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Abstract Intelligent data analysis has gained increas-
ing attention in business and industry environments.
Many applications are looking not only for solutions
that can automate and de-skill the data analysis process,
but also methods that can deal with vague information
and deliver comprehensible models. Under this con-
sideration, we present an automatic data analysis plat-
form, in particular, we investigate fuzzy decision trees
as a method of intelligent data analysis for classification
problems. We present the whole process from fuzzy tree
learning, missing value handling to fuzzy rules genera-
tion and pruning. To select the test attributes of fuzzy
trees we use a generalized Shannon entropy. We discuss
the problems connected with this generalization arising
from fuzzy logic and propose some amendments. We
give a theoretical comparison on the fuzzy rules learned
by fuzzy decision trees with some other methods, and
compare our classifiers to other well-known classifica-
tion methods based on experimental results. Moreover,
we show a real-world application for the quality control
of car surfaces using our approach.
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1 Introduction

Modern computer technologies take us into a new infor-
mation age. Nowadays data from different sources and
application fields can be gathered fast at low cost and
often in enormous amounts. To understand hidden phe-
nomena, answer questions and make decisions data
alone are not sufficient, rather the intelligent analysis
of the data is desired.

Intelligent data analysis (IDA) is a research area that
has its roots in machine learning, statistics, soft comput-
ing and databases and looks for technologies and strat-
egies to support and to (partially) automate the data
analysis and knowledge detection process. According
to the goals data analysis can be categorized as explor-
atory analysis (e.g. data visualization), descriptive analy-
sis (e.g. segmentation, clustering techniques), predictive
analysis (e.g. classification and regression), etc.

Our work is concerned with classification problems.
Classical decision trees as one of the popular classifi-
cation models, work well in crisp domains, but cannot
model vagueness. Aiming at learning a classification
model, which is comprehensible and able to handle
vagueness, in this paper we study fuzzy decision trees
by combining fuzzy theory with classical trees.

In order to push advanced data analysis technology
into business, software that empowers users and hides
complexity from them is needed. Section 2 is dedicated
to our automatic data analysis platform SPIDA. We give
the motivation of our work on automating IDA, state
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the premises of our approach and introduce the archi-
tecture, features and functions of SPIDA. In Sect. 3 we
present our fuzzy decision tree method, which was inves-
tigated and implemented for SPIDA. We examine in
detail the attribute selection with extended information
measures as well as the treatment of missing values.
Section 3.7 shows the fuzzy rule base generated from
the induced fuzzy tree, compares the rule learning pro-
cess with some other methods, studies some heuristics
to simplify the rule base and illustrates the classification
of new data with the fuzzy rules. In Sect. 4 we com-
pare our approach to some popular classifiers based on
the experimental results. Section 5 presents a real world
application.

2 A soft computing platform for automatic intelligent
data analysis – SPIDA

With ever increasing amounts of collected data about
internal processes and customer interactions, today’s
businesses are faced with the problem of extracting
knowledge from that data. It becomes unsustainable
and expensive to employ experts to conduct data analy-
sis manually, therefore solutions that can automate and
de-skill the data analysis process are desirable.

Especially in industrial settings it is important to em-
power non-expert users in coping with daily data analy-
sis tasks. From our experience take-up of traditional data
analysis software is very slow. We believe that typical
business users cannot use technology or method ori-
ented software. Without detailed knowledge of the anal-
ysis methods such tools are basically useless. In order to
push advanced data analysis technology algorithms into
businesses we need software that empowers users and
hides complexity from them.

From our point of view users need a tool where
they can specify a data source and requirements on
the solution of an analysis process. The tool can select
appropriate methods and apply them automatically. The
results are checked against the user requirements. If the
requirements are not sufficiently met, the analysis is re-
peated with different parameters. At the end, the user
is presented with a set of possible solutions and their
descriptions in terms of user requirements. After select-
ing a solution this will be wrapped in a software module
that can be readily applied in the user’s application do-
main.

Our approach to automating IDA is based on the
premises that user requirements, properties of analy-
sis methods, and expert knowledge for the selection of
the right method and its configuration are quite often
fuzzy. For instance, users demand fast, accurate, simple,

inexpensive solutions. Some analysis methods are fast,
some can produce accurate results, others are interpret-
able. Finally, data analysis experts have in addition to
their formal knowledge about analysis methods vague
intuitive knowledge on how to select parameters and
methods and how to run an analysis in a certain scenario.
In order to deal with such vagueness we decided to use
fuzzy representations for user requirements, properties
of analysis methods and expert knowledge.

Previous approaches towards automating data anal-
ysis were mostly based on formal AI techniques that
simply do not meet the above requirements for non-
expert users. A discussion can be found in Nauck et al.
(2004).

Architecture, features and functions of SPIDA

Based on the requirements set above the Computa-
tional Intelligence Group from BT Research & Ven-
turing developed SPIDA (Soft computing platform for
intelligent data analysis) (Nauck et al. 2003). Essentially,
SPIDA is a data analysis tool comprising a set of data
analysis methods mainly from the area of soft comput-
ing and related areas (neural networks, neuro-fuzzy sys-
tems, support vector machines, decision trees etc.), data
filters for pre- and post-processing, visualization capa-
bilities and access to different data sources (text files,
databases).

The main user group targeted by SPIDA are domain
experts. They are typically familiar with their data, they
know the processes that produce the data, and are usu-
ally keen to review these processes in order to improve
or understand them. Furthermore, gained knowledge
can also be applied to other problems that are related
to the data like using information gained from customer
data for marketing purposes. Domain experts are usu-
ally no data mining experts, but they can specify their
data analysis problem and their requirements for the
solution at a high level. Based on this information and
the data, the SPIDA Wizard selects and runs data anal-
ysis methods automatically.

Each analysis method that is available in SPIDA is de-
scribed by fuzzy properties like interpretability, adapt-
ability to new data, accuracy and non-fuzzy properties
like analysis problem (classification, regression, cluster-
ing etc.). Similarly, users define their requirements using
similar terms: the type of problem, if they need an expla-
nation (interpretation) facility, the expected simplicity
and type (rules, functions) of the explanation, adapt-
ability, accuracy etc. These requirements will be mapped
onto desired properties of the analysis method (model
properties) using the fuzzy knowledge base for method
selection (KBMS), see Fig. 1. Given an appropriate
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Fig. 1 Automatic selection of
methods. Using the KBMS,
wanted model properties are
inferred from user
preferences. Properties of
available models are matched
against wanted properties,
which results in a ranking of
models

KBMS, user requirements could be defined at an even
higher level like ‘I wish a model that predicts tomor-
row’s price of BT shares with high accuracy, it should
be easy to understand using rules and I would like to
implement it as an SQL query’.

The current version of the SPIDA Wizard provides a
sequence of dialogs like the one shown in Fig. 2 to specify
user requirements and the data source. It then selects all
applicable analysis methods and ranks them according

Fig. 2 Choosing preferences in the Wizard, top the dialog for an
explanation facility of methods, bottom ranking of data analysis
methods according to user preferences before model creation

to the requirements. The user then selects the methods
he is interested in and SPIDA creates so-called analy-
sis workspaces for the chosen methods. Such a work-
space consists of blocks for data access, filters, analysis
methods and visualization as shown in Fig. 3. The con-
figuration of the workspace and its blocks depends on
the data, the analysis problem and the chosen analysis
method. The workspaces will be executed, model prop-
erties like accuracy and simplicity will be measured and
the suitability of the model reevaluated. In case of a low
suitability, the Wizard tries to change the parameters of
the analysis method and reruns the workspace in order
to improve the results. An example of this procedure is
shown in Fig. 4.

In summary, SPIDA consists of the following function
blocks

– Wizard: user interface for non-expert users to run
SPIDA in automatic mode.

– Automatic pre-processing: detection of data types,
handling of missing values, normalisation, scaling,
re-coding etc.

Fig. 3 Workspaces automatically created by the wizard for four
different data analysis methods. The workspaces are usually not
shown by the wizard. This view also represents the GUI an IDA
expert would use to configure data analysis processes manually
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Fig. 4 Top results of the model creation process. Bottom auto-
matic re-runs of the NEFCLASS model

– Automatic method selection: depending on the user
requirements and the data to be analysed methods
are selected. If a method requires changes to the data
format pre-processing is invoked.

– Automatic method execution: IDA processes are
configured and started. Method execution is mon-
itored by the SPIDA knowledge base and methods
are automatically re-configured or re-run if neces-
sary.

– Adaptive user profiling: for each user a profile is
maintained comprising user-specific requirements
for IDA processes.

– Automatic result evaluation: this module compares
results of IDA processes to (fuzzy) user require-
ments. If no sufficient match is obtained, the pro-
cesses are re-configured and re-run to obtain a better
match.

– Automatic solution generation: this module wraps
the selected IDA results into executable objects with
standardized interface, which can be used in user
applications directly.

– Expert interface: experts can use SPIDA in a non-
automatic expert mode, where IDA processes are
graphically constructed and can be fully controlled.

For a more detailed description of the SPIDA Wiz-
ard that drives the automatic data analysis process see
Nauck et al. (2003, 2004).

3 Fuzzy decision trees

The fuzzy decision tree (FDT) module here has been
developed for SPIDA. In this implementation, the con-
figuration for the underlying program is done through
the GUI, which is running on the client; and the algo-
rithm for model learning is resident on the server. If
we consider the previous section as the presentation
of automatic IDA on the higher level, where methods
for a given problem can be selected automatically, then
making each individual module easy to use can be re-
garded as automating IDA on the lower level. Our fuzzy
decision tree module does not require many user inter-
actions due to its user-friendly GUI, automatic fuzzy
partitioning techniques and automatic pruning strate-
gies (details see below).

In the past several variants of FDTs were introduced
by different authors. Some work on binary fuzzy trees
has been done in Boyen and Wehenkel (1995), Olaru
and Wehenkel (2003) and Drobics and Bodenhofer
2002, where in Boyen and Wehenkel (1995)has pre-
sented the automatic induction of binary fuzzy trees
based on a new class of discrimination quality measures.
Janikow (1998) adapted the well-known ID3 algorithm
so that it works with fuzzy sets. In this paper, we also
adapted the ID3 algorithm to construct FDTs and bor-
rowed some basic ideas from Janikow (1998).

One important issue in tree learning is to select test
attributes. In existing FDT induction algorithms differ-
ent measures for ranking attributes were proposed,
for example, a squared error function in Olaru and
Wehenkel (2003), a measure of classification ambigu-
ity in Yuan and Shaw (1995), or simply the class entropy
related to an attribute Bouchon-Meunier et al. (1996).1

Still there exists a lot of work on fuzzy decision trees
where a generalized Shannon entropy based informa-
tion gain is applied, e.g. in Janikow (1998), Drobics and
Bodenhofer (2002) and Mitra et al. (2002). In Sect. 3.4
we will discuss the problems occurring with the extended
information gain and its successor information gain ratio
in the fuzzy domain. Although we investigated the prob-
lems here only considering information gain as example,
because it is the most widely used measure in decision
tree learning, the observed problems are much more
general: if some measures from classical trees are trans-
ferred into fuzzy decision trees in an incautious way, then
not only positive but also negative values for these mea-
sures could be produced in the later case (we discuss this
in Sect. 3.4). This will cause undesired effects in ranking

1 A survey of different measures is given in Bouchon-Meunier
and Marsala (1999). A comparison study of some measures can
be found in Marsala and Bouchon-Meunier (2003).
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attributes once a normalization on the measures is done
(see the discussion on information gain ratio in Sect. 3.5).

Going beyond Janikow’s work, in Sect. 3.7 we con-
sider how to extract a fuzzy rule base from the resulted
fuzzy tree and use this rule base to perform the classifi-
cation.

3.1 FDT learning

Like classical decision trees with the ID3 algorithm,
fuzzy decision trees are constructed in a top-down man-
ner by recursive partitioning of the training set into
subsets. In this paper we focus on the induction of a
fuzzy decision tree on continuous attributes. Before the
tree induction a fuzzy partition has to be created for
each attribute. The fuzzy sets of these partitions will be
used as fuzzy tests in the nodes of the fuzzy tree. To
initialize these fuzzy partitions we adopted an existing
algorithm, which creates them either completely auto-
matically based on a given data set (called “automatic
partitioning”), or based on a user specification of the
shape and number of the membership functions (called
“individual partitioning”). In the latter case the fuzzy
sets are distributed evenly over the entire domain of
each attribute. Here we assume the fuzzy partitions of
the input variables are given.

To highlight the differences to the classical decision
trees, we point out some particular features of fuzzy tree
learning as follows:

1. The membership degree of examples
The membership degree of an example to an exam-
ple set is not a binary element from {0, 1} (as in clas-
sical decision trees), but from the interval [0, 1]. In
each node, an example has a different membership
degree to the current example set, and this degree is
calculated from the conjunctive combination of the
membership degrees of the example to the fuzzy sets
along the path to the node, where different t-norms
(�), e.g. �Prod(a, b) = a ·b, �min(a, b) = min(a, b) or
�Łukasiewicz(a, b) = min{1, 1−a+b} with 0 ≤ a, b ≤ 1,
can be used for this combination.

2. Selection of test attributes
This point will be discussed in detail in the following
subsections.

3. Fuzzy tests
As mentioned above, in the inner nodes fuzzy tests
are used instead of crisp tests. A fuzzy test of an attri-
bute means to determine the membership degree of
the value of an attribute to a fuzzy set.

4. Leaf labeling
There are two variants to label a leaf node: each leaf
node contains all classes including the corresponding

membership degrees, or each leaf is labeled with the
class having the largest membership degree. Here
we use the first variant (see Sect. 3.3).

5. Stop criteria
Usually classical tree learning is terminated if all
attributes are already used on the current path; or
if all examples in the current node belong to the
same class. Here we use an additional condition,
namely whether the information measure is below a
specified threshold. In FDT any example can occur
in any node with any membership degree. Thus in
general more examples are considered per node and
fuzzy trees are usually larger than classical trees.
The threshold defined here enables a user to con-
trol the tree growth, so that unnecessary nodes are
not added. The experiments prove that an adequate
threshold helps not only to avoid overfitting, but
also to decrease the complexity of the tree.

3.2 Notation

For the formal presentation of a FDT learning and dis-
cussion of attribute selection we introduce the following
notation:

1. A = {A1, A2, . . . , An} is a set of input attributes
with domains dom(Ai), 1 ≤ i ≤ n.

2. For each variable Ai ∈ A, 1 ≤ i ≤ n:

– ui ∈ dom(Ai) is a crisp value of attribute Ai.
– Di is the fuzzy partition of Ai.
– ai

p denotes the fuzzy set (the linguistic term) p

for the attribute Ai. For example apressure
low means

the fuzzy set “low” of the attribute “pressure”.

3. C = {C1, . . . , Cm} is the set of possible classes.
4. We consider a reference set E = {e1, . . . , es} of

examples ek = (uk, yk), 1 ≤ k ≤ s. uk is the input
vector, yk ∈ [0, 1]m the output vector of ek. ui

k (i.e.
the ith element of uk) is the (crisp) value of attri-
bute Ai in example ek. yj

k (i.e. the jth element of yk)
is the membership degree of example ek to class
Cj.
The crisp classification of ek can be computed as
class(ek) = argmaxj:1≤j≤m{y j

k}. (Note that a classi-
fication problem can easily be extended for a con-
tinuous target variable by using fuzzy sets instead
of crisp classes Cj. However, we confine ourselves
to targets with a finite number of classes.)

5. The training set is a fuzzy set over E defined by
initial confidence weights χ = {χ1, . . . , χs}, ∀k, 1 ≤
k ≤ s : 0 ≤ χk ≤ 1. If no such information is pro-
vided by a user, we set ∀k, 1 ≤ k ≤ s : χk = 1.
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Fig. 5 FDT learning
algorithm

6. For each node N in the fuzzy tree, χN =
{χN

1 , . . . , χN
s } is the fuzzy example set (a fuzzy set

over E) in N. In the root, this fuzzy example set
coincides with the training set, i.e., ∀k, 1 ≤ k ≤ s :
χRoot

k = χk.

7. ZN
Cj

= ∑s
k=1 �(χN

k , y j
k) stands for the example

counter for class Cj in node N, where � is a t-
norm. ZN = ∑m

j=1 ZN
Cj

is the total counter for the

examples of all classes. (More details about the
computation and the interpretation of member-
ship degrees as case weights are given in Sect. 3.4.).

8. I(χN) denotes the generalized Shannon entropy of
the class distribution w.r.t. the fuzzy example set
χN in node N. I(χN|Ai) is the weighted sum of
entropies from all child nodes, if Ai is used as the
test attribute in node N.

9. Gain(χN , Ai) = I(χN) − I(χN |Ai) is the informa-
tion gain w.r.t. attribute Ai, which is the first of the
two attribute selection measures we consider.

10. SplitI(χN , Ai) denotes the split information – the
entropy w.r.t. the value distribution of attribute Ai

(instead of the class distribution).
11. GainR(χN , Ai) = Gain(χN , Ai)/SplitI(χN , Ai) is

the information gain ratio w.r.t. attribute Ai, which
is the second attribute selection measure we con-
sider.

3.3 Learning algorithm

The algorithm for learning FDTs is shown in Fig. 5.
Based on the notation introduced in the previous

section, we now present how the class information in
each leaf is determined for the labeling. There exist var-
ious ways to do this, here we use a simple one: ZN

Cj
=

∑s
k=1 �(χN

k , yj
k) denotes the example counter for class

Cj in leaf node N, then each class (with its membership
degree) can be described as a fuzzy singleton (Cj : wj),
where

wj =
ZN

Cj

argmaxl:1≤l≤m{ZN
Cl

} with 1 ≤ j ≤ m.

3.4 The problems of information measures in the fuzzy
domain

The central point during tree learning is to select the
“best” test attribute according to some information mea-
sures. Two well-known measures in classical decision
tree induction – information gain and information gain
ratio – were introduced by Quinlan in (1986) and (1993),
respectively. The attribute yielding the highest informa-
tion gain or gain ratio is chosen for the test.
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The definition of information gain is based on
probability theory, more exactly on Shannon entropy.
Information gain was used in ID3 for a long time and
produced very good results. However, this measure has
an inherent bias in favoring attributes with many values.
A simple example explains this bias clearly: if a data set
has an attribute, which records the identification num-
ber of each data example, the information gain of this
attribute will be the highest, because with this attribute
the data set will be split into so many subsets with each
containing only a single data example. This leads to a
tree that although classifies the learning data perfectly,
obviously makes very poor prediction on new data. To
solve this problem, a normalization of information gain
in C4.5 Quinlan (1993) was proposed, namely informa-
tion gain ratio: GainR(E, A) = Gain(E, A)/SplitI(E, A),
where E is a learning data set, A an attribute, Gain(E, A)

information gain of attribute A and SplitI(E, A) the en-
tropy of E with respect to the values of attribute A. Since
the attribute with many values has not only a high infor-
mation gain but also a high entropy, the normalization
brings the desired compensation effect, i.e., compen-
sates the bias of information gain.

In the following, we discuss the problems that occur
if we apply these two measures in fuzzy decision tree
induction. We used the generalized Shannon entropy as
in Janikow (1998): recall the notation in Sect. 3.2, and
suppose χN = {

χN
1 , . . . , χN

s
}
(1 ≤ k ≤ s) is the fuzzy

example set in node N in the fuzzy tree. Then the gen-
eralized entropy of χN is computed as

I(χN) = −
m∑

j=1

⎛

⎝
ZN

Cj

ZN

⎞

⎠ log2

⎛

⎝
ZN

Cj

ZN

⎞

⎠ , (1)

where ZN
Cj

is the example counter for class Cj (1 ≤ j ≤
m) and ZN is the total counter for the examples of all
classes in node N.

Suppose attribute A (with |D| fuzzy sets {ap|1 ≤ p ≤
|D|}) is the test attribute in N. Then the generalized aver-
age entropy of children corresponding to A is computed
as:

I(χN |A) = −
|D|∑

p=1

ZN|ap

ẐN

m∑

j=1

⎛

⎝
Z

N|ap
Cj

ZN|ap

⎞

⎠ log2

⎛

⎝
Z

N|ap
Cj

ZN|ap

⎞

⎠ ,

(2)

where Z
N|ap
Cj

is the counter for the examples that belong

to fuzzy set ap and class Cj, ZN|ap the counter for all
examples in child node N|ap, ẐN the counter for the
entire set of examples coming from all children, i.e.:

ẐN = ∑|D|
p=1 ZN|ap (in the fuzzy domain ẐN can be differ-

ent from ZN).
The difference of I(χN) and I(χN |A) yields the infor-

mation gain w.r.t. A. Clearly, the definition of informa-
tion gain in the fuzzy domain differs from the classical
one mainly in the computation of the various counters
listed above, because in fuzzy decision trees, the counter
does not refer to the number of the examples but rather
the sum of the case weights.

As stated in feature 1 in Sect. 3.1, each example
ek in node N is associated with a membership degree
χN

k , which is calculated on the basis of the conjunctive
restrictions along the path from the root to node N and
computed incrementally with t-norms. Once a test attri-
bute is chosen and the child nodes are added, new mem-
bership degrees of the examples in each child must be
computed, because new restrictions represented by the
fuzzy sets of the test attribute are added. For example,
the membership degree of example ek to the fuzzy exam-
ple subset corresponding to fuzzy set ap (namely child

node N|ap) is calculated as χ
N|ap
k = �1(μap(u

A
k ), χN

k ).
Therefore, the counter for the examples of class Cj in

node N|ap is Z
N|ap
Cj

=∑s
k=1�2

(
χ

N|ap
k , yj

k

)
, and the counter

for the examples of all classes is ZN|ap = ∑m
j=1Z

N|ap
Cj

.

Hence
(

Z
N|ap
Cj

/ZN|ap
)

means the probability of class Cj

given the multi-dimensional fuzzy set defined by the
fuzzy sets along the path from the root to node N|ap.

In classical cases, the value of information gain,
accordingly the value of information gain ration, as we
know, can never be negative (a prove can be found, for
instance, in Borgelt and Kruse (2002)). The non-neg-
ative feature of information gain and gain ratio relies
on the premise, that after splitting the sum of example
cases belonging to each class in the union of all subsets
is the same as the corresponding sum before splitting,
namely the class frequency distribution in the whole set
is retained after splitting. In other words, the definition
of information gain implicitly assumes that this premise
is satisfied. In fact, this premise is guaranteed in classical
probabilistic theory. However, in FDT the computation
is based on the weights of example cases, not simply
the number of cases. Depending on the computation,
negative information gain is possible in FDT. This phe-
nomenon occurs due to the following two reasons, both
of which can lead to a situation in which the sum of the
weights of example cases before and after a split and
thus the class frequency distributions differ.

1. In fuzzy logic, the sum of the membership degrees
of a value to the fuzzy sets of its variable can differ
from 1, depending on how the fuzzy sets overlap.
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2. Probability theory prescribes to use the product
to express a (conditional) conjunction (i.e., P(X ∧
Y) = P(X | Y) · P(Y)), whereas fuzzy logic offers
other possibilities besides the product, for exam-
ple �min(a, b) = min(a, b) and �Łukasiewicz(a, b) =
min{1, 1 − a + b} with 0 ≤ a, b ≤ 1.

With the following examples we show how fuzzy logic
can influence information measures.

Example illustrates negative information measures due
to membership degrees

– Let E = {e1, e2, e3, e4, e5} be a reference set with
examples coming from two classes C1 and C2, where
the membership degree of the kth example to the
jth class yj

k have the following values: y1
1 = y1

2 = 1,
y2

1 = y2
2 = 0 (i.e., e1, e2 belong exclusively to C1), and

y1
3 = y1

4 = y1
5 = 0, y2

3 = y2
4 = y2

5 = 1 (i.e., e3, e4, e5
belong exclusively to C2).

– Let the membership degree of each example to the
current fuzzy example set in node N be χN

k = 1,
1 ≤ k ≤ 5 (see Table 1). These membership degrees
are interpreted as case weights and thus we have
pC1 : pC2 = 2 : 3 as the frequency distribution of the
classes.

– After splitting the training set according to the fuzzy
sets of attribute A — small and large — we obtain
Table 2 showing the membership degree of each
example. Since χN

k = 1, 1 ≤ k ≤ 5, if �Prod is
used, the membership degree of each example is
the same as its membership degree to the respec-

Table 1 Example 1 (membership degrees of examples before
split)

Before split C1 C2

e1 e2 e3 e4 e5

χN
j 1.0 1.0 1.0 1.0 1.0

ZN 2.0 3.0

Table 2 Example 1 (membership degrees of examples after split)

After split C1 C2

e1 e2 e3 e4 e5

Small 0.8 0.7 1.0 0 1.0
Large 0.6 0.9 0 1.0 0
χ̂N

j 1.4 1.6 1.0 1.0 1.0

ẐN 3.0 3.0

tive fuzzy set,2 e.g. χ
N|small
1 = �Prod(χ

N
1 , 0.8) = 0.8

and χ
N|large
1 = �Prod(χ

N
1 , 0.6) = 0.6. If we interpret

the membership degrees to the fuzzy example set as
case weights we can sum the weights for the subsets
to obtain the weights for the whole set (as it is pos-
sible in classical decision tree induction). In this way
we obtain case weights (not membership degrees,
because they may be greater than 1) χ̂N , for which
we have χ̂N

1 = 0.8 + 0.6 = 1.4, χ̂N
2 = 0.7 + 0.9 = 1.6,

and χ̂N
3 = χ̂N

4 = χ̂N
5 = 1. The frequency distribution

of the classes w.r.t. these case weights is pC1 : pC2 =
(1.4 + 1.6) : (1.0 + 1.0 + 1.0) = 3 : 3 = 1 : 1.

Obviously the sum of the case weights has changed
after splitting the training set according to the fuzzy
partition of attribute A. Since the entropy of a uni-
form probability distribution is maximal, the entropy
I(χ̂N) after the split is certainly larger than the en-
tropy I(χN) before the split. If we have ∀k, 1 ≤ k ≤
5 : χ̂N

k = χ
N|small
k + χ

N|large
k (as it is implicitly assumed

by the definition of information gain), we have that
̂Gain(χN , A) = I(χ̂N) − I(χN |A) is definitely non-nega-
tive. Now it is easy to conclude:

since I
(
χ̂N

)
> I

(
χN

)

and ̂Gain
(
χN , A

)
= I

(
χ̂N

)
− I

(
χN |A

)
> 0

�⇒ Gain
(
χN , A

)
= I

(
χN

)
− I

(
χN |A

)

< 0 is possible.

Consequently, GainR(χN , A) = Gain(χN , A)/SplitI
(χN , A) < 0 is possible, since SplitI(χN , A) is non-nega-
tive. Indeed, for the example considered above we have
Gain(χN , A) = 0.971 − 0.98 = −0.008. An illustration
for negative information gain caused by �min can be
easily constructed in analogy to Example 1 as follows.

Example illustrates negative information measures
caused by �min

– Table 3 shows a reference set E = {e1, e2} coming
from two classes C1 and C2 in node N, where e1
belongs exclusively to C1 with y1

1 = 1 (i.e. y2
1 = 0)

and e2 exclusively to C2 with y2
2 = 1 (i.e. y1

2 = 0).
– Assume the membership degrees of these two exam-

ples to the current fuzzy example set are: χN
1 = 0.6

and χN
2 = 0.9. These membership degrees are inter-

preted as case weights and thus the frequency distri-
bution of the classes is pC1 : pC2 = 2 : 3.

2 In general, one has to combine the membership degree to the
fuzzy example set and the membership degree to the fuzzy set of
the attribute with a t-norm.
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Table 3 Example 2 (membership degrees of examples before
split)

Before split C1 C2
e1 e2

χN
j 0.6 0.9

ẐN 0.6 0.9

– Attribute A is the test attribute and has two fuzzy
sets small and large. Assume the value of A in e1
has membership degrees μsmall(e1) = 0.6 to fuzzy set
small and μlarge(e1) = 0.4 to fuzzy set large, the value
of A in e2 has membership degrees μsmall(e1) = 0.5
to small and μlarge(e2) = 0.5 to large. We notice
that in this illustration, the sum of the membership
degrees of the attribute’s value to the two fuzzy sets
of attribute A is actually 1.

– After splitting the training set w.r.t. A, the member-
ship degrees of e1, e2 will be updated as illustrated
in Table 4: e.g. χ

N|small
1 = �min(χ

N
1 , μsmall(e1)) =

min(0.6, 0.6) = 0.6. If we interpret the membership
degrees to the fuzzy example set as case weights we
can sum the weights for the subsets to obtain the
weights for the whole set. In this way we obtain
the case weights χN

1 = 0.6 + 0.4 = 1.0 for e1 and
χN

2 = 0.5 + 0.5 = 1.0 for e2. The frequency dis-
tribution of the classes w.r.t. these case weights is
pC1 : pC2 = 1 : 1.

Here occurs the same situation as in Example 1, and
due to the same reason the conclusion – Gain(χN , A) =
I(χN) − I(χN |A) < 0 is possible – can be drawn. In
Example 2 we obtain Gain(χN , A) = 0.971 − 0.993 =
−0.022.

3.5 Extended information measures

In Sect. 3.4 we have shown that negative information
gain as well as negative gain ratio can occur in FDT
induction (e.g. in the version developed in Janikow
1998) if we use the entropy I(χN) (e.g. in Table 1 of
Example 1) computed from the membership degrees of

Table 4 Example 2 (membership degrees of examples after split)

After split C1 C2
e1 e2

Small �min(0.6, 0.6)=0.6 �min(0.9, 0.5)=0.5
Large �min(0.6, 0.4)=0.4 �min(0.9, 0.5)=0.5
χ̂N

j 1.0 1.0

ẐN 1.0 1.0

the examples (interpreted as case weights) in the current
node, in which a test attribute is to be chosen, since the
premiss of the classical information gain can be violated
due to the fact, that the case weight of an example case
in the whole fuzzy example set before and after a split
can differ.

A negative information gain, although it has no real
meaning, can still yield a correct ranking of the candi-
date test attributes. But if information gain ratio is used,
a negative value for the information gain can produce
an inappropriate answer. To see this, let us consider a
simple example: suppose for the current tree node N we
have two candidate attributes A and B with information
gain Gain(χN , A) > Gain(χN , B) and split information
SplitI(χN , A) 	 SplitI(χN , B), where χN is the fuzzy
example set (a fuzzy set over a reference set E of exam-
ples) in N, which acts actually as the training set.

1. In classical decision trees it is always Gain(χN , A) >

Gain(χN , B) ≥ 0, and then it may be that

0 ≤ Gain(χN , A)

SplitI(χN , A)
<

Gain(χN , B)

SplitI(χN , B)
. (3)

This is desired, because it reduces the well-known
bias of information gain towards many-valued attri-
butes as described above.

2. In the fuzzy domain, however, we can also have the
situation Gain(χN , A) > 0 > Gain(χN , B). In such
a case, attribute A is always favored by the informa-
tion gain ratio, because

Gain(χN , A)

SplitI(χN , A)
> 0 >

Gain(χN , B)

SplitI(χN , B)
, (4)

independent of the relationship between SplitI
(χN, A) and SplitI(χN , B), and this contradicts our
intuition.

To make information gain ratio applicable as a selec-
tion measure, we suggest a different way of computing
the information measure in the fuzzy domain. Using the
entropy I(χ̂N) of the examples (derived from the case
weights χ̂N as computed above, e.g. in Table 2 of Exam-
ple 1), which implicitly includes the information of the
test attribute, we can guarantee that the information
measure is non-negative. In the following we explain
our extensions in a formal way.

Suppose we have a reference set E = {e1, . . . , es} com-
ing from m different classes C = {Cj|1 ≤ j ≤ m} and χN

is the fuzzy example set in node N. A is a candidate
test attribute that has a fuzzy partition with |D| fuzzy
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Table 5 (Fuzzy) contingency table for node N with attribute A as
the test candidate

N(A) C1 C2 . . . Cm ASum

a1 ZN|a1
C1

ZN|a1
C2

. . . ZN|a1
Cm

ZN|a1

a2 ZN|a2
C1

ZN|a2
C2

. . . ZN|a2
Cm

ZN|a2

. . . . . . . . . . . . . . . . . .

ap Z
N|ap
C1

Z
N|ap
C2

. . . Z
N|ap
Cm

ZN|ap

CSum ZN
C1

ZN
C2

. . . ZN
Cm

ZN

sets {ap|1 ≤ p ≤ |D|}. uA
k is the value of attribute A in

example ek, 1 ≤ k ≤ s.
To determine the best test attribute, we create a

(fuzzy) contingency table (see Table 5) for each can-
didate A in node N, from which we can compute the
information measure for A. In Table 5, we have:

1. Z
N|ap
Cj

– the counter for the examples that belong to
fuzzy set ap and class Cj

2. ZN|ap in column “ASum” – the counter for all exam-
ples in child node N|ap (i.e. the sum of the examples’
membership degrees to the fuzzy example subset for

fuzzy set ap ): ZN|ap = ∑m
j=1 Z

N|ap
Cj

.

3. ZN
Cj

in row “CSum” – the counter for the examples
which belong to class Cj.

4. ZN – the counter for the entire set of examples, we
notice that ZN = ∑|D|

p=1 ZN|ap = ∑m
j=1 ZN

Cj
.

Figure 6 presents the algorithm for estimating the
information measure of the candidates. The basic com-
putation is similar to that in classical trees: to determine
information gain or gain ratio, the generalized entropy in
node N as well as the average entropy of all child nodes
are computed. However, the significant difference is to
compute the membership degree of each example ek to
the subset in each child node corresponding to fuzzy

set ap — χ
N|ap
k , where we first have to get the member-

ship degree of attribute value uA
k in each example ek to

ap — μap(u
A
k ) (line 8), then χ

N|ap
k = �1(μap(u

A
k ), χN

k )

(line 9) is obtained. Afterwards, we compute the differ-

ent example counters — Z
N|ap
Cj

(line 10), ZN|ap (line 14),

ZN
Cj

(line 12), ZN (line 15), from which various class fre-
quency distributions and entropies can be determined:
the entropy in each fuzzy example subset I(χN|ap) (line
18), the weighted sum of entropies I(χN |A) (line 19)
of the children, and the split information SplitI(χN , A)

(line 21) of A. The most crucial point here is, to guaran-
tee non-negative information gain. We propose to use
the entropy I(χ̂N) based on fuzzy example set χ̂N implic-

Fig. 6 calculate the information measure
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itly including the information of test attribute A, instead
of fuzzy example set χN in node N, for χN and χ̂N

can be different due to fuzzy logic. Since the counter
ZN

Cj
and ZN used for entropy I(χ̂N) are computed from

χ
N|ap
k , this means χ̂N

k = ∑|D|
p=1 χ

N|ap
k (1 ≤ k ≤ s), more

clearly, I(χ̂N) is calculated from the same case weights
as I(χN |A). Therefore ̂Gain(χN , A) is guaranteed to be
non-negative. As consequent, non-negative gain ratio
̂GainR(χN , A) is also ensured.

Remark 1 information gain ratio is used in C4.5 Quinlan
(1993) to select the test attribute in order to reduce
the natural bias of information gain, i.e., the fact that
it favors attributes with many values (which may lead
to a model of low predictive power). In FDT induction,
fuzzy partitions are created for all attributes before the
tree induction. To keep the tree simple, usually each par-
tition possesses as few fuzzy sets as possible. Since the
outgoing branches are labelled with fuzzy sets instead
of crisp values, the problem mentioned above is mit-
igated, because continuous values are mapped to few
fuzzy sets and thus the problem of many values is less
severe. Therefore, the effect of using information gain
ratio in FDT may not be so obvious as in classical deci-
sion trees.

In following, we give an example to show the differ-
ence in choice of attributes between using information
gain and gain ratio with and without the proposed exten-
sion. Given the example reference set E shown in Exam-
ple 1 (see Table 1). Assume there are two candidate
attributes A, B. Attribute A has two fuzzy sets small and
large, attribute B has four fuzzy sets s1, s2, s3 and s4. The
split according to A is illustrated in Table 2 (in Example
1), and the split according to B in Table 6. When we use
information gain as the selection criterium, based on
the original generalized version (e.g. Janikow (1998)),
we have

Gain(χN , A) = 0.9710 − 0.9793 = −0.0083

Gain(χN , B) = 0.9710 − 0.9316 = 0.0394.

Table 6 Example 3 (membership degrees of examples after split)

Split according to B C1 C2
e1 e2 e3 e4 e5

s1 0.3 0 0.4 0 0.6
s2 0.7 0 0.6 0 0
s3 0 0.6 0 0.8 0
s4 0 0.4 0 0.2 0.4
χ̂N

j 1.0 1.0 1.0 1.0 1.0

ẐN 2.0 3.0

Gain(χN , B) is larger than Gain(χN , A), B is thus more
favored than A. When we use the modified measure
based on our amendments:

̂Gain(χN , A) = 1 − 0.9793 = 0.0207
̂Gain(χN , B) = 0.9710 − 0.9316 = 0.0394

in case of B, we notice ∀1 ≤ k ≤ 5 : χ̂N
k = χN

k , hence
information gain with respect to B based on our amend-
ments has not changed, B is still chosen. The split infor-
mation of attribute A and B are:

SplitI(χN , A) = 0.9799

SplitI(χN , B) = 1.9892.

Considering gain ratio without the extensions:

GainR(χN , A) = −0.0083/0.9799 = −0.0085

GainR(χN , B) = 0.0394/1.9892 = 0.0198.

A is still less valued merely due to the negative value,
i.e., in such a case the split information of the two attri-
butes actually do not have the expected effect. If we use
the gain ratio based on our extension, we will have

̂GainR(χN , A) = 0.0207/0.9799 = 0.0211
̂GainR(χN , B) = 0.0394/1.9892 = 0.0198

obviously, now the split information will be correctly
taken into account and A is favored. Therefore with the
proposed extension, gain ratio is made applicable in the
fuzzy domain according to the motivation that it was
proposed with.

3.6 Missing value handling

Data collected from real world often contain missing
values. To handle such data we extend the learning algo-
rithm, so that deleting examples with missing values
from the training data set is not necessary anymore.

The first question to be answered is how to assign
the examples with missing values of the test attribute
to the outgoing branches of a tree node. In this paper a
popular method from classical decision trees is adopted:
an example ek is distributed evenly to all children if the
value ui

k for test attribute Ai is unknown. It means that
to each fuzzy set (branch) ai

p of Ai example ek is assigned
with membership degree μai

p

(
ui

k

)
:

μai
p

(
ui

k

) = 1
|Di| if ui

k is unknown , (5)

where |Di| is the number of the fuzzy sets of Ai.
As we know, the information gain can be interpreted

as “the information gained about the classes by
ascertaining the value of the test attribute”, a test of
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an example with a missing value for the test attribute,
can obviously provide no information about the class
membership of this example. Therefore, the assessment
of candidate attributes has to be modified accordingly,
so that attributes with missing values are penalized.

Suppose we are given a reference set E having missing
values for attribute Ai. Then the calculation of the infor-
mation gain for candidate attribute Ai can, as suggested
in Quinlan (1993), be modified as following:

̂Gain(χN , Ai)

= frequency of examples with known

Ai · (I(χ̂N) − I(χN|Ai))

+frequency of examples with unknown

Ai · 0

= α · (I(χ̂N) − I(χN |Ai)), where α = ZN|Ai known

ZN .

(6)

Due to the factor α, which is computed from the counter
for examples without missing values of Ai “ZN|Ai known”
and the counter for the entire examples “ZN”, the real
information gain is only dependent on those examples
with known values for the test attribute.

The information gain ratio can be amended in a sim-
ilar way:

̂GainR
(
χN , Ai

)
= α · I

(
χ̂N

) − I
(
χN |Ai

)

SplitI
(
χN , Ai

) . (7)

Since the split information SplitI
(
χN , Ai

)
is the entropy

of the frequency distribution over the values of attri-
bute Ai, the split information is increased artificially
by evenly splitting the examples with missing values,
and the information gain ratio is decreased accordingly
(since SplitI(χN , Ai) appears in the denominator). This
effect is desired, because an attribute having missing val-
ues should be penalized. Since the increased split infor-
mation already penalizes the measure, one may consider
making the use of the factor α (see above) optional. That
is, it is added only when a user explicitly requests it.

3.7 Fuzzy rule base

An important goal of this work is to generate a com-
prehensible classification model, here a fuzzy rule base,
which can be generated from the fuzzy decision tree,
that has been learned from data as described above.

3.7.1 Fuzzy rule learning

There are different approaches to learn a fuzzy sys-
tem, the three most important categories are: cluster-,

hyperbox- and structure-oriented learning. The first two
approaches generate fuzzy rules and fuzzy sets at the
same time, while the last one defines the granularity of
the data space in advance, i.e., it creates initial partitions
for all variables, then produces the rule base from this
structured data space.

Cluster-oriented rule learning is an unsupervised
learning method. With fuzzy cluster analysis (Bezdek
et al. 1998), the training data are grouped into clusters,
then the fuzzy rules are generated by transforming each
cluster into a rule. Fuzzy sets are obtained by projecting
the clusters onto the domain of each variable.

Hyperbox-oriented learning is a supervised learning
approach, where the training data are covered by (even-
tually overlapping) hyperboxes, so that the dependency
between output and input variables is described by fuzzy
graphs (Berthold and Huber 1999). The fuzzy rules are
produced from the hyperboxes and fuzzy sets by pro-
jecting the hyperboxes onto individual dimensions.

However, these two methods have some drawbacks
in common:

1. Each fuzzy rule uses individual fuzzy sets, thus the
rule base is difficult to interpret.

2. The fuzzy sets generated by the projection are hard
to interpret linguistically.

3. They cannot cope with missing values.

Cluster-oriented approaches have besides the restriction
that a suitable number of clusters must be determined by
repeating the cluster analysis with an increasing number
of clusters until some validity measure assumes a local
optimum.

Structure-oriented learning suggested by Wang and
Mendel (1992) avoids the drawbacks mentioned above.
By providing initial fuzzy sets for all variables, the data
space is structured by a multidimensional fuzzy grid,
and the rules are created by selecting those cells con-
taining data. Fuzzy decision trees can be viewed as a
structure-oriented fuzzy rule learning method with con-
current structure optimization, where the data space is
partitioned in a data-driven manner and the partition
is represented as a tree. The fuzzy rules are generated
by transforming each path to a leaf of the tree into a
rule. The antecedent of each rule consists of the fuzzy
sets along that path leading to the leaf and the conse-
quent of each states membership degrees for the classes
which can be read directly from that leaf. Fuzzy decision
tree learning has the following advantages over cluster-
and hyperbox-oriented learning: it is able to deal with
missing values, allows an unambiguous representation
of linguistic terms and provides better interpretability
of the resulted rule base.
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Fig. 7 A fuzzy rule example

3.7.2 Classifying data

To classify data, the fuzzy rule base generated from the
fuzzy decision tree works in basically the same manner
as standard fuzzy systems.

1. A fuzzy rule is Rk = (ARk, CRk) in the form of:
“If A1 is μ1

k, A2 is μ2
k, . . . , An is μn

k then C1 :
w1

k, C2 : w2
k, . . . , Cm : wm

k ”, where μi
k (1≤ i≤n) is a

fuzzy set of input variable Ai. ARk = (a1
k, . . . , an

k) is
the antecedent. CRk = (w1

k, w2
k, . . . , wm

k ) is the con-
sequent, which contains all possible classes with cor-
responding membership degrees w j

k(1≤ j ≤m), and
is described by a set of fuzzy singletons (Cm :wm).

2. �1 (t-norms) conjunctively combines the member-
ship degrees of input values ui (1 ≤ i ≤ n) to all
fuzzy sets in the antecedent, to determine the fulfill-
ment degree τk of rule Rk:

τk = �1

{
μ1

k(u1), μ2
k(u2), . . . , μn

k(un)
}

.

3. The inference operation �2 (t-norms) is used to
compute the conclusion of a rule, i.e., the consequent
of rule Rk can be computed as y j

k = �2(τk, wj
k).

The output of the fuzzy system for an input exam-
ple is a vector of all classes and is described as
y = (y1, . . . , ym).

4. The defuzzification method “defuzz” determines the
crisp output value, here two options MAX and
MEAN are given.

To classify an example, the decision for it has to be
made by the entire set of fuzzy rules. Figure 7 gives a
simple illustration to clarify how one fuzzy rule classifies
a data example. Given is a data example with two input
variables A1 and A2, whose crisp values u1 and u2 have
the membership degrees of 1.0 and 0.3 to fuzzy sets small
and large respective ly. Here we use �1 = �min and �2 =
�Prod merely for the illustration: we will get a fulfilment
degree of the rule of 0.3 by using �1 = min(1.0, 0.3).
The consequent consists of two classes with member-
ship degrees 1.0 and 0.5 respectively. With �2 = �Prod

the consequent of the rule classifies this data example
as class C1 with y1 = �Prod(1.0, 0.3) = 0.3 and class C2
with y2 = �Prod(0.5, 0.3) = 0.15, it means this example
is classified as class C1 if only this rule is considered.

After all rules have made their individual decisions
for a data example, in order to determine a class for this
data, we have to convert these decisions into one crisp
output by the defuzzification method. Here we define
two variants: MAX and MEAN.

Given a fuzzy-classifier with r rules R = {R1, . . . , Rr}
that can predict three classes C1, C2, C3. The output yj

k
of each rule Rk (calculated in the same way as in Fig. 7)
is shown in Table 7.

The output vector of this classifies – in this example:
y = (y1, y2, y3) – can be calculated by using either of
these two variants of defuzzification. The method MAX
determines the output y by finding the maximal value
for each class (i.e., in each column):

y j = defuzzMAX(y j
k) = max

1≤k≤r
{y j

k}, 1 ≤ j ≤ 3.

With MEAN all values will first be weighted (by the
fulfillment degree of the corresponding rule) accumu-
lated column by column for each class, then these sums
will be divided by the sum of the fulfillment degrees of
all rules:

y j = defuzzMEAN(y j
k) =

∑r
k=1(τk · y j

k)
∑r

k=1(τk)
, 1 ≤ j ≤ 3.

If a fuzzy or continuous result is desired, this output
vector can be put to use directly. If a crisp decision has
to be made, the Winner-Take-All-Interpretation can be
applied, i.e., all components of the output vector should
be compared and the class corresponding the largest
value will be put out: if e is a data to be classified, then
class(e) = argmaxj:1≤j≤3{y j}. In case all components of
the output vector are equal, i.e., y1 = y2 = y3, “not
classified” will be yielded as the result.

Table 7 Outputs of the fuzzy rules

C1 C2 C3

R1 y1
1 y2

1 y3
1

. . . . . . . . . . . .

Rk y1
k y2

k y3
k

. . . . . . . . . . . .

Rr y1
r y2

r y3
r
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3.7.3 Pruning strategies

A simpler model or a model with better predictive power
cannot be produced by just rewriting the fuzzy decision
tree into the form of fuzzy rules. To achieve this an opti-
mization of the rule base is necessary.

We optimize the rule base by rule pruning, where
three heuristic strategies adapted from Nauck et al.
(1999) are used:

1. Pruning by information measure: the attribute hav-
ing the smallest influence on the output should be
deleted.

2. Pruning by redundancy: the linguistic term, which
yields the minimal membership degree in a rule in
the least number of cases, should be deleted.

3. Pruning by classification frequency: the rule, which
yields the maximal fulfillment degree in the least
number of cases, should be deleted.

These strategies are effective in both reducing the num-
ber of rules and increasing generalization ability. Since
the comprehensibility of a fuzzy system can be defined
by the number of the rules, the number of attributes
used in a rule and the number of fuzzy sets per attribute,
the heuristics used in the strategies above are plausible.

Before going to more details, we first describe how to
evaluate the performance of a model. The performance
of a classification model can be indicated by some error
measures. Given a data set E = {e1, . . . , es} of examples
ek = (uk, vk), 1 ≤ k ≤ s. uk is the input vector and
vk ∈ [0, 1]m the target output vector of ek. yk ∈ [0, 1]m is
the real output of the classifier and computed as descried
in Sect. 3.7.2. Two measures – error and misclassified –
are defined as follows:

1. error measures: how crisp the classification is.
The error made on a single example is defined as
the squared difference between the target output
and the real output

∑m
j=1(v

j
k − y j

k)2. The measure
error of the classifier over E is the sum of the errors
of all examples:

error =
s∑

k=1

m∑

j=1

(v j
k − y j

k)2. (8)

2. misclassified measures: the number of misclassified
examples.
The measure misclassified uses the crisp output of
the classifier instead of the output vector. The tar-
get class of ek is class(ek) = argmaxj:1≤j≤m{v j

k}, and
the real crisp classification made by the classifier is

likewise determined class′(ek) = argmaxj:1≤j≤m{y j
k}.

The error made on an example is either 1, if the
real output class coincides with the target class; or
0 otherwise. Thus the measure “misclassified” over
data set E is:

misclassified =
s∑

k=1

merrk,

where

merrk =
{

1, falls class′(ek) = class(ek)

0, otherwise.
(9)

These two error measures will not only be used as the
error estimation of classifiers, but also as stop criteria
for the optimization of the rule base.

The three strategies described above are called suc-
cessively by the pruning algorithm. At each pruning step
only one attribute or one fuzzy set or one rule is deleted
from the system. Before each step the current rule base
is to be saved. Once the execution of one strategy is
finished, we should check, whether this pruning step
improved the rule base successfully. If the rule base sim-
plified by this step has a better performance than the
original one, the changed rule base is kept and then is
to be pruned further with the same strategy. Otherwise
the rule base should be reset with the previously saved
version, and the pruning will be continued with the next
strategy. The pruning process can work automatically
without any user interactions.

There are four check modes available for the perfor-
mance check of the rule base after each pruning step:

1. error_mode: check, whether the value of error is
smaller after pruning.

2. misclassified_mode: check, whether the value of mis-
classified is smaller after pruning.

3. error_ and misclassified_mode: check, whether the
values of both measures decreased after pruning.

4. error_ or misclassified_mode: check, whether one
value of these two measures decreased after prun-
ing.

To reduce runtime, one pruning strategy will be iter-
ated until it fails to improve the rule base, then the
next strategy is selected. The algorithm gives the user
the opportunity to choose the “exhaustive pruning”. In
this mode, after a failed pruning step the same strategy
will be carried on with the next parameter (this can be
an attribute, a linguistic term or a rule) it recommends
for pruning, till all possible parameters are used, then
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Table 8 Test data

Data Size Attributes Classes Missing value

Iris 150 4 3 No
Glass 214 10 (incl. Id) 7 No
Thyroid 215 5 3 No
WBC 699 10 (incl. Id) 2 Yes
Pima 768 8 2 No

switches to the next strategy. With “exhaustive prun-
ing” the rule base will be pruned most thoroughly, as
consequence a longer runtime is necessary.

4 Experiments

In this section, we report some results obtained from
experiments run with the program FDT,3 which was
written by the first author of this paper, the well-known
decision tree learner C4.5 (Release 8)4 Quinlan (1993),
a neural network training program Borgelt, and NEF-
CLASS Nauck and Nauck, which can generate a fuzzy
rule based classifier by coupling neural networks with
fuzzy systems. We compare the models generated by
these programs w.r.t. precision, complexity, and the abil-
ity of dealing with missing values. For the tests we used
five data sets from the UC Irvine Machine Learning
Reposity Blake and Merz. Table 8 shows general infor-
mation about these data sets.

All experiments were run with tenfold cross valida-
tion. C4.5 was run with the standard configuration. In
NEFCLASS for each attribute a fuzzy partition with
three evenly distributed fuzzy sets was created. Fuzzy
sets were also optimized during the rule pruning. The
neural network program trained a multilayer percep-
tron (MLP) with one hidden layer (3 neurons) for 1,000
epochs.

Since we tried to generate comprehensible classifi-
cation models, a trade-off between precision and com-
plexity should be found. With this concern in mind, in
FDT a threshold of 0.05 for the information measure
was chosen. That is, a test is created only if the chosen
test attribute yields an information value higher than
0.05.

4.1 Precision and complexity

Table 9 shows the average error rate ε̄, as well as the
number of rules n of the resulting pruned classifiers.

3 We used the rule base generated by FDT for the experiments.
4 The learning result of C4.5 can be both a tree or a rule base.
Here we used the generated rule base for the experiments.

Table 9 Tenfold cross validation

Model Iris Glass Thyroid WBC Pima

FDT ε̄ 4.67% 34.29% 3.33% 2.79% 31.32%
(1) n 3 11 5 12 2
FDT ε̄ 5.33% 31.90% 7.62% 2.64% 18.82%
(2) n 3 33 10 17 40
C4.5 ε̄ 4.01% 33.54% 7.03% 4.83% 23.3%

n 4 14 7 8 8
NEFCLASS ε̄ 3.33% 32.19% 11.60% 2.35% 25.89%

n 3 14 6 21 14
NN ε̄ 6.25% 31.27% 3.54% 5.05% 24.67%

The best error rate of the models is printed in bold in
the table.

In these experiments, FDT was run with two differ-
ent initial partitioning of the attributes – the automatic
(labelled as FDT (1)) and the individual partitioning
(labelled as FDT (2)) mentioned above. With the indi-
vidual partitioning each attribute was partitioned with
three fuzzy sets, which were evenly distributed over the
attribute’s domain, while with automatic partitioning
the number of fuzzy sets was determined by the pro-
gram.

If we consider only the precision of the models, it
is very difficult to say which method is the best one,
since each method produces the best result at least once.
C4.5 never yields the worst error rate. FDT (1) gives
the highest precision (3.33%) for the thyroid data and
at the same time a very small rule base (5 rules). For
the WBC data NEFCLASS achieves the best perfor-
mance of 2.35% with as many as 21 rules, while FDT (1)
provides performance only slightly worse (2.79%), for
which it needs only about half the rules (12). The neural
network fares worst for the wbc, which is probably due
to the fact that an MLP with three hidden neurons (as
used here) is comparable in power to about three rules.
With so few rules no good performance can be expected
for the wbc data.

For the pima data the worst classification rate is
provided by FDT with the automatic partitioning (how-
ever, with only 2 rules). The reason is that the partition-
ing algorithm created for only 2 of the 8 attributes two
fuzzy sets and only one fuzzy set for each of the rest.
Therefore the potential number of rules is only four,
with which no learning algorithm can do much. In a
comparison with the best result of FDT (with individ-
ual partitioning, which required as many as 40 rules),
we noticed that the attributes of the pima data have a
relatively strong interrelationship. Therefore the data
can be predicted better only by combining several attri-
butes. A finer granularity, which was achieved by FDT
with the individual partitioning, enhanced the probabil-
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Table 10 Learning from data
with missing values Data 5% 10%

FDT C4.5 Nefclass FDT C4.5 Nefclass

Iris ε̄ 4.67% 8.01% 5.33% 10.67% 12.00% 6.67%
n 4 5 3 3 3 3

Glass ε̄ 39.52% 34.61% 37.19% 29.04% 40.25% 39.18%
n 13 11 18 21 10 23

Thyroid ε̄ 3.81% 8.34% 33.92% 8.57% 10.24% 18.53%
n 6 7 3 4 6 5

WBC ε̄ 5.51% 4.86% 4.87% 7.68% 5.28% 5.58%
n 23 11 32 20 12 39

Pima ε̄ 31.45% 26.71% 22.66% 35.00% 27.23% 27.59%
n 2 8 21 2 6 25

ity of a combination of attributes, and thus led to a better
performance.

The same partitioning like in FDT (2) was also used in
NEFCLASS. For the pima data NEFCLASS provided a
slightly lower precision, but with less than half the rules.
We assume that the reason is that the fuzzy sets of NEF-
CLASS were trained during the learning and pruning
phase, so they probably fit the data better. In contrast to
this the fuzzy sets used in FDT (2) were created once at
the beginning and did not change anymore.

If we compare the two groups of results yielded by
FDT – taking not only the precision but also the com-
plexity of the classifiers into account – we conclude that
the learning process creates better classifiers if it works
with automatic instead of individual partitioning. In par-
ticular, the number of rules of the first variant is often
clearly less than that of the latter. Presumably the reason
is that in the first variant the class information is taken
into account, whereas it is neglected in the latter.

4.2 Tests on imperfect data

The experiments on the data with missing values, which
were generated by randomly deleting values from each
data set, demonstrate how well different learning meth-
ods can cope with imperfect data. In these tests FDT
was only run with automatic partitioning.

Two columns of Table 105 show the results for data
sets with 5 and 10% missing values, respectively. The best
results are printed in bold face. As expected, the per-
formance of all methods decreased with the increased
portion of missing values. FDT provided for the thyroid
data (both 5% and 10% missing values) the best result,
as well as for the iris data (5%) and the glass data (10%).
However, it is impossible to single out a method that is

5 The neural network program does not appear in this table, since
it cannot work with missing values.

consistently superior to the others. The properties of the
data seem to have stronger influence than the portion of
missing values.

In C4.5 the threshold values for tests of continuous
attributes are determined dynamically and locally in the
nodes; in NEFCLASS, although all attributes are par-
titioned with fuzzy sets before learning, the fuzzy sets
are still optimized afterwards. In contrast to this the
fuzzy sets used in FDT are not changed anymore after
creation. The lack of such dynamic fitting may be a dis-
advantage of the resulting fuzzy decision tree.

5 Surface quality control – a real world application

In this section, we present a real world application for
the quality control of car body panels with the goal of
building an automatic estimation method based on clas-
sification techniques. At first, we give some background
of the problem.

Today, car manufacturers of the upperclass and pre-
mium market segments differentiate their products from
their competitors among other things by a perfect
appearance of the painted car body. In general, the
impression of a car is determined by an appealing design
of its body, the color and gloss of its paint, and the man-
ufacturing and assembly accuracy of the exterior body
panels.

The geometric complexity of these panels makes them
difficult to produce with metal forming technologies.
Small surface form deviations like sink marks always
exist. They result in inhomogeneous runs of light fringes
on the highly reflective paint, which visibly disturb the
perfect appearance of the car body. In order to eliminate
or at least to minimize such surface defects the manufac-
turing process is optimized. Especially, it is imperative
to control the quality of the parts directly in the first
steps of the manufacturing process in the press shop.
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Table 11 Surface form
deviations Class Linguistic description Frequency

Uneven surface several sink marks in series or adjoined 62
Press mark Local smoothing of (micro-)surface, heavier sink mark, 53

deep depression preceeded by a low peak
Dent Rounded damage inward, distinctive feature 51
Bulge Rounded damage outward, distinctive feature, 47

relatively small radius
Sink mark Slight flat based depression inward 24
Uneven surface No decription, new category introduced by experts 19
press mark
Flat area Flat plane on curved cumber surface 9
Uneven radius Visible distortion of radius geometry 8

The current surface quality control procedure in the
press shop is still done manually. Today, during series
production an experienced worker checks the produced
parts at the end of the press line in constant intervals,
to detect form deviations, and derive their type and
acceptance. The experts introduced a list of surface de-
fects and characterizations, to that they conform more or
less in their daily quality work. The surface form devia-
tions are characterized by linguistic descriptions of their
specific appearance, as shown in Table 11 for some com-
mon defects. The geometry of the defects is specified by
vague terms and attributes.

However, the current method has several disadvan-
tages. It is cumbersome, subjective, error-prone and time
consuming, especially when analyzing the surface of
large parts totally. Moreover the assessed parts are often
lost for the manufacturing process. Therefore it would be
desirable to have a more objective, non-contact, faster
and automatic estimation method.

In Eichhorn et al. (2003) an approach based on the
digitization of the exterior body panel surface with an
optical measuring system (Fig. 8) is proposed. From the

Fig. 8 Automatic quality assessment based on 3-D image pro-
cessing

resulting point cloud, which contains the required geo-
metric information of the surface defects, the authors
try to characterize the form deviations by mathemati-
cal properties that are close to the subjective properties
that the experts used in their linguistic descriptions. The
approach has two major aspects: the quality specialists
need information about the type of defect detected, and
additionally they are interested in its severeness. Here,
we focus on the first aspect. The characteristics of the
described problem – its uncertainty, fuzziness and the
use of expert knowledge – point to possible solutions in
the field of soft-computing.

For details about the data acquisition and preprocess-
ing refer to Eichhorn et al. (2003). The final database
used for our analysis has a total number of 273 defects
recorded by the experts, with 15 selected features after
data preprocessing. The distribution of defect types is
shown in Table 11. Obviously, the types are rather unbal-
anced, and the less frequent types occur very rarely.

Confidence into the system that predicts expert deci-
sions is extremely important in responsible fields like
quality control. The experts are more confident in a sys-
tem, if its decisions are transparently and understand-
ably given by rules or trees. Therefore, we compared the
following approaches to classification: our fuzzy decision
trees, decision trees and NEFCLASS. For the experi-
ments we used fourfold cross validation. The database
was split into four parts using stratified sampling to en-
sure that every split contains a similar distribution of de-
fect types. Especially, this procedure ensures that each
part contains at least one instance of each class. Exper-
iments with the last two methods have been done in
Eichhorn et al. (2003). To give a comparison with fuzzy
decision tree approach, we briefly describe the results of
them in the following.

Decision trees For the induction of the decision trees,
several attribute selection measures have been tried, as
described in Borgelt et al. (1996). Most of the measures
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yield reasonable results. However, the Symmetric Gini
Index maximized the tree accuracy over the training
data set so it was employed as split criteria. For the
pruning, confidence level pruning (Quinlan 1993) with a
confidence of 50% was used. The classification accuracy
is 95.85% on the training and 82.42% on the test data.

Nefclass NEFCLASS had some problems due to the
high dimensionality of the dataset. In such cases, the
structure-oriented approach by Wang and Mendel
(1992) tends to produce too many, too specialized rules.
Fuzzy set optimization gets unstable on such neuro-
fuzzy networks, and as the pruning methods rely on
an initial rule base, they might fail too. Therefore a
selected subset of ten attributes was used. This made
it easier to find good and general parameter settings for
NEFCLASS. The best classification accuracy was 74.1%
in average on the training sets and 75.44% on the test
sets.

Fuzzy decision trees We have run the FDT program
with automatic partitioning of attributes. A threshold of
0.06 for information gain ratio and exhaustive pruning
was used, which yielded a reasonable trade-off between
accuracy and complexity, the smallest rule base has only
eight rules. The average classification accuracy is 75%
on the training and 76.47% on the test data.

Since the data set we have was rather small and unbal-
anced, the classification was difficult. If only classifica-
tion accuracy is of interest, decision trees would be the
best choice. On the other hand, in the responsible field
of quality control we also have to focus on the interpret-
ability of the results. The experiments have shown that
fuzzy rules obtained with NEFCLASS and FDT are in
average less complex than the decision trees. Moreover,
by selecting attributes with high information measure
first, for fuzzy decision tree learning not all attributes
are needed, thus FDT is more stable than NEFCLASS
with respect to the dimension of attributes.

6 Conclusions

Intelligent data analysis is becoming increasingly impor-
tant in businesses and industries. Believing that typical
business users prefer softwares, which hide complexity
from users and automate the data analysis process, over
technology- or method-oriented ones, we presented a
user-centered, automatic data analysis tool SPIDA.
SPIDA is implemented in an client/server architecture.
By using the fuzzy knowledge base, which includes fuzzy
and non-fuzzy features of each analysis method, SPIDA
can select and run data analysis methods, evaluate re-
sults and generate solutions automatically.

Within the framework of SPIDA, we combine fuzzy
methods with classical decision trees in order to achieve
comprehensible classifiers with the abilities of model-
ling vagueness. We studied the whole process from fuzzy
tree learning, missing value handling to fuzzy rules gen-
erating and pruning. In particular, we investigated the
information gain and information gain ratio based on
the generalized Shannon Entropy for the test attribute
selection and introduced amendments to avoid the nega-
tive values of them. We observe that fuzzy trees are nor-
mally larger than classical ones due to the membership
degrees of the examples. To better control the complex-
ity of the tree we suggested a threshold for the informa-
tion measure. The presented heuristic pruning strategies
are effective in both reducing the number of rules and
increasing generalization ability. Compared to cluster-
or hyperbox-oriented fuzzy rule learning methods, fuzzy
decision tree learning has the following advantages: it is
able to deal with missing values, allows an unambiguous
representation of linguistic terms and provides better
interpretability of the resulted rule base. Our exper-
iments have shown, the approach proposed here often
generates smaller and at the same time comparably good
rule bases, hence our goal of obtaining comprehensible
classifiers was reached.

We observe that the initial fuzzy partitioning of attri-
butes strongly influences the quality of the final classifi-
ers. Since the fuzzy sets are determined globally before
tree induction and no training on them has been done
during learning, the initial partitioning is especially
important. Therefore, investigating other fuzzy parti-
tioning techniques (e.g. the method proposed in Janikow
and Fajfer (1999)) to enhance the quality of the initial
partitioning will be our future work, as well as study of
other measures for the selection of test attributes.
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