapping clusters. Such closely located point accumulations have been problematic, since
possibilistic clusters “wander” in the direction where the most of the data can be found in their �i environment, which
easily leads to cluster coincidence. Nevertheless, the modified possibilistic techniques should also be initialized with the
corresponding probabilistic algorithms as described in the last paragraph. It is a good measure for improving the chances
that all data clouds will be regarded in the resulting possibilistic model leaving no present cluster structure unclassified.
Recent developments that try to alleviate the problematic properties of the possibilistic clustering algorithms propose
to use a combination of both fuzzy and possibilistic memberships (see Section 5.4).

Recognition of positions and shapes: The possibilistic models do not only carry problematic properties. Memberships
that depend only on the distance to a cluster while being totally independent from other clusters lead to prototypes that
better reflect human intuition. Calculated based on weights that reflect typicality, the centers of possibilistic clusters as
well as their shape and size better fit the data clouds compared to their probabilistic relatives. Latter ones are known to be
not able to recognize cluster shapes as perfectly as their possibilistic counterparts. This is due to the following reasons:
if clusters are located very close or are even overlapping, then they are separated well because sharing membership is
disadvantageous (see upper right in Fig. 3). Higher memberships to data points will be assigned in directions pointing
away from the overlap. Thus, the centers are repelling each other. Cluster shapes are likely to be slightly distorted
compared to human intuition. Noise and outliers are another reason for little prototype distortions. They have weight in
probabilistic partitions and therefore attract clusters which can result in small prototype deformations and less intuitive
centers. Possibilistic techniques are less sensitive to outliers and noise. Low memberships will be assigned due to greater
distance. Due to this property and the more intuitive determination of positions and shapes, possibilistic techniques
are attractive tools in image processing applications. However, especially the probabilistic approaches profit from the
widely appreciated noise clustering techniques (see Section 5.2). By modifying the objective function a virtual noise
cluster “seizes” large parts of the data weight of noise points and outliers. This leads to better detection of actual cluster
structure in probabilistic models.
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Fig. 11. The membership functions obtained by probabilistic AO for two clusters at −0.5 and 0.5.

4.3. Alternating cluster estimation

ACE techniques adopt the AO algorithm of objective function-based methods but use heuristic equations to build
partitions and estimate cluster parameters. Since the cluster generation rules are chosen heuristically, this approach
can be useful when cluster models become too complex to minimize them analytically or the objective function lacks
differentiability (Höppner et al., 1999). The general architecture of the AO algorithm (Eqs. (7), (8)) is generalized, but
the purpose of minimizing objective functions with jU and jC is abandoned. Thus, the classification task is directly
described by the update equations as chosen by the data analysts.

The higher flexibility of choosing among different update equations is of particular interest when clustering is applied
for the construction of fuzzy rule-based systems. In such applications the fuzzy sets carry semantic meaning, e.g., they
are assigned linguistic labels like “low”, “approximately zero”, or “high”. Consequently, the fuzzy sets, in fuzzy
controllers for instance, are required to be convex, or even monotonous (Zadeh, 1965). Furthermore, they have to have
limited support, i.e., membership degrees different from zero are allowed only within a small interval of their universe.
ACE provides the flexibility to define fuzzy clustering algorithms that produce clusters �i whose corresponding fuzzy
sets ��i

fulfil these requirements. The clusters and membership degrees ��i

(�xj

) = uij obtained with the objective
function-based clustering techniques contrarily do not carry the desired properties. The uij obtained by AO as in the
previous section can be interpreted as discrete samples of continuous membership functions �i : Rp → [0, 1] for each
cluster. The actual shape that is taken on by these membership functions results from the respective update equations
for the membership degrees. For the probabilistic fuzzy AO algorithms the continuous membership function follows
from Eq. (9), with dij being the Euclidian distance ‖ · ‖:

�i (�x) = ‖�x − �ci‖−2/(m−1)∑c
t=1‖�x − �ct‖−2/(m−1)

. (16)

Fig. 11 shows the membership functions that would result from the probabilistic FCM algorithm for two clusters.
Obviously, the membership functions �i are not convex (i = {1, 2}). The membership for data points at first decreases
the closer they are located the other cluster center, but beyond the other center membership to the first cluster increases
again due to normalization constraint. Possibilistic membership functions, that result from a continuous extension
according to Eq. (11) are convex, but they are not restricted to local environments around their centers (i.e., the
memberships will never reach zero for larger distances). Thus, if fuzzy sets with limited support as in fuzzy controllers
are desired, possibilistic memberships functions are inadequate as well. The transformation of the membership functions
of the objective function-based techniques into the desired forms for the particular application is possible, but often
leads to approximation errors and less accurate models.

Therefore, ACE allows to choose other membership functions aside from those that stem from an objective function-
based AO scheme. Desired membership function properties can easily be incorporated in ACE. The user can chose
from parameterized Gaussian, trapezoidal, Cauchy, and triangular functions (Höppner et al., 1999). We present the
triangular shaped fuzzy set exemplarily in Fig. 12, since it has all desired properties considered above:

�i (�x) =
{

1 −
(‖�x − �ci‖

ri

)�

if ‖�x − �ci‖ �ri,

0 otherwise,
(17)
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Fig. 12. The parameterized triangular fuzzy set.

where ri are the radii of the clusters, � ∈ R>0. In an ACE algorithm using hyper-cone shaped clusters (� = 1) the
memberships of data to fixed clusters are estimated using the above equation, such that uij = �i (�xi).

Deviating fromAO of objective functions the user can also choose between alternative update equations for the cluster
prototypes. In ACE, a large variety of parameterized equations stemming from defuzzification methods are offered for
the re-estimation of cluster centers for fixed memberships. The reference to defuzzification techniques arises, since a
“crisp” center is computed from fuzzily weighted data points. Also higher order prototypes like lines, line segments,
and elliptotypes have been proposed for the ACE scheme (Höppner et al., 1999). In the simplest case, however, when
clusters are represented by their centers only, new centers vectors could be calculated as the weighted mean of data
points assigned to them (like in the FCM; see Eq. (13)).

After the user has chosen the update equations for U and C, memberships and cluster parameters are alternatingly
estimated (or updated, but not necessarily optimized w.r.t. some criterion function) as defined. This leads to a sequence
{(U1, C1) , (U2, C2) , . . .} that is terminated after a predefined number of iterations tmax or when the Ct have stabilized.
Some instances of the ACE might be sensitive to the initialization of the cluster centers. Thus determining C0 with
some iterations of the probabilistic FCM might be recommended. Notice that all conventional objective function-based
algorithms can be represented as instances of the more generalACE framework by selecting their membership functions
as well as their prototype update equations. An experimental comparison between “real” ACE algorithms that do not
reflect the minimization of an objective function and classical AO algorithms as presented above can be found in
Höppner et al. (1999).

4.4. Fuzzy maximum likelihood estimation

FMLE is based on a mixture model for the process that generated the data. Each cluster is characterized by a p-variate
probability distribution, which is described by a prior probability of the cluster and a conditional probability density
function (cpdf). From mixture model assumption, Gath and Geva (1989) derived a distance measure such that the
dissimilarity of a data point to a cluster is inversely proportional to the probability that a datum was generated by that
cluster. The idea behind the definition of FMLE algorithm is twofold. Firstly, the intuitively defined distance measure is
used in the update equation for the probabilistic membership degrees (Eq. (9)). Secondly, the update equations for the
prototype parameters are fuzzifications of maximum likelihood estimators for the prior probabilities and the parameters
of the cpdfs. For a comparison with the EM algorithm (Dempster et al., 1977) the two defining parts of the FMLE are
developed next. After the description of similarities and differences, details of an experimental comparison are given.

In a mixture model it is assumed that a given data set X has been drawn from a population of c clusters. The data
generation process may then be imagined as follows: in the first step a cluster i, i ∈ {1, . . . , c}, is chosen for an
example, indicating the cpdf to be used, and then the example is sampled from this cpdf. Consequently, the probability
of occurrence of a data point �x can be computed as

p �X (�x; C) =
c∑

i=1

pC (i; Ci) p �X|C (�x|i; Ci) ,

where C is a random variable describing the cluster i chosen in the first step, �X is a random vector describing the attribute
values of the data point. The set C = {C1, . . . , Cc} encompasses all model parameters with each Ci , i = 1, . . . , c,
containing the parameters for one cluster (that is, its prior probability and the parameters of the cpdf) (Everitt and
Hand, 1981).
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Furthermore, it may be assumed that the joint cpdf of the numeric attributes is a multivariate normal distribution,
i.e.,

p �X|C (�x|i; Ci) = N (�x; �ci, �i ) = 1√
(2�)p |�i |

exp

(
−1

2
(�x − ��)
�−1

i (�x − ��)

)
,

where �ci is the mean vector and �i the covariance matrix of the normal distribution, i = 1, . . . , c. Consequently, the
parameters Ci of the ith cluster are Ci = {�i , �ci, �i}, where �i is the prior probability of the ith cluster.

Assuming that the examples in a data set are independent and are drawn from the same distribution (i.e., that the
distributions of their underlying random vectors �Xj are identical), the probability of occurrence of the data set X is

P(X; C) =
n∏

j=1

c∑
i=1

�iN
(�xj ; �ci, �i

)
.

Note that the value of the random variable Cj , which indicates the cluster for each example case �xj is unknown.
However, given the data point, the posterior probability that a data point has been sampled from the cpdf of the ith
cluster can be computed using Bayes’ rule:

p
C| �X (i|�x; C) = pC (i; �i ) p �X|C (�x|i; �i )

p �X (�x; C)
= pC (i; �i ) p �X|C (�x|i; �i )∑c

t=1 pC (t; �t ) p �X|C (�x|t; �t )
. (18)

This posterior probability may be used to complete the data set w.r.t. the cluster, namely by splitting each example �xj

into c examples, one for each cluster, which are weighted with the posterior probability p
C| �Xj

(
i|�xj ; C

)
. This idea is

used in the well-known EM algorithm (Dempster et al., 1977).
The mixture model provides the means to define the similarity measure, which constitutes the first part of the idea

behind the FMLE algorithm. Gath and Geva (1989) define the distance dij between the datum �xj and cluster i as
the reciprocal of the probability that the datum �xj occurred and that it was generated by the component distribution
underlying the cluster i. Then a high-probability results in a small distance value, whereas a low probability that the
datum was created by the distribution of cluster i indicates a large distance. Constructed in this intuitive way the distance
measure is the reciprocal of the numerator in Eq. (18) of the posterior probabilities. We obtain

dij = 1

pCj (i; Ci) p �Xj |Cj

(�xj |i; Ci

)
=

√
(2�)p |�i |

�i exp
(
− 1

2

(�xj − �ci

)
�−1
i

(�xj − �ci

)) .

This definition has another interesting property: inserted into the update equation for the membership degrees (9) it
yields membership degrees that are equal to the posterior probabilities of the data points provided the fuzzifier m = 2
(see Eq. (18)). Only for this value of the weighting exponent the partial assignments uij of the data points to the clusters
are their posterior probabilities (Bezdek et al., 1999a).

In the FMLE the equations for the re-estimation of the prototype parameters are similar to the maximum likelihood
estimators for the prior probabilities and the parameters of the cpdfs. During the re-estimation each generated instance
has a certain and fixed case weight in each cluster. Deviating from the EM algorithm, the cases are not weighted
with their posterior probability p

C| �Xj

(
i|�xj ; C

)
. Referring to the equations of the GK algorithm for detecting hyper-

ellipsoidal clusters with a fuzzy covariance matrix (see Eq. (15)), Gath and Geva suggested to choose the weights um
ij

for arriving at analogous equations. Thus, the update equations of the FMLE are the maximum likelihood estimators
in which the um

ij have been substituted for the posterior probabilities. They look as follows:

�i = 1

n

n∑
j=1

um
ij , (19)
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Fig. 13. The generating model.

�ci =
∑n

j=1 um
ij �xj∑n

j=1 um
ij

, (20)

�i =
∑n

j=1 um
ij

(�xj − �ci

) (�xj − �ci

)
∑n
j=1 um

ij

. (21)

Discussion: FMLE is very similar to the well-known EM algorithm applied to mixture decomposition under the
assumption of a hidden variable indicating the class membership (Dempster et al., 1977). The relatedness of the
methods is intimated by the almost identical derivation of the estimators. The differences, however, are made explicit
in the different choice of the instance weights in both algorithms.

The EM algorithm maximizes the probability of the data set to occur by first calculating the posterior probabilities
that a data point was created by the cpdfs of the clusters. This is done for fixed model parameters and yields the partial
weights with which a data point belongs to the clusters (see Eq. (18)). Then these weighted assignments to clusters are
used as instance weights in the estimators in order to optimize the likelihood. Thus, in the EM algorithm the partial
assignments of a datum to the clusters are identical to the instance weight that is used when estimating the parameters.

In FMLE, on the other hand, the partial assignments, namely the membership degrees uij , are different from the
instance weights that are used when re-estimating the parameters, which are um

ij . Even in the case m = 2, where the
calculated membership degrees uij correspond to the posterior probabilities (due to the special definition of the distance
measure that is used in this approach), the case weights um

ij �uij .
There is no choice of m such that the FMLE algorithm becomes identical to the EM algorithm, because m also

appears in formula (9) for computing the membership degrees, which rules out the choice m = 1. It is the coupling of
the exponents m and 2/(m − 1) that distinguishes FMLE from EM.

In experiments EM proved to be the much more stable algorithm (Döring et al., 2004). This is exemplarily illustrated
using a simple data set of three closely located clusters generated as shown in Figs. 13 and 14. FMLE tends to
reduce the prior probability of one or more clusters to (almost) zero—as can already be guessed from the fact that in
Fig. 16 the blue (left) cluster is driven far to left, thus covering fewer data points than the other clusters. Clusters may
be driven far away from the major point clouds, thus covering fewer data points than the other clusters. Sometimes
this becomes extreme especially if FMLE is not initialized with the result of the FCM algorithm, while EM can be run
directly without problems (initialized with Latin hyper-cube sampling, see Fig. 15). FMLE becomes more stable, but
only if the attributes provide clear information about the cluster structure. Since is less stable and more sensitive to the
initialization of the cluster prototypes, FMLE seems to be inferior to the classical EM algorithm. We conjecture that
the described behavior of the FMLE is due to the deviating weighting of the data points which has been inferred just
by analogy (Fig. 16).
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Fig. 14. The data points with classes.

Fig. 15. Result of EM.

Fig. 16. Result of FMLE.
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5. Related issues and current research

Fuzzy clustering is an unsupervised learning strategy in order to group data. It is very useful for constructing fuzzy
if–then rules from data and it is also applied in image processing. In this introductory article we focused on three
different branches of methods: objective function-based approaches, ACE, and the FMLE scheme. We tried to give
an all-embracing view of the field by pointing out the major directions. Some related issues and (selected) current
developments in the field shall be mentioned to conclude this article.

5.1. Clustering of non-vectorial data

All of the described methods in this article presuppose that the objects to cluster have a feature vector representation.
In some applications such a feature vector representation is not given, but a dissimilarity relation between the objects
can be defined. There exists a large variety of fuzzy clustering techniques for such settings (Bezdek et al., 1999b).
These relational clustering algorithms can be divided into hierarchical and partitional approaches. The latter ones are
mostly based upon the ideas that have been presented here, i.e., they are objective function-driven. Also, the ACE
scheme has been adopted for grouping relational data (Runkler and Bezdek , 1998). Relational alternating cluster
estimation (RACE) has been applied successfully in the field of Web mining (Runkler and Bezdek, 2003). Aside from
relational data, fuzzy clustering methods have also been proposed for analysis of data that is fuzzy itself, see e.g.,
D’Urso and Giordani (2006). The fuzzy approach to clustering is a suitable measure to handle vague or imprecise data
as observed in some applications. Fuzzy methods for clustering time-varying data can be found in Coppi and D’Urso
(2003, 2006).

5.2. Handling noise and outliers

Noise and outliers are a common problem that has to be dealt within clustering. However, the described methods are
not equally troubled by these phenomena. Possibilistic clustering algorithms based on AO can handle noise points and
outliers quite naturally by assigning low data point weights to them. Thus, detection of the true clusters is not disturbed.
The same holds for ACE algorithms with appropriately chosen membership functions. Outliers are located at a high
distance from the major part of the data. They cannot affect the detection of clusters as long as the chosen membership
function assigns low weight or even no membership to far away points. Latter is the case for fuzzy sets with limited
support. Then outliers have small or even no influence on the estimated cluster centers. Contrary to the behavior of the
possibilistic and selected ACE approaches, aberrant data points strongly affect probabilistic fuzzy clustering methods.
Aside from the highly sensitive least-square approach to noise, the normalization of the membership degrees (Eq. (4))
in combination with the calculation of the inverse squared distances in Eq. (9) leads to high memberships for data
points further away from the bulk of the data (Döring et al., 2005). The latter tendency is already visible in the two
cluster example (see Fig. 11), where almost equal memberships to both clusters would be assigned for larger distances
from the two clusters (in left and right direction). Since strongly deviating points is given considerable membership,
their weight influences prototype calculations. This results in cluster shape deformations and slightly shifted cluster
centers (see Section 4.2).

The approaches we consider here consequently aim at handling noisy data in (probabilistic) fuzzy clustering models.
Their goal is to define robust variants of fuzzy clustering algorithms, i.e., algorithms whose results do not depend on
the presence or absence of noisy data points or outliers in the data set. Two approaches are mentioned here: the first
one is based on the introduction of a specific cluster, the so-called noise cluster, to represent noisy data points. The
second method is based on the use of robust estimators.

Noise clustering (NC): The NC algorithm has been initially proposed by Davé (1991) and was later extended (Davé
and Sen, 1997, 1998). It consists in adding, beside the c clusters to be found in a data set, the so-called noise cluster:
the latter aims at grouping points that are badly represented by normal clusters, such as noisy data points or outliers. It
is not explicitly associated to a prototype, but directly to the distance between an implicit prototype and the data points:
the center of the noise cluster is considered to be at a constant distance, 	, of all data points. This means that all points
have a priori the same “probability” to belong to the noise cluster. During the optimization process, this “probability”
is then adapted as a function of the probability according to which points belong to normal clusters. The noise cluster
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is then introduced in the objective function, as any other cluster, leading to

J =
c∑

i=1

n∑
j=1

um
ij d

2
ij +

n∑
k=1

	2

(
1 −

c∑
i=1

uik

)m

. (22)

The added term is similar to the terms in the first sum: the distance to the cluster prototype is replaced by 	 and the
membership degree to this cluster is defined as the complement to 1 of the sum of all membership degrees to the standard
clusters. This in particular implies that outliers can have low membership degrees to the standard clusters, and high
degree to the noise cluster, which makes it possible to reduce their influence on the standard cluster: as in possibilistic
clustering, the noise clustering approach relaxes the normalization constraint expressed in Eq. (4) according to which
membership degrees to good clusters must sum to 1.

The objective function (22) requires the setting of parameter 	. In the initial NC algorithm, it was set to

	2 = 

1

c · n

⎛
⎝ c∑

i=1

n∑
j=1

d2
ij

⎞
⎠ , (23)

i.e., its squared value is a proportion of the mean of the squared distances between points and other cluster prototypes,
with 
 a user-defined parameter determining the proportion: the smaller the 
, the higher the proportion of points that
are considered as outliers. In the noise clustering model aberrant data points are identified as such by high membership
to the noise cluster. The remaining data point weight that can be distributed to other clusters is accordingly reduced
which leads to a better detection of position and shape of the good clusters.

Robust estimators: Another approach to handle noisy data sets is based on the exploitation of robust estimators:
as indicated in Section 4.1.1, the FCM approach is based on a least-square objective function. It is well known that
the least-square approach is highly sensitive to aberrant points, which is why objective function-based probabilistic
clustering gives unsatisfactory results when applied to data sets contaminated with noise and outliers. Therefore, it has
been proposed (Frigui and Krishnapuram, 1996) to introduce a robust estimator in the traditional objective function
(see Eq. (6)), leading to consider

J =
c∑

i=1

n∑
j=1

um
ij�i

(
dij

)
, (24)

where �i are robust symmetric positive definite functions having their minimum in 0. According to the robust M-
estimator framework, � should be chosen such that �(z) = log

(
J (z)−1) represents the contribution of error z to the

objective function and J the distribution of these errors. Choosing �(z) = z2 as it is usually the case is equivalent to
assuming a normal distribution of the errors z and leads to constant weighting functions. That is, big errors have the
same weight as small errors, and play too important a role on the correction applied to the parameters, making the
objective function sensitive to outliers. Therefore, it is proposed to use other �, whose weighting functions tend to 0
for big values of z. Frigui and Krishnapuram (1996) design their own robust estimator to adapt to the desired behavior,
defining the Robust c-prototypes (RCP) algorithm.

In the case where clusters are represented only by centers and a probabilistic partition is looked for (see constraint
(4)), the update equations for the membership degrees and cluster prototypes derived from Eq. (24) then becomes
(Frigui and Krishnapuram, 1996)

�ci =
∑n

j=1 um
ijfij �xj∑n

j=1 um
ijfij

and uij = 1∑c
k=1

(
�
(
d2
ij

)/
�
(
d2
kj

))1/(m−1)
, (25)

where fij = f
(
dij

)
and f = d�(z)/dz. It is to be noted that outliers still have membership degrees uij = 1/c for all

clusters. The difference and advantage as compared to FCM comes from their influence on the center, which is reduced
through the fij coefficient (see Frigui and Krishnapuram, 1996 for the fij expression). Another robust clustering
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algorithm is the method proposed in Wu andYang (2002) that considers a different modification of the objective function
in order to handle noisy data sets.

5.3. Cluster validity and unknown number of clusters problem

All of the described clustering techniques require to specify the number of clusters c to search for. Usually, this
number is not known in advance. Starting from initial guesses, several cluster partitions can be determined for different
numbers of clusters. But then question arises, which of the partitions is better or correct. Further, different clustering
algorithms can be used that assume certain shapes and sizes of the clusters. But are these assumptions satisfied for the
given data set? These problems are addressed using validity measures. A large variety of validity indices have been
proposed in the literature (Bezdek et al., 1999a; Höppner et al., 1999). Global validity functions evaluate complete
cluster partitions and help to determine the right number of clusters. Then, clustering is carried out with different values
for c. Comparing the values of the validity function for the yielded partitions the most suitable number of clusters can
be chosen. Another strategy is to start with an upper bound for c and to use local validity functions that assess the
goodness of individual clusters. The clusters are compared to each other such that similar clusters can be joined to one
new cluster, whereas bad clusters can be eliminated. Then cluster analysis is carried out again with a reduced number
of clusters. The procedure is repeated until no clusters have to be merged or removed. For a detailed discussion of
validity functions and the specific properties of clustering results they are tailored for, the reader may be referred to
Bezdek et al. (1999a) and Höppner et al. (1999).

5.4. Some current research issues

Shape and size regularization: More sophisticated fuzzy clustering algorithms, like the GK algorithm, the FMLE
algorithm, but also the EM algorithm are capable of inducing clusters of ellipsoidal shape and different sizes. However,
the additional cluster parameters can reduce the robustness of the algorithms, even rendering their application prob-
lematic sometimes. Thus, the more complex algorithms were usually initialized with simpler models. Lately, methods
have been suggested that introduce shape and size constraints to handle the higher degrees of freedom in this algorithms
effectively. Experiments show that these regularization methods improve the robustness of the more sophisticated fuzzy
clustering algorithms, which without them suffer from instabilities even on fairly simple data sets. Regularized and
constrained clustering is so robust that it can even be used without an initialization by the FCM algorithm. With a time-
dependent shape regularization parameter one may even obtain a soft transition from the FCM algorithm (spherical
clusters) to the GK algorithm (general ellipsoidal clusters) (Borgelt and Kruse, 2005).

Understanding the principles behind the fuzzifier: The fuzzifier m is a parameter that features all fuzzy clustering
methods. This fuzzifier controls how much clusters may overlap. However, there other functions of the membership
degrees in objective functions than um

ij that result in fuzzy data partitions. Recent investigations provide a more general
framework for implementing fuzzifiers. It helps to overcome some negative effects and problems due to clusters with
varying data density, noisy data, and large data sets with a higher number of clusters (Klawonn and Höppner, 2003a, b).

Overcome the problems of the possibilistic c-means: While possibilistic degrees make it possible to reduce the
influence of outliers, the (probabilistic) fuzzy memberships ensure the necessary assignment of all data points in a data
set, leaving no data unclassified. Since a good clustering result requires both the partitioning property of (probabilistic)
FCM and the mode-seeking robust property of the possibilistic c-means, the use of both possibilistic degrees as well as
fuzzy memberships in a clustering algorithm has been proposed in Pal et al. (1997, 2004). In the more recent work (Pal
et al., 2004), clustering with both typicality assignments (here: tij ) and normalized degrees

(
uij

)
is performed through

the optimization of the following objective function:

J =
c∑

i=1

n∑
j=1

(
aum

ij + bt
�
ij

)
d2
ij +

c∑
i=1

�i

n∑
j=1

(
1 − tij

)�, (26)

while the known constraints apply to both respective types of the gradual assignments. a and b are user-defined
parameters that rule the importance the two terms must play. In the case where the Euclidean distance is used, the
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update equations are then

uij = 1∑c
k=1

(
d2
ij /d

2
kj

)1/(m−1)
, tij = 1

1 +
((

b/�j

)
d2
ij
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j=1
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)
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(
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ij + bt
�
ij

) .

Thus, uij are similar to the membership degrees of FCM (see Eq. (9)), and tij to the possibilistic coefficients of PCM
when replacing �i with �i/b (see Eq. (11)). Cluster centers then depend on both coefficients, parameters a, b, m, and �
rule their relative influence. This shows that if b is higher than a the centers will be more influenced by the possibilistic
coefficients than the membership degrees. Thus, to reduce the influence of outliers, a bigger value for b than a should
be used. Still, it is to be noticed that four parameters are to be defined by the user, and that their influence is correlated,
making it somewhat difficult to determine their optimal value. Furthermore, the problem of this method is that due to
their interaction the interpretation of the obtained coefficients, in particular, of the tij deviates from purely possibilistic
c-means models.
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