
On Merging and Dividing of Barabási-Albert-Graphs

Pascal Held Alexander Dockhorn
Department of Knowledge Processing and Language Engineering

Faculty of Computer Science
Otto von Guericke University Magdeburg, Germany

pascal.held@ovgu.de
alexander.dockhorn@st.ovgu.de

rudolf.kruse@ovgu.de

Rudolf Kruse

Abstract—The Barabási-Albert-model is commonly used to
generate scale-free graphs, like social networks. To generate
dynamics in these networks, methods for altering such graphs are
needed. Growing and shrinking is done simply by doing further
generation iterations or undo them. In our paper we present four
methods to merge two graphs based on the Barabási-Albert-
model, and five strategies to reverse them. First we compared
these algorithms by edge preservation, which describes the ratio
of the inner structure kept after altering. To check if hubs in the
initial graphs are hubs in the resulting graphs as well, we used
the node-degree rank correlation. Finally we tested how well the
node-degree distribution follows the power-law function from the
Barabási-Albert-model.

I. INTRODUCTION

The field of graph modeling is full of methods for the
generation of graphs like the Erdős-Rényi-model [1] and the
Watts-Strogatz-model [2]. However both do not exhibit a
power law degree distribution (scale-free network) observed
in many natural networks. In contrast the Barabási-Albert-
model [3] [4] is able to produce such networks. This can be
used to model networks like the world wide web [5] [6] or
movie co-occurrences between Hollywood actors [7], which
have been proven to exhibit a power law degree distribution.

Nevertheless the constant growing of the model does not
explain all features that can occur in real-world networks.
For instance networks are able to split into two separate
networks e.g. a group of classmates which is falling apart after
graduation or the well-known karate club data set presented by
Zachary in [8]. A merge is plausible between two previously
distinct networks into one cooperate network. For example
such an behavior could be observed during the fusion of two
enterprises after an acquisition.

Taking these examples one step further leads us to think
about characteristics of the resulting graphs. We can guess
that some structures in the group of classmates most likely
still exist in the divided groups, missing some connections.
The karate club dataset shows that persons having a lot of
connections e.g. the club leader, will be highly connected after
the divide as well. For the merge of two cooperate networks it
could be expected that the structure of the absorbing company
A will not change significantly. Whereas the acquired company
B could be restructured such that employees will be integrated
into company A’s structure. Also possible is that both company
structures are nearly untouched and just a few connections
between both parties arise.

This paper focuses on modeling merge and divide algo-
rithms of graphs following the Barabási-Albert-model, while
taking into account the characteristics of previous examples.
The Barabási-Albert-model belongs to the class of generative
models. That is making use of a preferential attachment
strategy and results in a scale-free network. Divided (merged)
graphs should still share typical properties of the Barabási-
Albert-albert model. For this purpose we propose a set of meth-
ods focusing on the preservation of different graph properties.

We believe proposed algorithms will have implications for
fields of computational intelligence and complex network the-
ory. For example merges and divides form a baseline for new
hierarchical clustering methods specific to scale-free networks,
which are known to exhibit hierarchical organization charac-
teristics [9]. As well a recent study showed application of
scale-free networks for particle swarm optimization [10] [11].
Those networks can be further optimized using evolutionary
algorithms, where merges and divides can be used to define a
crossover operation without loosing scale-free characteristics
of the network.

The rest of the paper is structured as follows. Section II
introduces basic ideas of merging and splitting graphs in
the field of computer science and gives a quick overview
about properties of Barabási-Albert-Graphs. The third section
describes methods for merging and dividing Barabási-Albert-
Graphs followed by experiments explained in Section IV. In
Section V found results will be discussed and finally concluded
in the last section.

II. RELATED WORK

A. Graphs

First we want to introduce a basic graph notation. Let
G = (V,E) be a graph, with V a set of nodes and E a set of
edges such that E ⊆ {(u, v) | u 6= v; u, v ∈ V }. Therefore
edges represent an undirected link between the two nodes u
and v. We will use the notation V (gi) and E(gi) to distinguish
between the nodes and edges of graph gi.

The number of links of a node n ∈ V indicates its node-
degree kn = |{e = (u, n) | e ∈ E; u ∈ V }|. Let P (k) be the
degree distribution of the network.

Additionally a graph can consist of a set of connected
components. A connected component is a maximal subgraph

Fig. 1. Comparison of graph models, left: Erdős-Rényi-model with edge
probability of 0.25, right: Barabási-Albert-model with m0 = m = 1

in which any two nodes are connected to each other by at least
one path.

Merging of two subgraphs g1 = (V (g1), E(g1)) and g2 =
(V (g2), E(g2)) is defined by creating a new graph g such that
V (g) = V (g1)∪V (g2), where E(g) contains at least one edge
e = (u, v), u ∈ V (g1), v ∈ V (g2). Dividing a graph into two
subgraphs works vice versa. The nodes of the divided graph
will be distributed to the subgraphs g1 and g2 while holding
the condition V (g1) ∩ V (g2) = ∅.

B. Barabási-Albert-model

The Barabási-Albert-model [3] provides an algorithm for
the generation of random scale-free networks. The scale-free
properties can be observed in different natural systems such
as the world wide web or social networks.

The creation starts with an initial set of m0 nodes. Every
new node will be connected to nodes in the graph using m
edges, where m ≤ m0. Adding a node is handled using the
preferential attachment mechanism. Therefore new nodes are
more likely to connect to nodes with a high node-degree. The
probability for a new node connecting to a node n is

pn =
kn∑
j kj

(1)

where kn is the node-degree of node n, which is divided by
the sum of all node-degrees. This results in the development of
heavily linked nodes called hubs, which are linked to a great
part of the graph. More generally the degree distribution of the
full graph follows a power law of the form

P (k) ∼ k−γ ; γ = 2.9± 0.1 (2)

This is the so called scale-free network property. By the
definition of the preferential attachment strategy older nodes
have higher chances to become hubs. In the case of m = m0

we recommend to use a fully connected initial graph for the
m0 nodes. Otherwise the model will be biased to favor the
(m0 + 1)-node, because it has the maximal node-degree. We
will make use of this throughout our proposed methods for
merging and splitting Barabási-Albert-Graphs.

Figure 1 shows two example graphs. The left one was
created using the Erdős-Rényi-model [1], whereas the right
graph follows the Barabási-Albert-model. Typical for the latter

one is that it is always one connected component and some
nodes have a much higher node-degree.

The Barabási-Albert-model was extended using a fitness
model described in [12]. This can help to explain how new
nodes can become hubs very fast for example the rise of
Google as one of the most linked webpages of the world wide
web. However such extensions will not be regarded in this
paper.

III. ALTERING BARABÁSI-ALBERT-GRAPHS

The Barabási-Albert-model itself is based on the approach
of adding one node at a time and connecting this to other nodes
by preferential attachment. Based on this, growing is trivial by
doing further iterations.

To shrink a given graph, we can reverse this process. One of
the last added nodes should be removed, including all its edges.
From the growing process, we know that every new nodes
starts with exactly m edges. So at least one node should have
exactly m edges, which is a good candidate to be removed.
More generally speaking, we simply remove the node with the
smallest node-degree. This also fixes the problem of dealing
with graphs that include noise and did not fully follow the
Barabási-Albert-model.

A. Estimating Barabási-Albert-Model Attributes

To alter a graph which is based on a Barabási-Albert-
model, we have to know the attributes of the generation
process. These are the number of nodes m each new node is
connected to and the number of nodes m0 which are initialized
before the growing progress.

The number of nodes nt is the total number of nodes in
the graph and na = nt −m0 the number of nodes added in
the growing phase. Variable et is the total number of edges
in the graph and it is the sum of edges from the initialization
phase e0 and the edges from the growing phase ea = na ·m.

Depending on the assumption of the initialization e0 is
between 0 (starting with no edges at all) and 0.5 ·m0 ·(m0−1)
(full-connected graph).

Based on this, we get:

na ·m ≤ et ≤ na ·m+
m0 · (m0 − 1)

2
(3)

et
na

≥ m ≥ et
na
− m0 · (m0 − 1)

2na
(4)

et
nt −m0

≥ m ≥ et
nt −m0

− m0 · (m0 − 1)

2(nt −m0)
(5)

For the case that m = m0 and we are always starting with
a full-connected graph of m nodes the equation can be reduced
to:

et = (nt −m) ·m+
m · (m− 1)

2
(6)

0 = m2 − 2 · (nt −
1

2
) ·m+ 2 · et (7)

m1,2 = nt −
1

2
±

√
(nt −

1

2
)2 − 2 · et (8)

Experiments showed that subtracting the value of the square
root in Equation 8 results in a correct estimation of m.

Furthermore we will need an estimation of the parameter
m for a merge-graph g of two Barabási-Albert-Graphs g1 and
g2. This will be trivial if both graphs have an equal parameter
m such that m1 = m2. In this case we can estimate m1 and
m2 for both subgraphs separately and return m = m1 = m2.
Otherwise we will have to find a value for m big enough to
reach at least the same number of edges in the merge graph
as the sum of edges in both subgraphs (|E(g)| ≥ |E(g1)| +
|E(g2)|). The estimation of the parameter m of a merge graph
is described in the following algorithm.

1: function ESTIMATEM(Graph: g1, g2)
2: m1 ← estimateM (g1)
3: m2 ← estimateM (g2)
4: nt ← |V (g1)|+ |V (g2)|
5: for m← range(m1,m2) do
6: e← (nt −m) ·m+ m·(m−1)

2
7: if e ≥ |E(g1)|+ |E(g2)| then
8: return m
9: end if

10: end for
11: end function

B. Merging of two Graphs

In the following we describe four strategies to merge two
graphs.

1) Random Merge: The simplest way to merge two graphs
is a random merge (RM). The basic idea is to pick all nodes
from both graphs and add them in a random order to a new
Barabási-Albert-Graph.

1: function RANDOMMERGE(Graph: g1, g2)
2: m← estimateM (g1, g2)
3: graph ← EmptyBarabasiGraph(m)
4: nodes ← V (g1) ∪ V (g2)
5: nodes.shuffle()
6: for all node ← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function

The complexity of this algorithm is O(n), where n is the
number of nodes in both graphs.

This simplest strategy should be used as a baseline to
evaluate the other strategies. The only thing, which could be
expected is, that the Barabási-Albert-model properties hold in
the resulting graph.

2) Node-Degree-Order Merge: The second method node-
degree-order merge (NDOM) focuses on keeping the node-
degree of the nodes. As in the random-merge strategy we create
a new graph with the Barabási-Albert-model. We take all nodes
of both graphs and put them into a combined list. The nodes
were sorted by node-degree of the origin graphs in descending
order. All nodes in this list would be added in this sequence
into the new graph.

1: function NODEDEGREEMERGE(Graph: g1, g2)
2: m← estimateM (g1, g2)
3: graph ← EmptyBarabasiGraph(m)

4: nodes ← V (g1) ∪ V (g2)
5: nodes.sortByNodeDegree(′desc′)
6: for all node ← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function

The complexity of this algorithm is O(n · log n), where n
is the number of nodes in both graphs. The main complexity
is a result of the sorting operation on almost presorted lists.

With this strategy it is expected, that the node-degree
distribution relating to the specific nodes is the same. This
means, that nodes which have an high node-degree in the
original graphs, also have an high node-degree in the resulting
graph.

One exemplary use case for this scenario could be the
change from school to university of students. Different groups
from different schools would be merged. Extroverted people,
those one with more connections, will be still more active
afterwards.

3) Preserving-Nodes Merge: The next strategy is the
preserving-nodes merge (PNM). The main idea is to keep the
full structure of one graph and merge the other. To do so, we
start with the first graph and insert the nodes of the second
graph in descending node-degree order.

1: function PRESERVINGNODESMERGE(Graph: g1, g2)
2: m← estimateM (g1, g2)
3: nodes ← V (g2)
4: nodes.sortByNodeDegree(′desc′)
5: for all node ← nodes do
6: g1 .addNode(node)
7: end for
8: return graph
9: end function

The complexity of this algorithm is O(n · log n), where n
is the number of nodes in the second graph

From construction this strategy keeps all the information of
the first graph. The inner structure of the second graph is lost,
but the node-degree distribution relating to the specific nodes
of the second graph is the same. Based on this fact, the first
graph is used as the base for the merge, these nodes have an
higher probability to get connected with the new nodes then
nodes from the second graph. This leads to an domination of
the nodes from the first graph. Because of this, we suggest to
use the larger graph as base graph.

Relating to the company acquisition example of the intro-
duction the output of this algorithm will minimally change
the structure of company A. Managers of company B will be
added first and therefore end up with more connections.

4) Minimal-Merge: Our last strategy to merge two
Barabási-Albert-graphs is the minimal merge (MM). It focuses
on keeping most of the structure of both graphs.

The main idea is to use both graphs and connect them
with additional edges. To do so, we increase the estimated m.
Now we have free edges, we can use to connect both graphs.
Similar to the basic Barabási-Albert-approach we select nodes
proportional to there node-degree.

1: function MINIMALMERGE(Graph: g1, g2)
2: m← estimateM (g1, g2) + 1
3: g ← UnionBarabasiGraph(g1 , g2 ,m)
4: eadd = g .getMaxEdges()− |E (g)|
5: while eadd > 0 do
6: n1 ← V (g1).preferedSelect()
7: n2 ← V (g2).preferedSelect()
8: g .addEdge(n1 ,n2)
9: eadd ← eadd − 1

10: end while
11: return graph
12: end function

The complexity of this algorithm is O(n). This strategy
keeps most of the structure, with the drawback of increasing
the number of edges per node. This is related to an increased
cooperation between two companies.

C. Dividing into two Graphs

This subsection will explain five strategies to divide a graph
in two subgraphs. Each algorithm will use the parameters
graph (g) and the number of nodes expected in the first
subgraph (noNodes1).

1) Random-Divide: The random-divide strategy (RD) is the
simplest idea to divide a given graph. It is correlated to the
RM-Strategy. The basic idea is to create two sets of nodes, for
each new graph one. Then create a new Barabási-Albert-graph
from both of these sets.

1: function RANDOMDIVIDE(Graph: g, noNodes1)
2: v1 ← V (g).randomSelect(noNodes1)
3: v2 ← V (g)− v1
4: m← estimateM (g)
5: g1 ← EmptyBarabasiGraph(m)
6: g2 ← EmptyBarabasiGraph(m)
7: for all node ← v1 do
8: g1 .addNode(node)
9: end for

10: for all node ← v2 do
11: g2 .addNode(node)
12: end for
13: return g1, g2
14: end function

The complexity of the random-divide strategy is O(n),
where n is the number of nodes. This simplest method does
not care about the underlying structure of the graph, but it
ensures the Barabási-Albert-properties in the resulting graphs.

2) Random-Subgraph-Divide: The random-subgraph di-
vide strategy (RSD) is based on the Random-Divide. We
randomly split the graph into two subgraphs, but we do
not create new Barabási-Albert-graphs. Instead, we use the
existing edges. This leads to violations of the Barabási-Albert-
properties, so we have to do some repairing steps, described
in Subsection III-D.

1: function RANDOMSGDIVIDE(Graph: g, noNodes1)
2: v1 ← V (g).randomSelect(noNodes1)
3: v2 ← V (g)− v1
4: e1 = {(x1, x2) : ∀(x1, x2) ∈ E(g) ∧ x1, x2 ∈ v1}
5: e2 = {(x1, x2) : ∀(x1, x2) ∈ E(g) ∧ x1, x2 ∈ v2}
6: g1 ← Graph(v1, e1)

7: g2 ← Graph(v2, e2)
8: m1 ← estimateM (g1)
9: m2 ← estimateM (g2)

10: repairGraph(g1,m1)
11: repairGraph(g2,m2)
12: return g1, g2
13: end function

The complexity of our second divide algorithm is O(n2),
where n is the number of nodes.

3) Node-Degree-Divide A: Related to the NDOM we can
divide the graph by node-degree (NDDa). First we order all
nodes descending by their node-degree. We split this list
and use the first part for the first subgraph and the second
accordingly. The nodes are added into a new Barabási-Albert-
graph with respect to their order.

1: function NODEDEGREEDIVIDEA(Graph: g, noNodes1)
2: m← estimateM (g)
3: g1 ← EmptyBarabasiGraph(m)
4: g2 ← EmptyBarabasiGraph(m)
5: nodes ← V (g)
6: nodes.sortByNodeDegree(′desc′)
7: for all node ← nodes[: noNodes] do
8: g1 .addNode(node)
9: end for

10: for all node ← nodes[noNodes :] do
11: g2 .addNode(node)
12: end for
13: return g1, g2
14: end function

The complexity of this algorithm is O(n · log n), where n
is the number of nodes in the graph.

This strategy keeps the Barabási-Albert-properties and also
the node-degree distribution related to the nodes.

4) Node-Degree-Divide B (NDDb): This is a modification
of the NDDa. We do not split the list into two parts, but instead
we pick alternating elements for every subgraph, with respect
to the selected relation. The function createIndexList() returns
all node indexes of nodes used for the first subgraph such that
when possible they are equally spaced to each other.

This ensures, that every subgraph has some of the top con-
nected nodes and overall the node-degrees are well distributed
between both graphs. However edges between picked nodes
will not be preserved in this strategy as well as with algorithm
NDDa.

1: function NODEDEGREEDIVIDEB(Graph: g, noNodes1)
2: m← estimateM (g)
3: g1 ← EmptyBarabasiGraph(m)
4: g2 ← EmptyBarabasiGraph(m)
5: nodes.sortByNodeDegree(′desc′)
6: indexlist ← createIndexList(|V (g)|, noNodes1)
7: for all node ← nodes do
8: if index (node) in indexlist then
9: g1 .addNode(node)

10: else
11: g2 .addNode(node)
12: end if
13: end for
14: return g1, g2

15: end function

The complexity of strategy NDDb is O(n · log(n)) where n is
the number of nodes. This is equal to the the complexity of
NDDa.

5) Subgraph-Expansion-Divide (SED): The subpgrah-
expansion-divide algorithm is closely related to the random
subset. The main difference is that chosen nodes are definitely
one connected component. We achieve this by iteratively
adding nodes to the current subgraph until the size of first
graph is reached. This is equal to a breadth-first search
(BFS). Remaining nodes will be used as basis for the second
subgraph. However it cannot be guaranteed that both graphs
approximate properties of the Barabási-Albert-model e.g. the
second subgraph can be split into several components. For this
reason both graphs will be repaired using the repair-operator
described in Subsection III-D.

1: function SUBGRAPHEXPDIVIDE(Graph: g, noNodes1)
2: startNode← g .NodeWithLowestDegree()
3: v1 ← BFS (startNode,noNodes1)
4: v2 ← V (g)− v1
5: e1 = {(x1, x2) : ∀(x1, x2) ∈ E(g) ∧ x1, x2 ∈ v1}
6: e2 = {(x1, x2) : ∀(x1, x2) ∈ E(g) ∧ x1, x2 ∈ v2}
7: g1 ← Graph(v1, e1)
8: g2 ← Graph(v2, e2)
9: m← estimateM (g)

10: repairGraph(g1,m)
11: repairGraph(g2,m)
12: return g1, g2
13: end function

The complexity of our last divide is O(n), where n is the
number of nodes in the graph. The repairing step increases
the complexity to O(n2).

D. Repairing-Steps

Some of our algorithms produce graphs that do not hold
typical properties of the Barabási-Albert-model. We propose a
three step repairing process to achieve the minimal properties:

1) Barabási-Albert-graph is always one component
2) Every node has at least m edges
3) The maximal number of edges is na ·m+ m·(m0−1)

2

This does not lead to a graph perfectly following the Barabási-
Albert-model, but achieves the most properties with minimal
manipulation of the graph. Edges added to the graph will
first prioritize to connect nodes with degrees lower than m.
If all nodes already have a degree of m and higher adding an
edge will use preferential attachment to decide which nodes
to connect. For the case that the number of edges is not high
enough an recursive run with repairGraph(g,m+1) will be
started.

1: function REPAIRGRAPH(Graph: g, m)
2: if |V (g)| ≤ m then
3: return completeGraph(V (g))
4: end if
5: eadd = getMaxEdges(g)− |E (g)|
6: while |g .components| > 1 do
7: if eadd < 0 then
8: return repairGraph(g ,m + 1)

9: end if
10: Connect(g.components.randomSelect(2))
11: eadd ← eadd − 1
12: end while
13: for all node ← {n : n ∈ V (g),n.degree < m} do
14: while node.degree < m do
15: if eadd < 0 then
16: return repairGraph(g ,m + 1)
17: end if
18: g.addEdge(node,V (g).preferedSelect(1))
19: eadd ← eadd − 1
20: end while
21: end for
22: while eadd > 0 do
23: g.addEdge(V (g).preferedSelect(2))
24: eadd ← eadd − 1
25: end while
26: return g
27: end function

The repair operator has a complexity of O(n2) where n is the
number of nodes.

It can be argued that better approximation of the model
properties can be achieved by first calculating the desired node-
degree distribution using Equation 2 and then use remaining
edges to best fit this distribution. However this is against
the philosophy of the generative model. Desired node-degrees
should be a result of the preferential attachment strategy and
not created by force.

IV. EXPERIMENTS

The following subsections will describe our experiments
for evaluating the behavior of proposed merge and divide algo-
rithms for Barabási-Albert-Graphs. Subsection IV-C introduces
our comparison measures. Additionally we recorded runtimes
of all algorithms. See Section V for results.

A. Merging of two Graphs

We always merged two Barabási-Albert-Graphs and altered
the parameters size (n) and connectivity (m0 = m).

We used the following test scenarios for merging two
Barabási-Albert-graphs:

name n1 m1 n2 m2

equal 5000 3 5000 3
diff_m 5000 3 5000 8
diff_size 5000 8 25000 8
diff_all 5000 8 25000 3

B. Dividing into two Graphs

Similar to the experiments for merging graphs we divided
graphs in different ratios of nodes in the resulting subgraphs.
Following test scenarios were created for dividing a Barabási-
Albert-graph into two subgraphs:

name n m noNodes1

10 : 90 10000 5 1000
20 : 80 10000 5 2000
30 : 70 10000 5 3000
40 : 60 10000 5 4000
50 : 50 10000 5 5000

C. Measurements

To measure the quality of our strategy, we focus on three
aspects: edge preservation, node-degree rank and node-degree
distribution.

1) Edge Preservation: One goal is to preserve the inner
structure of the graphs. This means, that nodes which are con-
nected before should be connected afterwards. Not connected
nodes should be separated, too.

For this measure we simply calculate the percentage of
preserved edges during the alteration process.

2) Rank-Correlation: Nodes which are more active, or
stronger connected should also have a higher node-degrees
in the resulting graphs. To estimate this, we calculate the
node-degree rank of every node in both graphs. Afterwards,
we calculate the two well known rank correlation coefficients
Spearman’s ρ [13, Section 14.7] including tie-correction and
Kendall’s τ [14]. These measures have a range from −1 to +1,
where +1 (−1) indicates that the order is completely preserved
(reversed).

3) Node-Degree Distribution: Based on the Barabási-
Albert-model the node-degree of all nodes in the graph should
follow a power law distribution, described in Equation 2.

We determine the node-degree distribution of the resulting
graph and compare them with the theoretical node-degree
distribution based on the presented formula and the number
of edges in the graph. We calculate the root-mean-squared-
error to check how good the distribution fits the node-degree
distribution of our graph.

V. RESULTS

In the following section we present the results of our
experiments. First we give a brief comparison about the
run times, and afterwards we show the in Subsection IV-C
described measures.

A. Merging of two Graphs

1) Computing Time: In Figure 2 we show the run time
for the presented merge algorithms. We used two graphs with
the same number of nodes and a connectivity of m = 4. The
measurement is based on 10 runs for each graph size. The
runtime for all algorithms is almost linear in graph-size.

This is due to the fact that the constants of the logarithmic
parts from the ordering are relative small in contrast to the
constant factors of the merge process itself.

101 102 103 104 105 106

Graph size

10-4

10-3

10-2

10-1

100

101

102

T
im

e
 i
n
 s

Merge Times

Random
Node-Degree-Order
Preserving-Nodes
Minimal

Fig. 2. Computation time for merge operators with different graph sizes

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.4 / 0.4 0.3 / 1.1 0.3 / 0.4 0.5 / 0.1
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

TABLE I. AVERAGE PART OF EDGES PRESERVED AFTER
MERGE-OPERATION IN PERCENT

2) Edge Preservation: The edge preservation follows the
design of the algorithms. The Minimal-Merge preserves all
edges, and the Preserving-Nodes Algorithms the edges from
the first graph. All others algorithms lose the inner structure.
A more detailed view can be taken from Table I. The first part
of every column describes the percentage of preserved edges
from the first resulting subgraph, and the second part the other
subgraph respectively.

3) Rank Correlation: Recorded values were averaged over
100 iterations of specified experiments and are shown in
Table II and Table III. The baseline algorithm Random-Merge
(RM) had always values around 0 which indicates that degree
rank order before and after the merge stand in no correlation to
each other. Preserving-Node-Merge (PNM) performed better in
the merge of two equal graphs and on the same level as RM for
graphs with differing m. The Node-Degree-Merge algorithm
(NDM) ranked second best in first three experiments. For an
equal merge both rank-correlation coefficients had much higher
values (ρequal = 0.726 and τequal = 0.625) than PNM. It
reached even higher values for merging graphs with differing
m (ρdiff _m = 0.842 and τdiff _m = 0.709) and differing
size (ρdiff _m = 0.874 and τdiff _m = 0.779). However PNM
performed better than NDM for graphs differing in size and
connectivity (ρdiff _all = 0.850 and τdiff _all = 0.718). The
algorithm Minimal-Merge (MM) scored best with values near
to +1 for both experiments. This is due to the minimal change
by adding just a few edges.

4) Node-Degree Distribution: Table IV shows the RMSE
between the observed node-degree and the theoretical node-
degree distribution. The upper part of the table shows the
RMSE for the initial graphs, and below the results for all
merged graphs for every method.

The Random-Merge (RM) algorithm generates the best
results except for the diff_all dataset. Minimal-Merge (MM)

Merge ρequal ρdiff _m ρdiff _size ρdiff _all

RM 0.000 -0.001 0.000 0.001
NDM 0.726 0.842 0.874 0.779
PNM 0.475 -0.134 0.612 0.850
MM 1.000 0.979 1.000 0.985

TABLE II. MEASURED VALUES FOR SPEARMAN’S ρ

Merge τequal τdiff _m τdiff _size τdiff _all

RM 0.000 0.000 0.000 0.001
NDM 0.625 0.709 0.745 0.661
PNM 0.406 -0.061 0.486 0.718
MM 1.000 0.927 1.000 0.964

TABLE III. MEASURED VALUES FOR KENDALL’S τ

RMSE equal diff_m diff_size diff_all

g1 23.2 22.9 4.9 4.8
g2 22.6 4.9 12.3 75.7

RM 38.2 11.7 14.0 53.9
NDM 39.4 12.0 14.3 54.2
PNM 38.3 38.2 14.1 14.3
MM 43.3 199.1 14.8 229.2

TABLE IV. RMSE OF NODE-DEGREE DISTRIBUTION BEFORE AND
AFTER MERGE

leads to huge errors, especially with different m. This is based
on the fact, that most of the inner structure is kept and no
combined graph with all nodes is created from scratch. PNM
and NDM generate results with RMSE between the initial
graphs.

B. Dividing into two Graphs

1) Computing Time: Figure 3 shows the run time for
the presented divide algorithms. We used a graph with a
connectivity of m = 4. The divide operation divides the graph
into two subgraphs with the same size. The measurement is
based on 10 runs for each graph size.

The two algorithms using the repair operator are significant
slower then the other ones. The Random-Divide (RM), and
the Node-Degree-Divide (NDDa, and NDDb) algorithms are
almost equal and linear in computation time. The Random-
Subgraph-Divide (RSD) algorithms looks also linear, which

102 103 104 105

Graph size

10-3

10-2

10-1

100

101

102

T
im

e
 i
n
 s

Divide Times

Random
Random-Subgraph
Node-Degree A
Node-Degree B
Subgraph-Expansion

Fig. 3. Computation time for divide operators with different graph sizes

Divide 10:90 20:80 30:70 40:60 50:50

RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.2 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.9 / 0.2 2.3 / 0.2 1.6 / 0.2 1.3 / 0.3 1.1 / 0.3
NDDb 4.0 / 0.7 2.5 / 0.8 1.8 / 0.9 1.4 / 1.0 1.1 / 1.2
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

TABLE V. AVERAGE PART OF EDGES PRESERVED AFTER
DIVIDE-OPERATION IN PERCENT

is an indication that the repair operation is less used in
this algorithm than in the Subgraph-Expansion-Divide (SED)
algorithm.

2) Edge Preservation: The RSD and the SED preserve
all structure information from the selected subgraph. The
NDD algorithms preserve some structure, (2 − 4%), while
the Random Divide loses almost all inner structure. Detailed
information is presented in Table V. The first part of each
column represents the portion of preserved edges from the
first resulting subgraph, and the second portions represents the
ratio of the other subgraph.

3) Rank Correlation: Measured rank-correlations of all
divides are shown in Table VI and Table VII. Recorded values
were averaged over 100 iterations of specified experiments. It
can be seen that our baseline algorithm Random-Divide (RD)
scores always near 0 and therefore the degree rank order before
and after the divide stand in no correlation to each other.
Algorithms Node-Degree-Divide-A (NDDa) and Subgraph-
Expansion-Divide (SED) scored nearly similar for uneven
divides (see ρ10:90 and τ10:90). However SED seems to be more
resistant to a change of the node-ratio. The rank-correlation
values of SED are slowly declining from ρ10:90 = 0.675 to
ρ50:50 = 0.516 (decrease of ≈23%). Whereas rank-correlation
values of NDDa were decreasing from ρ10:90 = 0.661 to
ρ50:50 = 0.385 (decrease of ≈42%). Similar observations can
be done comparing values for Kendall’s τ . Random-Subgraph-
Divide (RSD) was evaluated as second best algorithm. Both
correlation coefficients have a high range of values, where
distributing nodes in a ratio of 30:70 resulted in minimal
values of ρ30:70 = 0.632 and τ30:70 = 0.520. Higher values
were reached for more equal divides with a ratio of 50:50
(ρ50:50 = 0.722 and τ50:50 = 0.612) or more uneven divides
with a ratio of 10:90 (ρ10:90 = 0.771 and τ10:90 = 0.709). The
Node-Degree-Divide-B (NDDb) algorithm scored best with
nearly constant values of ρ ≈ 0.813 and τ ≈ 0.692.

4) Node-Degree Distribution: The measured root-mean-
squared-error for all dividing algorithms is presented in Ta-
ble VIII. The Random-Divide Algorithm (RD) as well as the
Node-Degree-Divide algorithms (NDDa, and NDDb) generate
subgraphs with a lower RMSE then the initial graph. On
the contrary the Random-Subgraph-Divide (RSD) algorithm
and the Subgraph-Expansion-Divide (SED) method leads to
subgraphs with much higher RMSE. Both algorithms use much
of the underlying structure and the repair method. That is the
reason why the joined node-degree distribution does not fit the
theoretical node-degree distribution provided by the Barabási-
Albert-model.

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50

RD 0.000 0.001 0.001 0.000 0.000
RSD 0.771 0.650 0.632 0.683 0.722
NDDa 0.661 0.541 0.456 0.401 0.385
NDDb 0.813 0.814 0.813 0.814 0.814
SED 0.675 0.568 0.525 0.511 0.516

TABLE VI. MEASURED VALUES FOR SPEARMAN’S ρ

Divide τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

RD 0.000 0.000 -0.001 0.000 0.002
RSD 0.709 0.558 0.520 0.569 0.612
NDDa 0.561 0.456 0.379 0.330 0.314
NDDb 0.692 0.693 0.692 0.693 0.693
SED 0.558 0.449 0.407 0.394 0.402

TABLE VII. MEASURED VALUES FOR KENDALL’S τ

RMSE 10:90 20:80 30:70 40:60 50:50

g 16.3 16.4 16.2 16.3 16.5

RD(g1) 3.8 5.7 7.2 8.9 10.2
RD(g2) 15.3 14.1 12.8 11.6 10.1
RSD(g1) 91.8 128.8 190.9 197.0 175.0
RSD(g2) 309.6 310.8 283.2 234.2 170.6
NDDa(g1) 3.9 5.7 8.8 8.8 9.8
NDDa(g2) 15.4 14.1 11.8 11.8 10.1
NDDb(g1) 3.9 5.5 8.7 8.7 10.4
NDDb(g2) 15.3 14.2 11.5 11.5 10.1
SED(g1) 32.0 60.8 93.6 127.9 167.5
SED(g2) 442.6 464.0 444.4 412.4 374.9

TABLE VIII. RMSE OF NODE-DEGREE DISTRIBUTION BEFORE AND
AFTER DIVIDE

VI. CONCLUSION

The proposed algorithms were derived from theoretical
use cases. It is not possible to determine one best algorithm
for either merging or dividing Barabási-Albert-Graphs. Every
algorithm has its potential use cases and specific benefits in a
subset of our evaluation measures. It is up to the user to decide,
which algorithm fits best. A summary of our experimental
evaluation results is shown in Table IX and can be used as
a guideline.

If the input algorithm fulfills the scale-free property also
the resulting graphs will hold this property. So the algorithms
could be used also for graph which are not created by a
Barabási-Albert-model, but are scale-free. Due to the fact,
that the resulting graphs have similar node-edge relations the
sparsity could be assured.

Results will be included in our tool for event generation

Run- Edge Rank- Node-Degree-
Alg. Time Preservation Correlation Distribution

RM ◦ - - ◦
NDM ◦ - ◦ ◦
PNM ◦ ◦ ◦ ◦
MM ◦ + + -

RD + - - +
RSD ◦ + ◦ -
NDDa + - ◦ +
NDDb + - + +
SED - + ◦ -

TABLE IX. OBERVIEW OF MERGE AND DIVIDE ALGORITHMS (−, ◦,+)

of dynamic social network simulations [15] in the next step of
development. Furthermore the algorithms could be used to im-
prove computational intelligence methods which are based on
Barabási-Albert-graphs, as in the introduction described. Also,
our work on dynamic clusters [16] [17] in social networks will
benefit from these results.

Further research should be done towards the repairing
function. With same more advanced repairing steps it would
be possible to generate graphs that to fit more the theoretical
node-degree distribution.

We provide a Python implementation of the presented
algorithms at http://bitbucket.org/paheld/dynamix.

REFERENCES

[1] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathe-
maticae (Debrecen), vol. 6, pp. 290–297, 1959.

[2] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[3] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[4] A.-L. Barabási and J. Frangos, Linked: The New Science Of Networks
Science Of Networks. Basic Books, 2002.

[5] R. Albert, H. Jeong, and A.-L. Barabasi, “The diameter of the world
wide web,” Nature, vol. 401, no. 6749, pp. 130–131, Sep. 1999,
arXiv:cond-mat/9907038.

[6] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Extracting
large-scale knowledge bases from the web,” in Proceedings of the 25th
VLDB Conference, 1999, p. 639–650.

[7] A.-L. Barabasi, R. Albert, and H. Jeong, “Mean-field theory for
scale-free random networks,” Physica A: Statistical Mechanics and its
Applications, vol. 272, no. 1-2, pp. 173–187, Oct. 1999, arXiv:cond-
mat/9907068.

[8] W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of Anthropological Research, vol. 33, pp. 452–
473, 1977.

[9] E. Ravasz and A.-L. Barabási, “Hierarchical organization in complex
networks,” Physical Review E, vol. 67, no. 2, Feb. 2003.

[10] C. Liu, W.-B. Du, and W.-X. Wang, “Particle swarm optimization with
scale-free interactions,” PLoS ONE, vol. 9, no. 5, p. e97822, May 2014.

[11] R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, M. Steinbrecher, and
P. Held, Computational Intelligence: A Methodological Introduction,
ser. Texts in Computer Science. New York: Springer, 2013.

[12] G. Bianconi and A.-l. Barabási, “Competition and multiscaling in
evolving networks,” Europhysics Letters, vol. 54, p. 436–442, May
2001.

[13] D. Zwillinger and S. Kokoska, CRC standard probability and statistics
tables and formulae. CRC Press, 1999.

[14] M. G. Kendall, “A new measure of rank correlation,” Biometrika,
vol. 30, no. 1-2, pp. 81–93, 1938.

[15] P. Held, A. Dockhorn, and R. Kruse, “Generating events for dynamic
social network simulations,” in Proceedings of 15th International Con-
ference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, 2014, to be published.

[16] P. Held, C. Moewes, C. Braune, R. Kruse, and B. A. Sabel, “Advanced
analysis of dynamic graphs in social and neural networks,” in Towards
Advanced Data Analysis by Combining Soft Computing and Statistics,
ser. Studies in Fuzziness and Soft Computing, C. Borgelt, M. Á. Gil,
J. M. C. Sousa, and M. Verleysen, Eds. Berlin Heidelberg: Springer,
2013, vol. 285, pp. 205–222.

[17] P. Held and R. Kruse, “Analysis and visualization of dynamic clus-
terings,” in 2013 46th Hawaii International Conference on System
Sciences. Los Alamitos, CA, USA: IEEE Computer Society, Jan. 2013,
pp. 1385–1393.

