
Assessing neural networks for sensor fault detection
Georg Jäger, Sebastian Zug, Tino Brade,

André Dietrich, Christoph Steup
Otto-von-Guericke Universität Magdeburg

Department of Distributed Systems
Magdeburg, Germany

Email: gjaeger@st.ovgu.de,
{zug, brade, dietrich}@ovgu.de

Ana-Maria Cretu
Universite du Quebec en Outaouais
Departement of Computer Science

Canada
Email: ana-maria.cretu@uqo.ca

Christian Moewes
Otto-von-Guericke Universität Magdeburg

Institut of Knowledge and Language Engineering
Magdeburg, Germany

Email: cmoewes@ovgu.de

Abstract—The idea of “smart sensing” includes a permanent monitor-
ing and evaluation of sensor data related to possible measurement faults.
This concept requires a fault detection chain covering all relevant fault
types of a specific sensor. Additionally, the fault detection components
have to provide a high precision in order to generate a reliable
quality indicator. Due to the large spectrum of sensor faults and their
specific characteristics these goals are difficult to meet and error prone.
The developer manually determines the specific sensor characteristics,
indicates a set of detection methods, adjusts parameters and evaluates
the composition.

In this paper we exploit neural-network approaches in order to provide
a general solution covering typical sensor faults and to replace complex
sets of individual detection methods. For this purpose, we identify an
appropriate set of fault relevant features in a first step. Secondly, we
determine a generic neural-network structure and learning strategy
adaptable for detecting multiple fault types. Afterwards the approach is
applied on a common used sensor system and evaluated with deterministic
fault injections.

I. INTRODUCTION

Future concepts for sensor actuator systems (“Internet of
Things” (cf. [1]), “Cyber-Physical Systems” (cf. [2]), or “Perva-
sive/Ubiquitous Computing” (cf. [3])) are focused on distributed
smart devices. They organize themselves based on a current task
and aggregate adaptively the needed environment information from
available and relevant sensors. The continuous adaptation and re-
configuration breaks with classic design patterns based on a static
configuration on design-time. In order to provide the dynamic com-
position, we have to apply additional concepts related to loosely
coupled communication, self-description (data types, physical units,
uncertainty), synchronization and fault-handling [4].

The last point is particularly challenging due to the large spectrum
of sensor fault types. If an application should be able to weight or
validate a sensor measurement correctly, it needs additional validity
information. This value indicates the possibility of a fault during the
measurement process. Previous publications mapped the result of the
most relevant fault detection operation on simple scalar values [5]. We
enhanced the concept and developed a vectorized fault indicator for
typical sensor fault types summarized in Tab. I. The vector covers
all fault types relevant for a certain sensing setup and provides a
fine grained abstraction of the measurement validity. Consequently,
the approach requires a specific validation algorithm for each fault
type that is relevant for the implemented transducer. Related to the
different characteristics of the sensor faults (duration, derivation,
stochastic properties) a huge amount of methods were presented
for fault detection (see [6]). Hence, the developer has to choose an
appropriate fault detection method and has to determine the ”‘magic
constants”’ (thresholds, weighting factors, limits) implementing a
complex fault model for a sensor system.

These manual adjustments do not correspond with our idea of an
effective development process for smart sensors. In previous work we
describe the use of sensor description files providing an automated
software-development process in Mathworks Simulink. Based on a
machine readable sensor characteristics (timing, physical units, signal
dynamic) and a target description (processor, communication inter-
faces, ADC properties, etc.) we generate source code for interfaces
and a basic processing chain of a smart sensor [7]. If we want to
embed the sensor fault handling in this approach, we need to define
a general and simplified way to design fault detectors in order to
reduce manual interventions and adjustments. At the end, we are
able to evaluate sensor description files containing possible fault
models and generate and configure automatically an appropriate set
of detection methods. To reach this goal, we have to encapsulate the
development of a suitable detection methods and their parameters in
a more abstract way. Consequently we looked for an approach that

• covers a large spectrum of sensor faults
• based on a parameter set developed in an automatable process

and
• can be executed on embedded devices.

In this paper we evaluate the capabilities of Neural Networks for this
purpose. Neural Networks can be applied on complex classification
problems. The number of parameters that have to be adjusted are
limited to some basic parameters like network structure, network type,
or transfer functions. Furthermore this values can be determined by
cross validation an therefore are also automatable.

Hence, we summarize conventional fault detection approaches and
discuss previous implementations based on neural networks in Sec. II.
Starting from this point we analyze the required adjustments in the
neural network design and configuration process Sec. III. Sec. IV
describes a first implementation and evaluates the results. In Sec. V
we provide a final conclusion and an outlook on future work.

II. STATE OF THE ART

Fault detection represents the first step in the fault diagnosis tool-
chain of Fault Detection and Isolation (FDI). According to the authors
of [8], fault detection only indicates that something went wrong. The
correct identification of a certain fault type or its origin follows in
separate steps. These extensions are planned for future work, in this
paper we concentrate on A general indicator for faulty measurements.

All fault detection strategies require an additional reference. By
comparing it with current measurements or their features (noise,
deviation, correlation) faults can be recognized. The reference is
generated based on

• hardware redundancy (homogeneous or heterogeneous sensors
in multi-sensor applications),

• analytical redundancy (mathematical models of the observed
system with predictions) or

• signal analysis (knowledge on the measurement characteristic
(one or more samples).

Comprehensive discussions on sensor fault detection for all 3 cases
are given in [6], [9]. In this paper we address the detection methods
for individual smart sensors. Hence, hardware redundancy is not
considered in the following paragraphs.

A. Sensor fault detection

Fault detection methods vary from simple threshold checks up
to complex signal filter algorithms [10]. The first variation uses an
implicit knowledge of the environment model and of the integrated
sensor to estimate ranges for a single/multiple set of features. If a
detector should be able to recognize outliers, we will implement a
gradient check for instance. Its upper limits represents the dynamic
of the observed system and the known “normal” noise level of the
sensor. Consequently, the developer has to define a suitable feature in
a first step and to identify and to evaluate the thresholds in a second
step [11]. In many cases the thresholds can not be reliably determined
on design-time. Adaptive thresholds can be an appropriate method to
cope with this challenge. Instead of validating a value by a predefined
constant limit, the thresholds are dynamically arranged. It is common
practice to define a constant and a dynamic part in this case. This
method guarantees a higher flexibility but requires more effort for
adjustment and calibration.

The second type of methods uses filters to generate a residual signal
which can again be thresholded to detect a sensor fault. Typically
spectral filters are used to detect sensor fault signals, too [12]. Digital
filters such as the Savitzky-Golay filter [13] can also be used to
generate a residual signal. Again expert knowledge is necessary to
design such filters. Other filters are based on the physical laws of
motion, e.g., the Kalman filter that can even detect faults in real
time [14].

An alternative form of redundancy evaluates mathematical models.
The developer describes the environment by balancing equations
or rules and transforms this information into system state models,
event/situation-calculus, state machines etc. The fault detection algo-
rithm analysizes the deviations and looks for a significant deviation.
A large number of modeling techniques and residual validation
are available tailored for specific scenarios, sensor parameters, or
communication aspects [10], [15].

The previously mentioned techniques originate from digital signal
processing and/or physics. All of these methods have to be tuned
manually and thus generally depend on human expert knowledge.
Especially in complex sensor-based systems, the definition of analyt-
ical fault detection methods is either inconsistent or time-consuming.
Short production cycles require methods that learn to detect faults
solely based on observations.

Such data-driven approaches demand representative training sets
that include normal states and faults, both labeled as such [16]. Then
any statistical learning method can be used to learn such a model.
Rule-based methods, e.g., decision trees [17], return threshold-based
if-then rules but do not perform so well. Black-box models such as
artificial neural networks generalize very well and therefore more
appropriate.

B. Sensor fault detection with neural networks

A historical example of neural networks for pattern recognition
are Probabilistic Neural Networks (PNN), first introduced 1990 by
Donald F. Specht[18]. The learning process of this kind of neural

networks is replaced by the generation of the PNN, because every
sample of the training data is transferred to a neuron and therefore
saved inside the resulting neural network. New samples are classified
by calculating a similarity to every class. The sample is assigned to
the class with the highest similarity. They are used for sensor fault
detection in a modified way by A. Jabbari et al.[19]. His PNN’s
were applied to monitor temperature sensors in a cold chain for
food. Combining current temperature measurements and additional
environment information a, PNN was able to distinguish between
normal states (temperature varies due to air exchanges while the door
opening) and faulty transducers.

Time-Delay Neural Networks (TDNN) are another type which were
applied in common fault detection by Christensen et al. [20]. The
paper describes the detection of hardware faults for autonomous
robot systems. They consider that hardware faults change the flow
of sensory data and also the reaction of the control program. These
changes are detectable by a TDNN. The detection method is evaluated
in three different tasks performed by real robots. The structure of
a TDNN is basically the same as a Multi-Layer-Perceptron (MLP).
This means there are only forward connections. Therefore standard
backpropagation can be used to learn this kind of neural network.
TDNN are able to detect patterns in time series by analyzing sliding
windows of a signal. The length of the window must be static as a
tradeoff to the feed-forward characteristic.

To overcome the disadvantage of a static window length, Locally
Recurrent Neural Networks (LRNN) were applied to fault detection in
[21]. The authors tested their system on a model consisting of three
watertanks. Informations on different sensors were available to detect
faults inside the model. Locally Recurrent Neural Networks don’t
have recurrent connections between neurons but inside of special
neurons. These neurons are called dynamic neurons and have an
additional linear dynamic system (LDS) which transmits the output
back to the input. With this recurrent connection, LRNN are able to
deal dynamically with time series.

Another approach with recurrent connections were introduced by
Hochreiter and Schmidhuber in [22]. They did not define a type of
neural networks, but a module, called memory cell which can be
applied to all neural network types. They used different neurons and
recurrent connections in a way that memory cells are able to decide
which information to store, at which time and how long to store this
information. Furthermore they can decide when to show the stored
information to the rest of the neural network. These modules could
be a part of a neural network for fault detection, as it enables the
network to analyze time series dynamically. An implementation of
the memory cell concept on sensor fault detection tasks is not known
yet. After intensive literature research, we could not find works on
fault detection for single sensor systems based on neural networks.
Most works on single sensor setups use additional information about
their environment.

III. OUR APPROACH

The implementation of a neural network requires a number of basic
steps. The left side of Tab. II summarizes the procedure from input
data analysis up to training and evaluating of a neural network. We
recognize the need for a subdivision while applying the concept on
fault detection tasks. The third column (Index) of Tab. II assigns an
index number that references the following subsections, where we
discuss the intended steps:

Table I
CATEGORIES OF FAULTS IN SENSING APPLICATIONS [23]. THE DASHED LINE ILLUSTRATES THE PROGRESS OF A PHYSICAL VALUE. IN CONTRAST, THE

SOLID GRAPH DEPICTS THE CORRESPONDING FAULTY MEASUREMENTS.

Delay
Offset

Stuck-at
sporadic permanent stochastic

constant outlier constant constant at zero

1

t

y 2

t

y 3

t

y 4expected real

t

y 5

t

y

variable spike value correlated value correlated at X

6

t

y 7

t

y 8

t

y 9expected real

t

y 10
X

t

y

omissions / broken link time correlated time correlated saturation

11omissions

t

y 12

t

y 13expected real

t

y 14

t

y

Table II
ADAPTATION OF THE COMMON DEVELOPMENT PROCESS FOR NEURAL

NETWORKS RELATED TO SENSOR FAULT DETECTION

Common development Adaptation for sensor fault Index
steps detection

Selection of relevant Afault types
Input data Definition of an environment Banalysis model

Derivation of appropriate Cfeatures

Acquisition of a
sample data base

Generation of measurement
Dsamples superimposed by

selected faults
Selection of a suitable Weighting of neural approaches Enetwork type considering the specific setup

Train the network F

Evaluation G

A. Fault selection

For each fault detection application we need an appropriate fault
model considering all possible deviations between real values and
sensor measurements. A comprehensive classification of sensor data
centric fault models is given in [23]. Fig. I illustrates the major
types organized in relation to the correlation, duration or amplitude
characteristic. We distinguish 14 different fault types such as outliers,
offsets or additional noise. The mentioned sensor description involves
an identification of the relevant sensor type and their mathematical
parameter.

At the moment, we just consider 4 fault types : outliers (2), constant
offset (3), noise (4) and Stuck-at-Zero (5). The selection covers the
fault characteristic of many sensing devices. Hence, we want to
evaluate our ideas based on this subset and integrate other fault types
later.

B. Environment Model

Additional to the fault model, we have to consider an appropriate
environment model describing the application context of the sensor.
The environment model characterizes the non-faulty state and defines
the ranges of the measurement value as well as the dynamics of the
monitored system.

In order to use neural networks, the environment model has to
be described implicitly by samples in the database/training data.
Hence, creating a mathematical environment model is replaced by
generating/collecting data for training a neural network.

C. Relevant features

Preprocessing is one part of input data analysis which can increase
performance of neural networks dramatically. In fault detection
preprocessing is also called feature extraction. Features [10] are
additional information calculated from raw measurement signals.
Therefore during this step the developer has to choose the relevant
features as input of the neural network. One main challenge is to
identify the best composition of available feature related to the faults
we want to detect. To decide which feature to use, some requirements
are given in [24]. They should be:.

• computable efficiently.
• uncorrelated with other features.
• independent of external influences.
• characterized by high differences between features and small

internal differences.
Along with these conditions, we look for a minimal number

of features so that all faults considered in the fault model are
covered. The features have to decouple sensor measurements and
fault detection methods. These abstraction guarantee the applicability
of the approach on a wide range of sensor types. We selected the
following features that will be used as an input for our neural network.
The variable xt represents measurement samples, xt the mean value
and T the sliding window length.

Mean
Calculating mean enables our system to recognize

time-correlated faults. Furthermore a mean value iden-
tifies on usual values of a signal. If the current value
differs strongly from mean, a faulty measurement
can be assumed. We compute the mean value over a
sliding window with length T. Hence, mean is defined
by

E(xt) = xt =
1

T
·
T−1∑
τ=0

xt−τ

Standard-Deviation
The Standard Deviation quantifies the width of a prob-
ability distribution and defines the expected deviation
of a measurement related to the mean. For parametric
distribution functions we can calculate the probability
of the current difference from mean. Standard Devi-
ation is defined for a sliding window with length T
by:

s(xt) =

√√√√ 1

T
·
T∑
τ=0

(xt−τ − xt)2

Deviation
The first deviation reflects the dynamic of the ob-
served system. The value allows a neural network to
recognize outliers, spikes etc. The deviation can be
calculated by:

dx

dt
=

xt − xt−1

∆t

Signal-to-Noise Ratio
The Signal-To-Noise-Ratio (SNR) allows to estimate
the noise level of a signal. In literature it is often
defined as signal power divided by noise power [25].
However, to compute an running SNR we apply the
following definition

SNR(xt) =
E(xt)

s(xt)

Correlation-Coefficient
The Correlation-Coefficient describes the similarity of
two signals. Therefore the correlation-coefficient is
defined as [25]:

rxy =
E(xt − yt)− E(xt) ·E(yt)

s(xt) · s(yt)

Furthermore the Correlation-Coefficient allows to de-
rive a functional relation between to signals. As the
coefficient is in the [-1,1] interval, it can be interpreted
as:

• rxy > 0: high values in x yield high values in y.
• rxy < 0: high values in x yield low values in y.
• rxy = 0: x and y are not correlated.
• rxy = 1: x,y are linear correlated: y = a ·x +

b; a > 0.
• rxy = −1: x,y are linear correlated: y = a ·x +

b; a < 0.
Additional transformations of signal like Fourier-Transformation

and power-density spectrum are possible features that need to be
investigated. Tab. III maps our fault models of Tab. I on the mentioned
features. The tabular evaluates the detection capabilities of individual

Table III
HYPOTHETICAL RELEVANT FEATURES FOR SENSOR FAULT CATEGORIES

ID Fault category M
ea

n

V
ar

ia
nc

e

D
ev

ia
tio

n

C
or

r.-
C

oe
ffi

ci
en

t

Si
g.

-t
o-

N
.R

at
io

i1 Constant Delayi2 Outlier i3 Constant Offset i4 Constant Noise i5 Stuck-At-Zero i6 Variable Delay i7 Spike i8 Value-Correlated Offset i9 Value-Correlated Noise i10 Stuck-At-X i11 Omission i12 Time-Correlated Offset i13 Time-Correlated Noise i14 Saturation

features regarding outliers, offsets, etc. The assignment represents a
first hypothesis that has to be proven in future work.

For this paper we chose 4 fault types which are detectable by our
feature set. In further investigations we will extend this number.

D. Generation of data samples

As the neural network will implicitly generate an environment
model during learning, the collected samples need to represent
the data produced by the final wokring system. One possibility to
generate these samples is to set up a real sensor system and collect
the measurements. In a post processing step all measurements have to
be (manually) classified as faulty or correct. However this approach
has two major drawbacks. Firstly, some faults occur very seldom or
depend on specific environment conditions. Hence, data acquisition
needs to run for a long time to capture them. Secondly, the manual
classification is an extensive work especially for large data sets.
Alternatively, a fault injection framework handling all relevant fault
types is more effective. In this case a schedule of faults to happen
in the simulation is used as input. The the fault injection tool creates
the data based on a simulated system behavior and a defined fault
characteristic for each fault in the schedule. Another possibility is
to employ the fault injection on real sensor measurements. However
possible real measurements faults compicate the classification in this
approach.

E. Neural network type

Feature extraction is a preprocessing step of fault detection. Hence,
we have to implement an appropriate detection method, that is able
to cover all relevant fault types by one approach, namely neural
networks.

The type of neural network is a basic parameter. As shown in
Sec. II there are many types of neural networks which could be
suitable for sensor fault detection. As it is a known problem of
recurrent neural networks to learn these, for this work we concentrate

on feedforward neural networks. Time-Delay Neural Networks are
one possible choice. They are easy to train but can even analyze
time-series in a bordered range.

Besides the type of neural network we have to define other
parameters, e.g., the number of hidden layers and the number of
neurons in every hidden layer. This is typically done by cross-
validating different neural network structures. Choosing the best
number of layers, special attention should be paid to the “curse of
dimensionality” [16]. This phenomenon describes different aspects of
high dimensional data. For instance, with an increasing number of
dimensions, the distances of neighboring points increases too. Thus,
with every additional hidden layer that maps input data in a higher-
dimensional feature space, this effect makes it harder to establish
suitable separating hyperplanes. Another aspect of this phenomenon,
and a burden for any machine learning method, is the fact that we
need an exponentially growing number of data points to estimate the
parameters of additional hidden layers properly [16]. Thus a higher
number of hidden layers potentially decreases the generalization
performance of the network.

F. Training of the neural network

The last important parameter is the training function and its
parameters. that can determined by different approaches. A number
of algorithms applies the gradient descent, as the Broyden-Fletcher-
Goldfarb-Shanno(BFGS) algorithm, a quasi-Newton backpropagation
algorithm, which is an derivation of standard backpropagation [26].
This algorithm is similar to the Newton Method, but computes the
derivations only approximately which increases the speed of training.
Unfortunately it has to save the Hessian matrix which is n×n where
n is the number of weights and biases used in the neural network. For
large networks this matrix will increase quadratically. One benefiting
parameter of this training function is the optional weight decay
parameter. This parameter is used while learning to force the weights
of unused neurons to zero. The number of neurons can be defined
in a wider spectrum and the decision on how to choose the number
of neurons per layer is easier. The value of this parameter can be
examined with cross-validation again. Another important parameter
of every training function is the goal of performance. The training of
neural network will stop, when this value has been reached. Zero isn’t
a good goal for training a neural network, because of generalization
problems and overfitting. To avoid overfitting, an appropriate number
of epochs has to be chosen.

G. Evaluation and validating the neural network

Evaluating a neural network requires an error function. Known
variants are mean squared error, sum squared error or mean absolute
error. As we want to perform an classification-task, a more appropri-
ate error function is needed. Precision and recall are commonly used
in this context:

Precision :
tp

tp + fp
and Recall :

tp
tp + fn

where tp denotes all faulty samples that were classified correctly
(true positives). fp references false positives, whose classification
is wrong by assuming a fault. The counterpart is marked by fn,
faulty samples that were classified as fault free. Therefore precision
is an indication of how much of the returned faults are correct
classifications. Recall only indicates how many of the occured faults
are detected. Both values can be combined to the so-called F-Score.
There are different approaches for this combination, but commonly
the F1-Score is used.

0 200 400 600 800 1000

0

2

4

6

8

Time t

Vo
lu

m
e
l

Figure 1. Example of a fault free sensor measurement; The theoretical model
(red) and the real system behavior with a noisy random outflow (blue)

F1 = 2 · precision · recall
precision + recall

In the end, the assessment of a neural network can be quantified
by a single value. This concentrated representation supports our goal
of an automated configuration process of a fault detector.

IV. EVALUATION

We evaluated our approach based on the commonly used water tank
example. It provides an intake and a drain. The inflow is constant over
time, while the outflow depends on the current height of the liquid
inside the water tank. Additional we integrate a random outflow with
a specific mean, variance and length. The second outflow is triggered
periodically and represents the uncertainty of our environment model.
Fig. 1 shows an example of a fault free sensor run.

Our water tank model and a level sensor are simulated. It is
assumed that just one sensor fault may occur at one point in time.
As described in section III-A we consider only 4 fault types. The
fault state is calculated in a fault injection framework and applied on
the simulated sensor measurements from the water tank model. This
guarantees, that only one fault can occur at a time. By simulating this
setup with different fault parameters we generate samples and targets
for learning and validation. Beside the raw sensor measurements also
the features (mean, standard-derivation, gradient, Signal-to-Noise-
Ratio and Correlation-Coefficient) were saved. If a window length
was needed to calculate a feature, we defined T = 64. We chose
a Time-Delay Neural Networks and applied the BFGS algorithm
for learning. Furthermore TDNN are able to analyze time series by
presenting time slots. In this case, the network has to analyze six
sliding windows in parallel, every window representing one feature.
As the input of the TDNN will be a sliding window of a sensor
measurement, its output should be a sliding window too. Inside
this window every time step is marked as faulty(1) or not(0). We
trained TDNN with 2 hidden Layers. In order to find the best
structure 3 neural network with different numbers of neurons per layer
[25, 50, 75] were created. All networks were trained with the BFGS
algorithm. We used the mean squared error as an error function.
As cross validation give the best regularization values between 0.04
and 0.06 all network structures were trained with a regularization
parameter of 0.04, 0.05 and 0.06. The transfer function of every
neuron in a hidden layer is the hyperbolic tangent.

To compare the resulting neural network with common methods,
we implemented a Limit Checking (LC) fault detector for every fault.
Outliers were detected by checking the gradient. If the current sensor
value is equal to zero, an Stuck-at-Zero fault is detected. To detect a
Constant Offset, the mean was checked and Noise was recognized by
evaluating the current Signal-to-Noise ratio. With precision and recall
we were able to compare both methods. We used 25% of the database
to estimate this values, 75% were used to train the TDNN. In Table IV

the results of comparison are shown. The first value is the precision of
the specific fault detector assigned to the detected fault. The second
value is the corresponding recall. As LC is implemented only for one
fault type at a time, the ”-”-sign indicates that no measurements of
precision or recall for the other fault types were produced. As the
reader can see, TDNNs were not able to detect specific faults more
reliable, but are coequal in precision and recall. Faults like Stuck-
at-Zero appeared to be recognizable easy, against faults like Outlier.
Outlier were only detectable with a precision of 0.1 and recall of
0.02. This could be caused by the random outflow of the water tank.
The blue line in Fig. 1 shows an exemplary sensor measurement with
a noisy random outflow(e.g. from t = 100 to t = 180). Timesteps
of this random outlow seems to be equal to Outliers. Therefore the
distance between fault free timesteps and Outlier is very small(the
euclidean distance is sometimes less than 0.001), so that the neural
network cannot distinguish between faulty and fault free data points.
LC of the gradient produces only a precision of 0.34 and a recall
of 0.39 too. Another problematic fault is the Constant Noise. The
TDNN reached only a precision of 0.47 and a recall of 0.4. As the
LC obtains a recall of 1 but also a precision of 0.48 may the Signal-to-
Noise ratio is not a appropriate feature to detect Noise. Nevertheless
Stuck-at-Zero and Constant Offset could be detected reliably. Hence,
we were able to create one neural network to detect different faults.

Table IV
COMPARISON OF DIFFERENT COMMON FAULT DETECTION METHODS WITH

A TDNN, (PRECISION/RECALL)

Fault Detection Method

Limit Checking on

TDNN G
ra

di
en

t

M
ea

n

Si
gn

al
-

to
-N

oi
se

R
at

io

ra
w

si
gn

al

Outlier 0.1/0.02 0.34/0.39 - - -

Constant Offset 1/1 - 1/0.97 - -

Constant Noise 0.47/0.40 - - 0.48/1 -

Stuck-At-Zero 0.98/0.99 - - - 0.99/1

V. CONCLUSION

As one milestone towards an automatic configuration of a fault
detector our goal was to show that neural networks provide the ca-
pabilities for multi fault detection on single sensor system. Therefore
we trained a Time-Delay Neural Network to detect four different
fault types. Two of them were reliably detectable, Noise was detected
sporadic and Outlier could not be recognized. Nevertheless one neural
network was able to detect more than one fault type. We will continue
our work by testing other neural network types, such as neural
networks with recurrent connections in order to improve results. One
promising approach are the Long-Short Term Memory Cells [22],
which are not applied to fault detection until now, but seems to
provide promising capabilities. Furthermore work on how to choose
features and which feature can be used to detect specific faults could
increase success rate of fault detection too. With greater knowledge
about features, selection of these will become more automatable.

ACKNOWLEDGMENT

This work was partially supported by the EU under the FP7-ICT
programme, through project 288195 “Kernel-based ARchitecture for
safetY-critical cONtrol” (KARYON).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] J. Shi, J. Wan, H. Yan, and H. Suo, “A Survey of Cyber-Physical
Systems,” in Wireless Communications and Signal Processing (WCSP),
2011 International Conference on, pp. 1–6, IEEE, 2011.

[3] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A Survey
of Context Data Distribution for Mobile Ubiquitous Systems,” ACM
Computing Surveys, vol. 45, no. 1, pp. 1–49, 2013.

[4] S. Zug, M. Schulze, A. Dietrich, and J. Kaiser, “Programming abstrac-
tions and middleware for building control systems as networks of smart
sensors and actuators,” in Proceedings of Emerging Technologies in
Factory Automation (ETFA ’10), (Bilbao, Spain), 9 2010.

[5] H. Piontek, Self-description mechanisms for embedded components in
cooperative systems. PhD thesis, University of Ulm, 2007.

[6] M. van der Meulen, “On the use of smart sensors, common cause
failure and the need for diversity,” in 6th International Symposium
of Programmable Electronic Systems in Safety Related Applications,
(Cologne, Germany), 5 2004.

[7] T. Brade, M. Schulze, S. Zug, and J. Kaiser, “Model-Driven Develop-
ment of Embedded Systems,” in 12th Brazilian Workshop on Real-Time
and Embedded Systems (WTR), (Gramado, Brazil), Brazilian Computer
Society, 5 2010.

[8] S. Ding, Model-based fault diagnosis techniques: design schemes, algo-
rithms, and tools. Springer Verlag, 2008.

[9] G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, and B. Wu, Intelligent
fault diagnosis and prognosis for engineering systems. Wiley, 2006.

[10] R. Isermann, “Model-based fault-detection and diagnosis–status and
applications,” Annual Reviews in control, vol. 29, no. 1, pp. 71–85, 2005.

[11] B. Hardekopf, K. Kwiat, and S. Upadhyaya, “Secure and fault-tolerant
voting in distributed systems,” in Proceedings of IEEE Aerospace
Conference, vol. 3, 2001.

[12] J. E. White and J. L. Speyer, “Detection filter design: Spectral theory
and algorithms,” IEEE Transactions on Automatic Control, vol. 32, no. 7,
pp. 593–603, 1987.

[13] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.,” Analytical Chemistry, vol. 36,
pp. 1627–1639, July 1964.

[14] A. Zolghadri, “An algorithm for real-time failure detection in kalman
filters,” IEEE Transactions on Automatic Control, vol. 41, no. 10,
pp. 1537–1539, 1996.

[15] R. Patton, “Fault-tolerant control systems: The 1997 situation,” in
IFAC symposium on fault detection supervision and safety for technical
processes, vol. 3, pp. 1033–1054, 1997.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer, 2003.

[17] Y. Sheng and S. Rovnyak, “Decision tree-based methodology for high
impedance fault detection,” IEEE Transactions on Power Delivery,
vol. 19, no. 2, pp. 533–536, 2004.

[18] D. F. Specht, “Probabilistic neural networks,” neural networks, vol. 3
Issue 1, pp. 109–118, 1990.

[19] A. Jabbari, R. Jedermann, and W. Lang, “Application of computational
intelligence for sensor fault detection and isolation,” Proceedings Of
World Academy Of Science, Engineering And Technology, vol. 22,
pp. 503–508, 2007.

[20] A. L. Christense, R. OGrady, M. Birattari, and M. Dorigo, “Fault
detection in autonomous robots based on fault injection and learning,”
Autonomous Robots, vol. 24, pp. 49–67, 2008.

[21] P. Przystalka, “Model-based fault detection and isolation using locally re-
current neural networks,” Lecture Notes in Computer Science, vol. 5097,
pp. 123–134, 2008.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computations, vol. 9, pp. 1735–1780, 1997.

[23] S. Zug, A. Dietrich, and J. Kaiser, Fault Diagnosis in Robotic and
Industrial Systems, ch. Fault-Handling in Networked Sensor Systems.
St. Franklin, AUS: Concept Press Ltd., 2012.

[24] J. C. da Silva, A. Saxena, E. Balaban, and K. Goebel, “A knowledge-
based system approach for sensor fault modeling, detection and mitiga-
tion,” Expert Systems with Applications, vol. 39 Issue 12, pp. 10977–
10989, 2012.

[25] M. Meyer, Signalverarbeitung: Analoge und digitale Signale, Systeme
und Filter. Springer Vieweg, 2011.

[26] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

	Introduction
	State of the Art
	Sensor fault detection
	Sensor fault detection with neural networks

	Our approach
	Fault selection
	Environment Model
	Relevant features
	Generation of data samples
	Neural network type
	Training of the neural network
	Evaluation and validating the neural network

	Evaluation
	Conclusion
	References

