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Chapter 1

Introduction

1.1 Purpose of this document

The intended purpose of this document is to provide my academic supervisor Md Azharul
Karim with a detailed documentation of the work done during my 24 weeks of job training
at the Mechatronics Research Group, Department of Mechanical and Manufacturing
Engineering, University of Melbourne, Australia. It is also being authored in support of
my supervisor’s final PhD thesis.

Furthermore, as the mentioned job training is required within my conditions of study
at the Faculty of Computer Science, University of Magdeburg, Germany, this document
also provides the mandatory project report which is supposed to be written accompany-
ing the training time.

As my research work continues during the time of writing this document, certain
results from it may find their way into various journal papers.

1.2 Motivation

Imagine working at a large semiconductor company and being responsible for quality
control at the end of multiple assembly and production lines. Since there is no fuzzy
classification of chips, that is, there is only a working product or non-working ‘waste’,
you are definitely interested in discovering where possibly faulty steps might be situated
and with which amount they contribute to the final product. The only input data
you possess to perform your work consists of an enormous amount of values from the
assembly line meters; tedious working hours have been invested by colleagues to find out
manually whether the final product has been a working exemplar or one that was out
of order. Those other people, however, relied on their knowledge about the production
process and did not target relationships inside the data which might have led to faulty
products. Your task as a data analyst is to detach from the physical background and
instead to work on the given data exclusively. Right from the beginning, based on the
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high dimensionality of the data, you are sure not to use statistical, descriptive methods
to find distinguishing attributes. Since neural network learning algorithms are known to
operate well under these input data conditions, you decide to use the extension of the
Self-Organising Map, the Growing Self-Organising Map, to try to find the (presumed)
distinguishing attributes (= possibly faulty production line points).

1.3 Given task

Given high-dimensional, two-class, manufacturing data, evaluate without further knowl-
edge about the data itself the feasibility of applying the Growing Self-Organising-Map
(GSOM) algorithm to it and try to find distinguishing attributes within the given dataset.

Certainly this condensed description needs some explaining: The ‘high-dimensional’
and the ‘manufacturing’ keywords will be explained in the following section; the ‘two-
class’ keyword refers to the given dataset as a discrimination problem between two
classes, namely ‘good’ and ‘bad’1 products. Now, the task is to use the GSOM al-
gorithm and to ascertain whether it is suitable to solve this discrimination problem and
to automatically separate the input dataset into two classes. The term ‘without further
knowledge’ is self-evident, with an important exception: the data distribution between
‘good’ and ‘bad’ is known beforehand, a fact that makes benchmarking of the GSOM
possible.

1.4 Manufacturing data

To exemplify the manufacturing data’s impact and, in conclusion, the certain need for
computer-aided processing see table 1.1 from which the data dimensionality and layout
can be obtained. The given raw data contains several fields that are either irrelevant
to the data mining process (such as identifiers or constant values) or need further han-
dling as to not mislead the chosen neural network into wrong conclusions. Therefore,
preprocessing actions had to be taken, see Section 3.1 for details.

From table 1.1 the dimensionality of the data can be derived as having more than
16,000 inputs (or ‘vectors’) with 133 attributes each. The only additional fact given
to estimate the outcome of the respective data mining technique was a threshold of
8750 referring to the attribute labeled ’REF’ which discriminates between good and bad
products.

1The words ‘good’ and ‘bad’ have been used to describe the two possible classes throughout the au-
thor’s training time at the University of Melbourne; they do not constitute any valuation and could have
been chosen arbitrarily. As mentioned in the introduction, this report also serves as a documentation
to my Australian supervisor and is, in that regard, compliant to his thesis.
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NAME REF C1 C2 . . . C92 X93 . . . X131
1 J546040 12 1 9628 1.00E-09 2.21E-02 . . . 15 SMO . . . Dec-18
2 J546040 12 1 9496 1.20E+00 2.21E-02 . . . 33 SMO . . . Dec-19
3 J546040 15 1 9336 1.05E-09 2.34E-02 . . . 33 SMO . . . Dec-19
4 J548375 01 3 9148 1.36E-09 2.26E-02 . . . 14 SMO . . . Dec-19
5 J548375 04 6 9480 -1.00E-08 2.50E-02 . . . 23 SMO . . . Dec-19
...

...
...

...
...

...
...

...
...

...
16381 F606617 20 3 9728 -2.69E-08 2.24E-02 . . . 17 SMO . . . Feb-26

Table 1.1: Data dimensionality and layout before preprocessing

1.4.1 Proposed solution / Document structure

To understand the underlying principles of the GSOM, this special technique within the
neural network technologies will be explained in detail in Chapter 2. Now that you know
about the basics, Chapter 3 starts with the preprocessing as the first action that has to
be taken, then describes a quality measure, both as prerequisites to invoking the GSOM.
Appropriate parameter sets for the GSOM are established next, a sampling method will
be developed and the final simulation setup is described. Numerical, formatted results
as well as resulting maps from this setup will be described in Chapter 4. Chapter 5
finalises and summarises this document and points out possible further work.

However, the second chapter follows and starts with a short introduction to artificial
neural networks.
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Chapter 2

Basic techniques

2.1 Short introduction

Artificial neural networks

Artificial neural networks are adaptive models that can learn from input data and gener-
alise (therefore simplify) learned things. They extract the essential characteristics from
the numerical data as opposed to memorising all of it. This offers a convenient way
of reducing the amount of data (neural networks have been used to process millions
of inputs [5]) as well as to form an implicit model without having to manually form a
traditional, physical or logical model of the underlying phenomenon. In contrast to tra-
ditional models, which are theory-rich and data-poor the neural networks are data-rich
and theory-poor in a way that little or no a-priori knowledge of the problem is present
and also that certain properties are hard to prove but easily to accept based on empirical
observations.

Self-Organising Maps

Self-Organising Maps have been widely used in data mining – or knowledge exploration –
to visualise high-dimensional data and to reduce its dimension to just a few representative
prototypes. It is therefore crucial to sustain the highest possible accuracy during the
data mining process. Many variants extending the conventional SOM’s capabilities were
proposed (one of which is the Growing Self-Organising Map) to allow more flexibility
and adaptiveness by introducing controllable and consecutive growth during the training
process. This chapter will explain the SOM and GSOM algorithms in detail to provide
the necessary basics for understanding the rest of this report.
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2.2 SOM

The Self-Organising Map developed by Prof Teuvo Kohonen [6] is one of the most pop-
ular neural network models. The SOM algorithm is based on unsupervised competitive
learning causing the training to be entirely data-driven and the neurons on the map
to compete with each other. Supervised algorithms like the Multi-Layer Perceptron or
Support Vector Machines require the target values for each data vector to be known in
advance whereas the SOM does not have this limitation. The SOM has been invoked in
a large variety of tasks ranging from process modeling [3] over large textual document
collections [4] to multimedia feature extraction [9].

The important distinction from Vector Quantisation techniques is that the neurons
are organised among a regular grid and that along with the selected neuron (the Best-
Matching Unit) also its neighbors are updated, by means of which the SOM performs
an ordering of the neurons. In this respect the SOM is a scaling method projecting data
from a high-dimensional input space onto a typically two-dimensional map (see figure
2.1). Hence, similar input vectors get mapped to neighboring neurons on the output
map.

input layer

map

���
�

���
�

���
�

Figure 2.1: Neighborhood preserving mapping from input layer to two-dimensional map

2.2.1 Structure

A SOM is formed of neurons located on a usually 2-dimensional grid having a rectangular
or hexagonal topology. Each neuron of the map is represented by an n-dimensional
weight vector mi = [mi1, · · · ,min]T , where n is equal to the respective dimension of the
input vectors. Higher dimensional grids might be used but their visualisation is not as
straightforward as it is for two-dimensional maps.
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The map’s neurons are connected to adjacent neurons by means of a neighborhood
relation which superimposes the structure of the map. Immediate (directly adjacent)
neighbors belong to the 1-neighborhood Ni,1 of neuron i. As mentioned, in the 2D-case
the neurons of the map can be arranged either on a rectangular or a hexagonal grid, for
an illustration including the neighborhood relation see figure 2.2.
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Figure 2.2: Equidistant SOM neighborhoods on a rectangular grid with (a) Euclidean,
(b) city-block, (c) chessboard distance. [7]

The number of neurons naturally determines the granularity of the resulting mapping,
which in turn influences the accuracy and the generalisation capability of the SOM.

2.2.2 Initialisation

In this section’s basic SOM algorithm the number of neurons and the topological re-
lationship are fixed from the beginning, as opposed to the GSOM algorithm explained
in Section 2.3. The number of neurons should usually be selected as large as possible
with the neighborhood size affecting the smoothness and generalisation capability of the
mapping. The mapping does not suffer considerably even when the number of neurons
exceeds the number of given input vectors; selecting the neighborhood size appropriately
seems to be much more important. As the size of the map increases to e.g. thousands
of neurons the training phase becomes computationally almost infeasible for practical
applications; in this term the SOM does not exhibit much difference from the GSOM
algorithm whose (exemplary) computation times can be obtained in detail from Chapter
4.

An initialisation of the weight vectors has to be provided before starting the training
phase. Since the SOM is robust in regards to the choice of the initialisation it will finally
converge, albeit the proper choice of initial values can save some computational effort.
Two often-used initialisation procedures are the following:

• random init: weight vectors are initialised with small random values,
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• sample init: weight vectors are initialised with random samples drawn from the
input data set.

2.2.3 Training

In each training step one sample vector x from the input data set is chosen (in order
of appearance or randomly) and a similarity measure is calculated between it and all
the weight vectors of the map’s neurons. The Best-Matching Unit (BMU), denoted as
c, is the unit whose weight vector possesses greatest similarity with respect to the input
sample x. The distance measure used to define the similarity is typically a Euclidean
distance; formally the BMU is the neuron for which

‖x − mc‖ = min
i
{‖x − mi‖} (2.1)

holds, where ‖ · ‖ is the chosen distance measure.

Having found the BMU the weight vectors of the SOM are updated as follows: The
weight vectors of the BMU and its topological neighbors are moved closer to the input
vector from the input space. This adaptation procedure stretches the BMU and its
neighbors towards the presented sample vector. For an illustration see figure 2.3. The

BMU

X

Figure 2.3: Updating the BMU and its neighbors towards the input sample [10]

update rule for changing the respective weight vectors of unit i of the SOM is:
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mi(t + 1) = mi(t) + hci(t)[x(t) − mi(t)], (2.2)

where t denotes the time step. x(t) is the input vector chosen from the input data set
at time t and hci(t) the neighborhood kernel around the winner unit c at time t. The
neighborhood kernel is a non-increasing function of time and of the distance of unit i

from the BMU c. Colloquially expressed, it defines the region of influence that the input
sample has on the SOM. The kernel is formed of two parts: the neighborhood function
h(d, t) and the learning rate function α(t):

hci(t) = h(‖rc − ri‖, t)α(t) (2.3)

where ri is the location of unit i on the map grid.

There are many possible types of neighborhood functions, the simplest and also most
commonly-used of which are the following:

• Bubble: constant among the neighborhood of the winner unit and zero elsewhere
(see figure 2.4 (a)),

• Gaussian: exp(− ‖rc−ri‖
2

2σ2(t)
) (see figure 2.4 (b)).
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Figure 2.4: Commonly used neighborhood functions [10]

Using the Gaussian neighborhood function yields slightly better results but is also
heavier in computational terms. When the SOM is applied, the neighborhood radius is
normally larger at first (resulting in fast adaptation of the map to the inputs) and is
constantly decreased throughout the training process.

As well as the neighborhood also the learning rate α(t) is a function decreasing over
time. Two common forms are:

• a linear decreasing function: α(t) = At,
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• a function inversely proportional to time: α(t) = A
t+B

,

with A, B chosen appropriately, respectively.

The training is usually carried out in two phases, the first of which features relatively
large initial alpha and neighborhood radius values, whereas in the second phase both
values are relatively small right from the beginning. This happens in pursuit of tuning
the SOM to the same space as the input data and then fine-tuning the map. A more
elaborate version of those ’tuning’ and ’smoothing’ phases can be seen in Section 2.3.2.

There are many variants to the basic SOM, such as neuron-specific learning-rates and
neighborhood sizes or using a Growing SOM (GSOM), which will be explained in detail
in Section 2.3 and has been used for the simulations explained in Chapter 3. These
modifications target some of the inherent disadvantages of the basic SOM principle,
such as the hard-coded, unflexible map size and enable the SOM to better represent the
topology of the input data set without losing its advantages en route, most important of
which is the instant comprehensibility through visualisation of the input data.

2.2.4 Important properties

As detailed in the last chapter, the SOM algorithm itself is very simple, but desirable
mathematical proofs of its properties are still outstanding. However, in most practical
applications good results can be obtained, one of the more exciting examples of which
is [5], where about 6.8 million patent abstracts were preprocessed, represented by 500-
dimensional vectors and then clustered using a SOM algorithm. SOM properties relevant
to the given task are listed below.

Voronoi regions

The SOM partitions the input space into convex Voronoi regions, with each neuron being
responsible (in analogy to the biological case) for one of these regions. The Voronoi region
of a neuron i is the union over all the vectors x to which it is closest:

Vi = {x|‖mi − x‖ < ‖mj − x‖, i 6= j}. (2.4)

The reference vector of the respective Voronoi region is placed according to the local
expectation of the data weighted by the neighborhood kernel:

m =

∫

hcip(x)xdx
∫

hcip(x)dx
(2.5)

Quantisation and projection

In searching for good reference vectors and ordering them on a regular grid at the same
time, the SOM combines the properties of data projection and vector quantisation tech-
niques. The grid can be thought of as a 2-dimensional elastic network following the
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original data’s distribution. However, the SOM does not try to preserve the distances
directly but instead focuses on representing the topology of the input data which makes
it inherently useful for visualisation of large data sets.

There is an important tradeoff to be made between the two competing goals of (exact)
quantisation and topology preservation; this can be controlled by setting the radius of
the neighborhood kernel appropriately. Obviously, the SOM reduces to a plain vector
quantisation algorithm when the neighborhood radius is set to zero.

Errors in data / missing data

Naturally, even the SOM cannot be prevented from suffering through incomplete or
otherwise faulty data fed into it. However, outliers in the input data can be easily
detected as their distance from other vectors in the same unit that it was mapped to is
large. In practice, we often have to deal with data that has missing values, represented
by vectors with missing components. This problem can be overcome by leaving out
the missing component from the distance calculation during the training and updating
process; if there is still a sufficient number of complete vectors to train the map with, the
missing values can even be filled in with e.g. mean values from the unit it got mapped to.
Obviously, ’Errors in data’ does not refer to errors introduced during the preprocessing;
if the input data is somehow biased or has other systematic or inherent errors, those
cannot be detected and/or might simply result in bad maps.

2.2.5 Visualisation

There are a variety of different visualisation techniques once the SOM has been com-
puted, two of which are relevant to the current problem and therefore mentioned here.

Vector component planes

The reference vectors of the SOM can be visualised via the component plane represen-
tation [3]. The computed SOM can be thought of as multi-tiered with the components
of the vectors describing horizontal layers themselves and the reference vectors being
orthogonal to these layers. In this planar, sliced representation it is easy to (a) see the
distribution of the component values, and (b) recognise correlations between compo-
nents. This technique might be used in a later stage of the current solution to the task
from Section 1.3.

Clusters

The main techniques used for evaluating the results in Chapter 4 were to (a) visualise the
computed map and manually look for distinguishable clusters and (b) introduce a quality
measure as a further indicator of the map’s grade. Clusters are groups of vectors which
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are close to each other, relative to their distance to other vectors on the map. Therefore,
there are different maps (through different criteria being visualised) to be shown and the
ones to be used here are either the distance map or the hits map. Examples for types of
maps can be found in Section 2.3.3 and their manual evaluation in Chapter 4.

2.3 GSOM

The characteristic feature distinguishing neural maps from other neural network
paradigms and other regular vector quantisers is the preservation of neighborhoods. This
desirable feature obviously depends on the choice of the output topology: the proper di-
mensionality of the output space is usually not known a-priori, but yet has to be specified
prior to learning in the SOM algorithm. This knot has to be cut to be able to optimise
the neighborhood preservation.

Of course, one could easily compute structures in a brute-force approach, starting
from different map sizes and evaluating the degree of neighborhood preservation to choose
the best map possible. Yet, this strategy is computationally heavy and does not neces-
sarily yield the map with the best possible neighborhood preservation. Therefore, in [2]
a new algorithm was proposed which extends the SOM in a very straightforward way. A
more advanced description can be found in [8] or in [1].

Since the GSOM is an extension to the SOM, the latter’s basic principles (see Section
2.2.1 and 2.2.4) also hold for the GSOM. For the sake of clarity this section is structured
similarly to the SOM section.

New variables will be introduced:

• Herr: accumulated error throughout the map,

• Spread Factor : allows user to control growth,

• Growth Threshold : derived from Spread Factor, see Equation 2.6.

2.3.1 Structure and Initialisation

The basic structural assumptions of the GSOM are the same as those of the SOM,
except that the initial grid size of the output space usually lies in the range of two to
four neurons, depending on topology (rectangular, hexagonal). See Section 2.2.1 for
more details regarding the choice of topology.

However, the initialisation is usually performed randomly by selecting values from
the input vector’s value range and, since every initial node is a boundary node, no
restrictions are imposed on the direction of growth. To determine where growth occurs
(i.e. where nodes are added) a new variable Herr is initialised to 0 and will keep track of
the highest accumulated error value in the network. Furthermore, a spread factor (SF)
value has to be specified by the user enabling him to control the growth of the SOM.
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The mentioned Growth Threshold (GT) derives from the SF as in Equation 2.6 (where
D stands for the data dimensionality) and is used internally as a threshold value for
initiating node generation: a high GT means less spread and a low GT leads to a larger,
more spread-out map. Note that the outer boundaries of the spread factor (0 and 1) can
not be included since ln(0) = undefined, and ln(1) = 0 renders the growth threshold
useless since the computed error of the map will exceed it in every step and therefore
grow continuously.

GT = −D × ln(SF ) (2.6)

2.3.2 Phases

Growing phase

As with the SOM, the set of neuron vectors Wi in the GSOM can be considered as
a vector quantisation of the input space so that each neuron i is used to represent a
Voronoi region Vi (see Section 2.2.4). A winner neuron is found as per the algorithm
listed below. If a neuron contributes significantly to the total error of the network then
its Voronoi region is said to be underrepresented by the assigned neuron. Hence, a new
neuron is generated in the immediate neighborhood to achieve a better representation
of the region, or, if growth is not possible, the error gets distributed to the neighboring
neurons, raising their error and therefore their growth probability.

The (simplified) GSOM algorithm for the growing phase presents as follows:

• Present input to the network.

• Determine the winner neuron i, using the chosen distance measure (e.g. Euclidean).

• Adapt weight vectors of winner and its respective neighborhood.

• Increase the error value of the winner.

• If total error of neuron is larger than the growth threshold: grow, if i is a boundary
neuron; or distribute weights to neighbors if i is a nonboundary neuron.

• Repeat these steps until all inputs have been presented.

Smoothing phases

The smoothing phases occur after the new neuron growing in the preceding growing
phase. The growing phase stops when new neuron growth gets saturated, i.e. if the
frequency of new neuron additions falls below a certain threshold. Once the neuron
growing phase is complete, the weight adaptation is continued at a lower adaptation
rate. No new neurons are added during this phase, whose purpose it is to smooth out
any existing quantisation error, particularly in the neurons grown in the later stages of
the growing phase.
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During the smoothing phases, inputs to the network are the same as those of the
growing phase. The starting learning rate (LR) in this phase is smaller than in the
growing phase since the weight values should not fluctuate too much without converg-
ing. The input data vectors are repeatedly presented to the network until convergence
is achieved or a certain specified number of inputs have been presented. The smoothing
phase is stopped if the error values of the neurons in the map fall below a threshold. Mul-
tiple smoothing phases with different (consecutively decreasing) LR and neighborhood
sizes can be applied.

2.3.3 Maps

Average map The left map in Figure 2.5 shows similarities between neighboring weight
vectors. For each weight vector the distance to each of the neighboring weight vec-
tors is calculated, those values are averaged and a color from a black-and-white
palette is assigned according to the determined value. White or light grey colors
show similarities (low distances) whereas black and darker colors show dissimilar-
ities (high distances). If the distances are not averaged, but accumulated instead,
you get to the distance map, which will be described now.

Distance map The right map in Figure 2.5 exemplifies a distance map, where the
distances that each neuron has to its neighboring neurons are accumulated and
depicted with a color palette ranging from blue (low distance) over green (medium
distance) towards red/brown (high distance). This map can help in finding borders
between existing clusters, since cluster borders are small regions where distances
are relatively high compared to the rest of the map or the inside of a single cluster.

Error map The error map, to be seen on the left of Figure 2.6, shows the accumulated
error for every neuron at the current stage of training. A low or zero error is
illustrated as a violet or dark blue color, whereas the error raises over red/brown
to greenish colors for neurons with the highest error. Since the map grows from a
small initialisation stage to larger sizes, the error is expected to propagate towards
the borders of the map, where neurons with highest error cause map growth to
better represent that particular region of the input space.

Hits map This map, shown on the right of Figure 2.6, is the type of map that will
mainly be worked with when running simulations. It shows the number of inputs
which were mapped to the individual neurons during the GSOM training phase.
The color palette ranges from blue (no mappings) over shades of green to red (high
number of mappings). In the depicted case, it is to be expected to have a high
number of mappings in the middle cluster (neurons 1, 3, 5, 6, 7, 15), a medium
number assigned to neuron 62 (bottom left) and a cluster with less mappings
(neurons 60 and 64), with the rest of the input references scattered throughout the
remaining neurons.
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Figure 2.5: Average map and Distance map

Figure 2.6: Error map and Hits map
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2.4 GSOM implementation

A sophisticated graphical user interface to the GSOM algorithm has been provided and
the essential user configuration parts can be found here. Every aspect that has been
mentioned theoretically beforehand is implemented in JAVA; therefore rendering the
operation intuitively. Furthermore, the implementation details are of no interest in the
scope of this report, so they are left out and only some schematic screen shots are shown
below.

Figure 2.7: Basic menu choices of GSOMpak JAVA implementation
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Figure 2.8: Training menu options of GSOMpak JAVA implementation
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Chapter 3

Simulation and Evaluation
Framework

Having explained the basic techniques in Chapter 2, this chapter deals with the generated
simulation framework and introduces a quality measure for evaluating the simulation
results. However, since preprocessing of data is inherently important, it will be explained
first.

3.1 Data preprocessing

The first attempt at preprocessing was done by a fellow research team member which
later proved to be incomplete and is to be supplemented in Section 3.1.2. The newly
preprocessed data which was used as input to the data mining process is schematically
depicted in Table 3.1.

C1 C2 . . . C808 REF
1 1.00E-01 2.21E-02 . . . 1 9628
2 0.00E-00 2.21E-02 . . . 0 9496
3 1.05E-01 2.34E-02 . . . 0 9336
4 1.36E-01 2.26E-02 . . . 1 9148
5 1.00E-01 2.50E-02 . . . 1 9480
...

...
...

...
...

...
15980 2.69E-01 2.24E-02 . . . 1 9728

Table 3.1: Data dimensionality and layout after preprocessing
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3.1.1 Original preprocessing

Pruning

As can be seen from table 1.1 (original data) there are certain types of data fields that
are irrelevant to the data mining process, such as dates and times of data acquisition.
There are also constant fields which therefore bear no distinguishing information at all.
These can safely be pruned to reduce the computational load afterwards without having
influence on the data mining result.

Expansion of categorical data

Categorical data has to be expanded to suit the assumption of equal distances among the
data. For each column of categorical values, the number of different attribute values n is
calculated; subsequently, this column is replaced by n columns (one for each category)
which are filled with 1’s where the column’s category matches the original category and
with 0’s otherwise. This preprocessing step can dramatically change the dimensions of
the input data and might also lead to sparsely populated input tables. See table 3.2 for
a comprehensive example.

Category
A
B
C
A
D
E

⇒

A B C D E
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

Table 3.2: Expansion of categorical data

3.1.2 Own preprocessing

After several months of simulations an important observation caused to believe that the
original order of steps might be incomplete: even with several well-chosen parameter
sets, the GSOM algorithm did not converge towards a satisfactory separation of the two
input classes on the map. Since the GSOM itself as well as the parameter sets are less
likely to generate this behaviour, the preprocessing seemed to be the cause, therefore
additional preprocessing steps had to be undertaken in order to improve on simulation
results. To be able to assess the difference in results due to changes in preprocessing, a
quality measure has also been developed.
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Elimination of outliers

Among the original dataset in Table 1.1 it can be seen that there are certain outliers in
the data which are most probably caused by incorrect measurements from the production
lines (e.g. faulty meters or errors during transmission); which manifest by being several
orders of magnitude different from the remaining majority of the data. Assuming that
the normalisation is carried out in the usual way, even a single outlier is sufficient to
skew the ensuing data mining process. A more intuitive explanation can be obtained
from Figures 3.1 and 3.2, where the immediate effect of the outliers is obvious, scaling
the majority of values to nearly 0 and the few outliers to 1. This renders the data mining
process nearly useless since floating point arithmetics’ accuracy is limited.

Finding the outliers was done manually as follows:

• For every numerical attribute:

1. Sort input vectors by current attribute

2. Calculate attribute median

3. Calculate attribute mean

4. Compare median to mean

5. For large differences:1

(a) Check both ends of sorted list for outliers

(b) Delete corresponding input vectors

(c) Repeat from Step 1

6. For small differences: Go to next attribute.

It shall be noted that the distribution of “good” and “bad” input vector references
did not undergo a major change after outliers were eliminated; the percentage of “good”
product references changed from 85.92% to 86.04% whereas the percentage of bad prod-
uct references was reduced by the respective amount.

Normalisation

Every data attribute was scaled to [0, 1] by using Equation 3.1, where xmin and xmax

denote the minimum and maximum value of the attribute, respectively.

xnew =
x − xmin

xmax − xmin

(3.1)

1For each of the numerical attributes under consideration in this context, one or more outliers could
be found that were at least three orders of magnitude different from the rest of the attribute values.
This method works in this special case because of the attributes’ having a distribution similar to the
one shown in Figure 3.1.
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0E+00 1E+08

Figure 3.1: Data distribution before normalisation including outliers

10

Figure 3.2: Data distribution after normalisation including outliers

Expansion of categorical data

Expansion of categorical data was performed in the same manner as in the original
preprocessing chain (Table 3.2).

3.2 A quality measure

In order to compare the results of running simulations with different parameters on the
same dataset, or with the same parameters on differently preprocessed data, this section
will introduce a quality measure which takes the complete map into account and can be
generated automatically as an objective, i.e. non-human-biased, quantifier.

Assumptions

As mentioned in Section 1.3 the given task is to invoke the GSOM algorithm to produce
an automatic classification (clustering) of high-dimensional input data. The desired clus-
tering is known in advance from the data distribution and would be a binary clustering
at best, i.e. separating the “good” from the “bad” products on the GSOM. The data
available for developing the benchmarking method are (a) the original data’s statisti-
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cal values and its distribution between “good” and “bad”, and (b) the data from the
generated map, i.e. the distribution of input vector references among the map’s neurons.

Desired benchmark properties

The benchmark (named ‘clustering quality’) should yield a number between 0 and 1
as a quality measure of the input vector separation among the neurons. 0 means no
difference in data distribution, i.e. no clustering at all. 1 means a high probability of good
clustering, albeit visual map exploration is still necessary. The developed benchmark is
supposed to aid the user in evaluating the result, therefore a value of 1 does not guarantee
good clustering but can instead be seen as an indicator of potentially good clustering. A
simple example for a high benchmark rating in combination with an obviously bad map
could be where a benchmark value of 1 exists for an overtrained, non-clustered map with
as many neurons as input vectors and every input vector being assigned to exactly one
neuron. The algorithm’s block diagram is depicted in Figure 3.3.

Algorithm Quality Measure from [0,1] 
Statistics of original data

Statistics of GSOM

Figure 3.3: Quality-measuring algorithm

A good separation of input vectors is achieved if every neuron contains only input
vectors from one class (i.e. “good” or “bad”) or no input vectors at all, in which case the
benchmark should yield 1. Bad separation (or no separation) should be benchmarked
with a 0.

Conventions

Variable names referring to the complete input dataset (constants):

• N – total number of inputs

• G – total number of good products

• B – total number of bad products

• G
N

– percentage of good products in total number of inputs

• B
N

– percentage of bad products in total number of inputs

And similarly for inputs mapped to respective neurons:
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• ni – number of inputs mapped to neuron i

• gi – number of good products in neuron i

• bi – number of bad products in neuron i

• gi

ni

– percentage of good products in inputs mapped to neuron i

• bi

ni

– percentage of bad products in inputs mapped to neuron i

Calculation

Finally, the clustering quality value CQ is computed as follows:

CQ =
∑

i

max







gi

ni

− G
N

1 − G
N

∗
ni

N
, 0







+
∑

i

max







bi

ni

− B
N

1 − B
N

∗
ni

N
, 0







(3.2)

From Equation 3.2 it can easily be seen that the maximum CQ value of 1 will be achieved
if good and bad product references are mapped to separate clusters. On the other hand,
the minimum benchmark value of 0 will be returned if the data partitioning on the map is
the same as that amongst the input dataset. Colloquially expressed, CQ gives a measure
of how far the clustering on the map deviates from the original data distribution.

Testing

Two simple test datasets were generated to show the correctness of the developed clus-
tering quality measure (and, simultaneously, the functionality of the used GSOM im-
plementation as well). As the interests lie in assessing binary clustering quality, two
samples which represent the original dataset’s two different classes were taken from the
normalised dataset, slightly shortened (less attributes), and multiplied by a number of 50
and 500, respectively. The resulting test datasets have dimensions of 59x100 and 59x1000
and, due to the synthetic generation, consist of two easily distinguishable classes. These
two datasets were then fed into the GSOM and showed the correctness of CQ. The
generated hits maps can be found in Figure 3.4. Both maps were computed with the
parameter set [SF=0.5, GP=3, SP1=SP2=0] and show the desired CQ value of 1 since
both classes are perfectly separated on the map (one class per red cluster).

3.3 Dealing with the computational load

The GSOM algorithm tends to be computationally heavy with the number of inputs
growing. Preliminary computation times on up-to-date workstations using the complete,
preprocessed dataset ranged from one hour up to two weeks of continuous simulation
time. This section deals with different approaches to reduce or at least adjust the
computational burden accordingly.
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Figure 3.4: Generated maps with test dataset, left: 59x100, right: 59x1000

3.3.1 Adjustable parameters

Table 3.3 depicts the richness of adjustable parameters whose effects were evaluated and
a decision was made on which of them to include during the actual simulations. 2 3 4

Important and used parameters are described here:

Number of inputs: As most important factor determining the result of the GSOM
algorithm, the number and dimension of inputs can be chosen arbitrarily, although
data has to be normalised beforehand. Special care has to be taken regarding
the size of the input data since the running time of the GSOM algorithm grows
exponentially with the size of the input. Simulations were run on (a) sampled
808x1638-, (b) 808x16380-, and (c) 808x15980-dimensional datasets.

Spread factor: This parameter determines the final size of the map by providing the
user with a convenient, high-level way to influence the map’s internal growth ac-
cordingly [8]. A larger spread factor means a more spread-out and therefore larger
final GSOM. It was varied from 0.1 to 0.995 during simulations and its range is in
]0, 1[. It is also of great influence on the length of the training period.

Topology: Either hexagonal or rectangular, as explained in Chapter 2. A hexagonal
grid is used by default and stayed unaltered as it also states a balanced tradeoff
between neighborhood size and quantisation of the input space.

Kernel: The actual implementation provided the Gaussian kernel as well as the ‘bubble’
kernel. Again, see Chapter 2 for details. The Gaussian kernel is used in most of
the scientific literature and therefore went unaltered.

Similarity measure: Inside the GSOM algorithm, this measure is used in the calcu-
lation of the Best-Matching Unit. The distance between the prototype and every

2‘tested’: the effects of the respective parameter were evaluated in preliminary experiments
3‘adapted’: the parameter has been chosen for a systematic adaptation in later simulations
4default options are denoted in emphasised font
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weight vector of the map is calculated using the chosen similarity measure and
the unit with the smallest distance is denoted as BMU. As the Euclidean distance
measure is best suited to most of the GSOM tasks, it was used here. Another
implemented method was Pearson’s correlation. Depending on the complexity of
the similarity measure, its choice can also have an impact on computation time.

Options per algorithm phase: learning length, learning rate, neighborhood size

• learning length:
During the course of the GSOM calculation, this parameter sets how many
times the input data is fed into the algorithm. As an integer multiplier, it
determines the final size of the map and therefore also the running time of
the algorithm. It was varied from 1 to 100 during preliminary experiments
and from 1 to 10 during the actual simulations. However, in the current task
the second and third phases had no actual effect on mappings and therefore
only increased computation time dramatically.

• learning rate:
This parameter is used while updating the winner’s and its neighbors’ weight
vectors and can be used to control the speed of the map’s adaptation to inputs.
It went unchanged from its defaults of 0.5 (1st phase), 0.1 (2nd phase), 0.01
(3rd phase). A large value is desired at first to keep the map flexible towards
inputs, whereas smaller values are used during the smoothing phases.

• neighborhood size:
Controls how many layers of neighboring neurons are affected by a weight
change of the winner unit. Decreases during the course of the algorithm from
3 (1st phase) to 1 (3rd phase).

3.3.2 Sampling method

A straightforward approach to deal with the exponential behavior in terms of compu-
tation time is to let the GSOM work on sampled data only. Two ways of sampling are
proposed below and their implementations were integrated into the JAVA user interface.
It should be noted that the actual GSOM algorithm remains unchanged since the sam-
pling reads the input datafile and generates the respective output datafile(s) to be fed
into the program later on.

The first approach consists of drawing a sensible number of randomly chosen inputs
from the full dataset and save them into a new input file. The second approach which also
reduces algorithm running time is to partition the dataset, but instead of taking the data
blockwise and output them into new files, it is chosen randomly from the input data and
deleted afterwards so that every input vector will show up exactly once among the union
of generated subsets, i.e. the subsets are disjoint. A comparison of both methods can be
found in Figure 3.5 and the respective JAVA source code is to be found in Appendix A.
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Parameter tested adapted options
number of inputs + + integer; full or sampled dataset (see text)
spread factor + + ∈]0, 1[
topology - - hexagonal, rectangular
kernel - - gaussian, bubble
similarity measure - - euclidean, pearson’s correlation
options per phase
1 - learning length + + (small) integer * number of inputs
1 - learning rate + - 0.5
1 - neighborhood size - - 3
2 - learning length + + (small) integer * number of inputs
2 - learning rate + - 0.1
2 - neighborhood size - - 2
3 - learning length + + (small) integer * number of inputs
3 - learning rate - - 0.01
3 - neighborhood size - - 1

Table 3.3: Adjustable parameters

3.4 Simulation setup

The ideas in Section 3.4.1 led to the simulation plan stated in Sections 3.4.2 and 3.4.3.
Certain time and computing equipment restrictions had to be taken into account and
are mentioned, if necessary. The terms ‘old data’ and ‘new data’ refer to the different
preprocessing methods explained in sections 3.1.1 and 3.1.2, respectively. Table 3.4 gives
a condensed list of simulation plans; results can be found in chapter 4. The basic ideas
are described first.

3.4.1 Ideas

In [8] three entangled ideas are proposed on how to proceed with the simulations after
having preprocessed the data. An additional, fourth, idea incorporates the generated
quality measure.

1. Varying the spread factor

Certainly the most basic approach to adapt the map to the input data is to vary the map’s
size by varying the spread factor appropriately. Since SF takes values from the interval
]0,1[ (see Equation 2.6) it is useful to start with small spread factors and increase them
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sampled data

original data

sampled data

sampled data

sampled data

sampled data

randomised sampling randomised partitioning

original data

...

1

2

n−1

n

Figure 3.5: Randomised Sampling vs. Partitioning

continuously in discrete steps. The user should then be able to examine the generated
maps and check for existing clusters of data. This approach was pursued systematically,
among others.

2. Leaving out attributes

It may be necessary and of great insight to study the effect of removing several attributes
from the input dataset and check its impact on the generated maps. This will generate
and/or confirm knowledge about possible non-contributing attributes. Preliminary work
has already been done in pursuing this approach; figures 3.6 and 3.7 show promising
discriminatory distances among several attributes whereas numerous other attributes
seem to be less distinguishing. Simultaneously, the effect of removing outliers can be
recognised along the y-axis, which shows the difference between the average values of
‘good’ and ‘bad’ classes; due to a few outliers, this difference had been skewed without
preprocessing.

Unfortunately, the manufacturer’s requirement was not to leave out any attributes
from the data mining process, hence this approach has not been pursued any further.

3. Automating the process

The process of systematically growing maps with varying spread factors is best suited
to being automated for saving computation time, using the dimensionality-independent
spread factor to name and compare different maps. However, since most of the maps took
several hours and even days to compute, the time for evaluating these maps manually
and starting new simulations with different parameters could be neglected, especially
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Figure 3.6: Distances between logarithmic attribute averages, before eliminating outliers
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Figure 3.7: Distances between logarithmic attribute averages, after eliminating outliers
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since remote-control technologies were employed to minimise time losses. Nevertheless,
this can be a future improvement.

4. Including the quality measure

To easily assess the objective quality of the generated maps, the benchmark formula in-
troduced in section 3.3 was applied to the maps and indicates the quality of the clustering
compared to the known original data distribution as a single percentage.

3.4.2 Old data

Sampled data The original data was sampled using the implemented methods, a sam-
ple size of 10% was found to be a good trade-off between reducing computation
time and still having a sufficient amount of data left to generate meaningful maps.
Preliminary experiments resulted in an appropriate spread factor of 0.7 for the
GSOM algorithm. The data was partitioned into ten disjoint sets and five of these
sets were randomly chosen to be used for applying the GSOM algorithm to them.
However, the quality measure has not been applied here, reasons for which will
become obvious from the results.

Complete data Simulations with the same parameters as with the sampled data were
run on the complete dataset. Additional simulations were run with constant spread
factors of 0.8 and 0.9 and variations in the learning length during the growing phase
being in the range from 1 to 10. The quality measure was applied to the latter
simulations.

3.4.3 New data

Sampled data Time restrictions did not permit to run simulations on samples taken
from the re-preprocessed data. However, the simulation results from section 4.1.1
show that working on sampled data is probably not justified at all.

Complete data As with the sampling approach, prohibitive time restrictions caused
not to run simulations in the same, extensive manner. For comparative results
spread factors of 0.8 and 0.9 were chosen and the learning length varied in analogy
to the later simulations run on the old data. However, to assess the influence of
different spread factors on the map growth, additional simulations were run with
SF varying from 0.1 to 0.9.

3.4.4 Tabular simulation schedule

Table 3.4 serves as an overview about the simulations planned and run. The asterisk
(*) denotes one simulation that could not be finished after it had been running for more
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Dataset Part SF GP, LL SP1, LL SP2, LL Dimensionality
OLD sampled 0.7 1-10, 100 0 0 808x1638

(5 sets) 5 10 [0,10]
10 10 [0,10]

complete 0.7 1-10, 100* 0 0 808x16380
5 10 [0,10]
10 10 [0,10]

0.8 1-10 0 0
0.9 1-10 0 0

NEW complete 0.8 1-10 0 0 808x15980
0.9 1-10 0 0

0.1-0.9 1 0 0

Table 3.4: Performed simulation schedule

than two weeks.
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Chapter 4

Simulation Results

This chapter gives explanations of obtained simulation results. The results themselves are
graphed in condensed form at the end of this chapter, whereas the underlying numerical
data as well as additional maps can be found in the appendix.

4.1 Results for old data

Before the errors in data-preprocessing were discovered, simulations had already been run
extensively. Their results might therefore be invalid, but, however, the generated results
seem to be quite congruous to the simulations which were run after re-preprocessing the
data. These results might also be useful for other researchers encountering similar issues.
This section tries to explain those results.

4.1.1 Sampled data

The complete dataset was sampled into ten disjoint datasets, using the partitioning
approach explained in Section 3.3.2. Five of these ten samples were randomly chosen
and simulations were run according to the laid-out schedule. Simulation results on all
of these sample sets were inside a small-deviation interval, therefore Table B.1 contains
this data in averaged form.

As can be seen from the graphs in Figure 4.1 the computation time grows much faster
than the map size, which seems to stagnate after several iterations. Another effect of
extremely long growing phases is ‘overlearning’, which can clearly be seen from the last
line in Table B.1: the training error declines quickly to zero after nine iterations and starts
to rise steadily after some more iterations. On the opposite, the quantisation error QE
declines constantly and reliably, which is natural since it is roughly inversely proportional
to the map size; hence, larger map sizes allow the GSOM to better partition the input
space on the map. From the tabular data it can also be seen that the smoothing phases
do affect only TE and QE, but not the final map size; since they don’t change input
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vector mappings at all (which is what we are focused on), these phases were neglected
in subsequent computations.

Two exemplary hits maps are depicted in Figure C.1 and show no apparent clustering
at all, but instead exhibit a behaviour of aligning mappings regularly throughout the map
grid.

4.1.2 Complete data

SF = 0.7, different GP, SP1, SP2

Results very similar to those for the sampled data above were obtained for the complete
dataset; they are graphed in Figure 4.2. Additionally, it can be seen that the sampling
approach would save a large amount of computation time. Unfortunately, the longest
simulation (denoted with ‘*’ in Table B.2) could not be finished due to administrative
restrictions at the simulation laboratory. However, by that time it had already been
running for 15 consecutive days, clarifying the inherent computational complexity of the
GSOM algorithm

Unexpectedly, the training error TE exhibits an abnormal behaviour, which will
manifest again in subsequent results; QE shows the expected decline with the number
of growing phases rising.

To keep the resulting maps comparable to the ones depicted for sampled data, maps
resulting from the same parameter set are shown in Figure C.2. Those apparently seem
to be much better than the ones for sampled data, but closer examination of the data
distribution will reveal that no clustering has been performed by the GSOM algorithm.

SF = 0.8, 0.9, GP = [1. . . 10]

Having finished simulations with SF=0.7, and having established that varying the SP1
and SP2 lengths does not change the mapping of input vectors to map neurons, only SF
and the number of GP were changed systematically; the obtained results are depicted
in Figure 4.3. Numerical results can be found in Table B.3, from which it can also be
seen that an increase in SF from 0.8 to 0.9 roughly doubles computation times and map
sizes. QE behaves as expected, declining steadily, and is therefore not graphed; TE again
shows non-converging behavior with both spread factors used.

The current parameter set also firstly features the quality measure CQ introduced in
Chapter 3 and shows rising clustering quality towards higher SF and GP, (Figure 4.3,
right). As explained in the definition of this quality measure, a higher obtained CQ does
not guarantee a higher subjective clustering quality but can indicate which parameters
to change towards achieving better results or, to put it another way, to compare maps
generated with different parameters.

Four maps for the current parameter set can be found in Figures C.3 and C.4. The
depicted maps seem to be of higher quality than the ones in the last section; they also
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yield a higher CQ value, but they are still quite far away from showing perfect separation
of the two classes.

4.2 Results for new data

After re-preprocessing the data with an additional step, simulations were run again with
comparable parameters. An evaluation of the obtained results can be found below.
Due to certain time limitations and negative experiences with the sampling approach,
simulations were only run on the complete dataset.

4.2.1 Complete data

SF = 0.8, 0.9, GP = [1. . . 10]

Again, the left graph of Figure 4.4 shows non-converging behaviour of TE throughout
different parameter sets. On the other hand, CQ reliably rises with higher SF and to-
wards longer GP, to be seen in the right graph of Figure 4.4. Four maps with the same
parameters as in preceding sections have been depicted in Figures C.5 and C.6; direct
comparison to the maps generated from the old dataset shows significant subjective im-
provements for those maps generated with low spread factors whereas the aforementioned
’regular alignment of inputs’ on the grid can be seen on the right of Figure C.6.

SF = [0.1. . . 0.9], GP = 1

Figure 4.5 shows the effects of leaving GP constant at a low value and varying SF from
0.1 to 0.9. TE as well as QE should be declining with larger SF, but TE seems to
alternate whereas QE roughly behaves as expected. Similar unexpected results were
obtained for CQ [right graph], which is alternating uncontrollably when it was expected
to rise steadily.

The current parameter set is perfectly suitable to demonstrate the growth process of
the GSOM with different spread factors; an example of the hits maps for SF = 0.1. . . 0.9
is depicted in Figure C.7. The faster the map grows, the faster different input clusters
become recognisable on the self-organising map.

4.2.2 Effects of preprocessing

From Figure 4.6 the effects of different preprocessing steps can clearly be seen. After
eliminating outliers from the data, CQ has risen by 3. . . 12% (SF 0.8) and 2. . . 8% (SF
0.9). However, overall CQ peaks at about 0.5 when perfect clustering quality should be
close to 1.
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Figure 4.1: Sampled old data, SF=0.7, time/size and TE/QE
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Figure 4.2: Complete old data, SF=0.7, time/size and TE/QE
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Chapter 5

Summary and Conclusion

5.1 Work done

5.1.1 Summary

Extensive efforts have been devoted to evaluating the feasibility of applying the GSOM
to the given manufacturing dataset. Figure 5.1 shows the consecutive process, split up
into the three principal steps of preprocessing, processing and evaluation.

GSOM
algorithm

clustering
quality

statistics
TE, QE, size

maps
avr, dist, hits, err

expansion of
categorical data

objective

subjective & objective

subjectiveparameters

data

preprocessing processing evaluation

pruning

elimination of 
outliers

normalisation

sampling

Figure 5.1: Data mining steps

Preprocessing: It starts, of course, with the data itself of which we have only little or
no previous knowledge, a fact that is to be remedied by the ensuing data mining.
Thorough preprocessing has been performed upon the dataset, including pruning,
the elimination of outliers, normalisation and expansion of categorical data. A
straightforward sampling approach to reduce inherent computational complexity
has been implemented and tested.



Chapter 5. Summary and Conclusion 36

Processing: This step can be held accountable for a fraction of 95% of the overall com-
puting time involved in this work. Important GSOM parameters have been sieved
out systematically and have later been applied according to a self-generated sched-
ule. The algorithm’s output consists, in one part, of the generated maps, which are
neighborhood-preserving projections of the high-dimensional input space onto two-
dimensional maps. On the other hand, during the computation of the maps, useful
measurements (TE, QE, map size) are being generated. Furthermore, a measure
aiding in evaluating the maps, CQ, has been introduced, justified, implemented,
and tested.

Evaluation: The evaluation of the obtained results from the GSOM algorithm finishes
the data mining process. It depends on the user to draw his conclusions from
the data, but his subjective skills in evaluating the maps are supported by (semi)-
objective widgets such as TE, QE and CQ from the processing step. Yet and above
all, the evaluation step needs one thing: experience.

5.1.2 Conclusion

Summary: Overall, it can justifiably be assumed that the GSOM algorithm is able
to deal with high-dimensional datasets and can be used to find distinguishing at-
tributes. Regarding the extensive set of simulations which were run systematically
and the numerous approaches to dealing with the given data, it can also be said
that the resulting maps are a good start to follow-up improvements.

Limitations: Since the results are similar throughout the different parameter sets, the
error is probably not situated inside the processing part of Figure 5.1. Having
taken expert human knowledge into consideration in the evaluation step, this part
can also be taken as correct. Therefore, with the evident improvement in CQ due
exclusively to different preprocessing steps (Figure 4.6) kept in mind, the most
probable cause of not fully satisfactory results seems to be the preprocessing part.

5.1.3 Recommendations

Even with the results being rather distant from satisfactory, there are a number of rec-
ommendations to be given for future GSOM simulations with the manufacturing dataset
used throughout this report. It certainly cannot be avoided to run numerous, compu-
tationally heavy experiments with an algorithm which is inherently of near-exponential
demands. Therefore, all of the recommendations below target the reduction of compu-
tation time, enabling the user to run more experiments in the same amount of time.

Reduce dimension of inputs: Since the running time is inherently dependent on the
number and dimension of inputs, try to reduce the number of attributes. This can
be done by sampling and pruning, as demonstrated in Section 3.1.
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Use adequate parameter sets: Start with small spread factors and short growing
phases. Continually raise SF and GP until sufficient map sizes have been achieved.
For the manufacturing dataset, spread factors between 0.7 and 0.9 and the number
of growing phases between 1 and 5 could be shown to be adequate. Contingent,
questionable benefits of larger parameter sets do not pay off in terms of computa-
tion time and, more importantly, subjective map quality.

Get powerful computing equipment: For the full manufacturing dataset under con-
sideration in conjunction with the introduced JAVA implementation of the GSOM
algorithm, try to get hold of at least 1024MB of RAM and a fast Intel Pentium-IV
(or similar) CPU.

5.2 Possible improvements

This section describes two approaches that could be pursued towards achieving better re-
sults. Yet, both of them have not been implemented nor tested; they are ideas developed
in conjunction with Arthur Hsu from the Department of Mechanical and Manufacturing
Engineering at the University of Melbourne, Australia. 1

5.2.1 Leaving out attributes

Even with the manufacturer’s requirement not to leave out any attributes that might be
important, it could still be necessary and insightful to try and remove certain attributes
which are probably less distinguishing than others; e.g. with the help of distances between
attribute mean values, as shown in Figure 3.7. A positive side-effect, if attributes were
removed, would be the reduction of computation time. After all, data mining is supposed
to find information and correlation in data that one has not been aware of before doing
so.

First, proximate experiments would consist of running the GSOM with the prepro-
cessed numerical attributes only, totally omitting the categorical data which might itself
lead to complex changes (see following section).

5.2.2 Weighting of categorical data

During the preprocessing of the input data, data in categorical form are expanded (see
Section 3.1). This expansion leads to a thorough change of dimensionalities of the input
data, in this case from 80 attributes to roughly 800 attributes. Before the expansion
took place, every attribute was equally important, therefore had the same weight. After
the expansion, there are roughly ten times as many attributes as before which still have

1http://www.mame.mu.oz.au/∼alhs
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uniform weights. This might lead to an overvaluation of the categorical attributes which
have been expanded.

Hence, it is proposed to introduce some changes to the distance calculation in the
GSOM algorithm and add a weighting scheme as follows:

Introduce weight vector for attributes: This weight vector w will contain weights
for every attribute: 1 for numerical attributes and 1

n
for each attribute of an

expanded category, where n is the number of distinct attributes of the respective
category.

Change calculation of BMU: Equation 2.1 will be changed into the following ver-
sion, reducing the excess influence of categorical attributes by weighting them:

‖w ∗ x − mc‖ = min
i
{‖w ∗ x − mi‖} (5.1)

Table 5.1 extends the example from Table 3.2 and introduces the weights as an additional
vector.

Category
1
A
B
C
A
D
E

weight

⇒

A B C D E
1
5

1
5

1
5

1
5

1
5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

Table 5.1: Expansion of categorical data, introduction of weights
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Appendix A

Java source code for sampling

A.1 Code for random sampling

public void DrawSampleSet(int sample_size)

/*Draws a set of samples from the input file

and saves it as a different file */

{

System.out.println("DrawSampleSet, value of n" +sample_size);

if ( ilayer == null ) return;

Vector indices = new Vector();

Random rand = new Random( System.currentTimeMillis() );

for (int i = 0; i < ilayer.length; i++)

indices.add( Integer.toString(i) );

PrintWriter pw = null;

try

{

String oldFile = ilayer.getFilename();

String newFile = oldFile.substring( 0, oldFile.length()-4 ) +

"_sample_" + sample_size + oldFile.substring( oldFile.length()-4 );

System.out.println("new filename ought to be: " +newFile);

pw = new PrintWriter( new FileOutputStream(newFile) );

}

catch (Exception e)

{
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e.printStackTrace();

}

String[] colHeader = ilayer.getAllColumnHeaders();

for (int i = 0; i < colHeader.length; i++)

pw.print( colHeader[i] + "\t" ); /*output header first*/

pw.println();

int c=0;

while (indices.size() > 0 && c < sample_size)

{

int randIdx = rand.nextInt(indices.size());

int sampleIdx = Integer.parseInt((String)indices.elementAt(randIdx));

float[] sample = ilayer.getRow(sampleIdx);

for (int i = 0; i < sample.length; i++)

pw.print( sample[i] + "\t" );

pw.println( ilayer.getClassName(sampleIdx) );

indices.removeElementAt( randIdx );

c++;

}

pw.close();

}

A.2 Code for partitioning

public void PartitionInputRandomly(int number_of_partitions)

/*partitions the input file into n equally-sized output files

with the respective contents chosen randomly from the input file

example: input file has 2,000 inputs

choose n as 10

the method creates ten files with 200 inputs each */

{

if ( ilayer == null ) return;

Vector indices = new Vector();

Random rand = new Random( System.currentTimeMillis() );

for (int i = 0; i < ilayer.length; i++)

indices.add( Integer.toString(i) );
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PrintWriter pw = null;

int rem = ilayer.length % number_of_partitions;

int length_minus_rem = ilayer.length-rem;

int samples_per_part = (int)(length_minus_rem/number_of_partitions);

int c=0;

try

{

String oldFile = ilayer.getFilename();

for (int j = 0; j < number_of_partitions; j++)

{

String newFile = oldFile.substring( 0, oldFile.length()-4 )

+ "_sample" +j + oldFile.substring( oldFile.length()-4 );

pw = new PrintWriter( new FileOutputStream(newFile) );

if ((number_of_partitions-j)==1)

c=rem*(-1);

else

c=0; /*If last sample file is to be written,

include ALL remaining samples in it.

Realized in this case by altering the initial

value of the counter c in while loop below*/

while ((indices.size() > 0) && (c < samples_per_part))

{

int randIdx = rand.nextInt(indices.size());

int sampleIdx =

Integer.parseInt((String)indices.elementAt(randIdx));

float[] sample = ilayer.getRow(sampleIdx);

for (int i = 0; i < sample.length; i++)

pw.print( sample[i] + "\t" );

pw.println( ilayer.getClassName(sampleIdx) );

indices.removeElementAt( randIdx );

c++;

}

pw.close();

}

}

catch (Exception e)

}
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Appendix B

Tabular simulation results

SF GP SP1 SP2 time[s] map size TE[*104] QE
0.7 1 0 0 39 35 68.7 3.510679
0.7 2 0 0 99 59 62.6 3.328941
0.7 3 0 0 180 76 18.3 3.177149
0.7 4 0 0 280 93 12.2 3.055456
0.7 5 0 0 408 113 3.1 2.917654
0.7 6 0 0 537 123 3.1 2.832479
0.7 7 0 0 687 138 1.5 2.734429
0.7 8 0 0 848 150 1.5 2.658500
0.7 9 0 0 1037 159 0.0 2.508615
0.7 10 0 0 1251 172 0.0 2.439344

0.7 5 10 0 1501 113 0.0 2.704890
0.7 10 10 0 3116 172 0.0 2.194546
0.7 5 10 10 2659 113 0.0 2.683838
0.7 10 10 10 5013 171 0.0 2.150550

0.7 100 0 0 53228 400 250.5 0.044048

Table B.1: Simulation results for sampled data, SF=0.7, varying GP/SP1/SP2
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SF GP SP1 SP2 time[s] TE QE map size
0.7 1 0 0 1868 0.150549 4.621684 31
0.7 2 0 0 3402 0.184934 4.234978 51
0.7 3 0 0 4970 0.218926 3.874527 63
0.7 4 0 0 6621 0.253907 3.660109 70
0.7 5 0 0 8537 0.257631 3.382912 79
0.7 6 0 0 10994 0.400183 3.447568 95
0.7 7 0 0 13957 0.329182 3.045930 114
0.7 8 0 0 15679 0.357570 2.749231 114
0.7 9 0 0 18584 0.352625 3.064933 124
0.7 10 0 0 20953 0.217888 3.061046 131

0.7 5 10 0 26634 0.124969 3.188203 79
0.7 10 10 0 51040 0.081197 2.726300 131
0.7 5 10 10 40669 0.000488 3.105994 79
0.7 10 10 10 79059 0.008364 2.717812 131

0.7 100 0 0 * * * *

Table B.2: Simulation results for old complete data, SF=0.7, varying GP/SP1/SP2

SF GP time[s] TE QE map size #nwm CQ

0.8 1 1202 0.185287 4.416494 39 23 0.1655
0.8 2 2468 0.237546 3.892676 71 35 0.2460
0.8 3 3489 0.393407 3.580527 85 44 0.2407
0.8 4 5218 0.283578 3.084385 117 63 0.3581
0.8 5 6215 0.224237 3.046406 117 62 0.3696
0.8 6 8162 0.385836 2.832159 151 72 0.3972
0.8 7 9525 0.294383 2.482823 157 79 0.4051
0.8 8 11685 0.266606 2.572165 158 77 0.4567
0.8 9 13119 0.210439 2.270554 167 92 0.4675
0.8 10 14614 0.257509 2.239801 176 91 0.4681

0.9 1 2368 0.294628 4.034194 78 36 0.1675
0.9 2 3496 0.338095 3.510404 88 50 0.2850
0.9 3 6527 0.182173 2.771639 164 79 0.3670
0.9 4 8340 0.405678 2.687389 179 80 0.4015
0.9 5 10717 0.318926 2.160446 202 89 0.3797
0.9 6 13905 0.247924 1.912891 245 104 0.4845
0.9 7 16006 0.260684 1.899147 226 97 0.4790
0.9 8 17512 0.203236 1.724007 244 112 0.4855
0.9 9 23218 0.212698 1.175136 301 121 0.5104
0.9 10 26201 0.219169 1.308389 334 115 0.5337

Table B.3: Simulation results for old complete data, SF=0.8 and 0.9, GP=[1. . . 10]
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SF GP time TE QE size #nwm CQ
0.8 1 1602 0.35275 4.40988 55 32 0.2419
0.8 2 2959 0.30519 3.77222 82 43 0.2866
0.8 3 5002 0.38304 3.46210 124 68 0.3649
0.8 4 6310 0.44093 3.14806 126 79 0.3924
0.8 5 9187 0.31986 2.93144 179 93 0.3973
0.8 6 10928 0.35019 2.32438 179 103 0.4648
0.8 7 13598 0.30476 2.34424 207 96 0.4526
0.8 8 16457 0.19931 2.02021 232 112 0.4960
0.8 9 18459 0.25419 2.08403 229 121 0.4939
0.8 10 21841 0.32991 1.75955 257 117 0.5175

0.9 1 6061 0.25375 4.02021 105 49 0.2000
0.9 2 9520 0.38779 3.37584 129 81 0.3327
0.9 3 15520 0.40357 2.89653 185 99 0.4086
0.9 4 19372 0.41902 2.66622 194 96 0.4182
0.9 5 30581 0.33023 2.27741 246 123 0.4613
0.9 6 36020 0.28805 1.76875 289 128 0.4936
0.9 7 43535 0.24318 1.80860 331 129 0.4937
0.9 8 51009 0.12854 1.19258 352 157 0.5531
0.9 9 60620 0.14737 1.09385 378 154 0.5284
0.9 10 68975 0.19136 1.03298 391 156 0.5574

Table B.4: Simulation results for new complete data, SF=0.8 and 0.9, GP=[1. . . 10]

SF GP time TE QE size #nwm CQ
0.1 1 713 0.27559 4.804709 9 8 0.1208
0.2 1 1741 0.28385 4.447151 21 17 0.1296
0.3 1 572 0.10187 4.646301 18 17 0.1800
0.4 1 586 0.05594 4.722953 19 15 0.1407
0.5 1 1705 0.20719 4.555871 29 22 0.2533
0.6 1 1033 0.27033 4.579150 35 25 0.2275
0.7 1 2362 0.10081 4.502526 40 24 0.1888
0.8 1 1602 0.35275 4.409880 55 32 0.2419
0.9 1 6061 0.25375 4.020213 105 49 0.2000

Table B.5: Simulation results for new complete data, SF=[0.1. . . 0.9], GP=1



Appendix C. Resulting maps 45

Appendix C

Resulting maps

Figure C.1: Hits maps, sampled old data, SF=0.7, GP = 1 and 8, SP1 = SP2 = 0
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Figure C.2: Hits maps, complete old data, SF=0.7, GP = 1 and 8, SP1 = SP2 = 0

Figure C.3: Hits maps, complete old data, SF=0.8, GP=1 and 8, SP1=SP2=0
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Figure C.4: Hits maps, complete old data, SF=0.9, GP=1 and 8, SP1=SP2=0

Figure C.5: Hits maps, complete new data, SF=0.8, GP=1 and 8, SP1=SP2=0
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Figure C.6: Hits maps, complete new data, SF=0.9, GP=1 and 8, SP1=SP2=0
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Figure C.7: SOM growing process, SF=0.1. . . 0.9, GP=1, SP1=SP2=0
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Selbständigkeitserklärung
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