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Introduction

1 Mean Reversion

The characteristic of a mean reverting time series is that, once deviated from its mean

value, it will tend to revert to it. In other words, the change of its consecutively fol-

lowing period is proportional to the mean value and the previously obtained value in a

mean-reverting time series. Though a Gaussian distribution is not necessarily assumed

in general, Figure 1 shows a simple example of a mean reverting time series constructed

from 100 random samples drawn from a normal population:

Fig. 1: Constructed mean-reverting time series using samples (X) from a normal popu-

lation (X ∼ N(0,1))



This artificially generated time series is mean-reverting in the strongest way as lin-

ear mean drifts (trending behaviours throughout the time series) are absent. Hence, this

time series is not only reverting to its mean but is also mean stationary, thus, it has a

homogeneous mean across all observations. However, a time series may also by mean-

reverting w.r.t. a heterogeneous mean.

Mathematically we speak of a stationary time series if the variance of the logarith-

mized data increase (much) slower than it would be the case for a random walk (a path/

series connecting randomly drawn data points). Thus, the variance of a random walk se-

ries increases linearly w.r.t. to time and the variance of a stationary series is a sub-linear

function, hence, with an exponent less than 1.

This function could be approximated by τ2H , where τ is the time between to samples

being drawn and H the Hurst Exponent (see subsection 4.1). From the above it follows

that the Hurst Exponent H has to be less than 0.5 for a slower than "normal" increasing

variance (e.g. a random walk). Examples of 100 random walks (thus with H ≈ 0.5) can

be seen in Figure 2.

Fig. 2: 100 random walk each containing 101 samples in discrete time intervals.
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Throughout this report, several tests and statistics will be introduced to measure the

aforementioned properties of stationarity. Therefore, an appropriate way of estimating

the Hurst Exponent will be discussed as well as a test to see whether the Null-hypothesis

of H = 0.5 (the series has random walk characteristics) can be rejected and at what

levels of (un)certainty (Variance Ratio Test - (Lo and MacKinlay, 2001)). Furthermore,

a more advanced test, namely the Augmented Dickey Fuller test (Dickey and Fuller,

1979) will be described to test for stationarity.

For the remainder of this report we will exclusively focus on financial data when

speaking of time series’, thus, data points/ values of a time series are equivalent to price

data. Unfortunately, there are almost no stationary price series’ in the financial markets

as most of them follow somewhat a random walk - a topic that is widely discussed in

economics and econometric theory in the context of the efficient market theory. How-

ever, there may exist a relation between n (n ≥ 2) price series resulting in a new con-

structed price series in which the Null-hypothesis of non-stationarity can be rejected.

This (linear) price data combination of n different time series into one price data se-

ries is called cointegration and the resulting price series w.r.t. financial data is called

a cointegrated pair. Due to practicability w.r.t. actual trading using cointegrated pairs

(see chapter 4.3) we will reduce ourselves to linear combinations of price data to con-

struct such cointegrated pairs. Therefore, two statistical tests, the Covariate Augmented

Dickey Fuller test (CADF) for two time series and the Johansen test (Johansen, 1991)

for an arbitrary amount of time series’, are described in 3.2 to find out those coefficients

necessary for constructing a cointegrated pair if possible at all.

In the second part of this report the aforementioned methods and concepts will

be applied to develop a practical strategy to trade on the Foreign Exchange Markets.

Therefore, we will introduce the basic software written in R and will evaluate a simple

backward test within a period ranging from 2008 till the end of 2013.

3



Theory and Concepts

2 Testing for Stationarity

Now that we introduced the basics of mean reversion and stationary it is important

to elaborate on certain criteria helping us to test for stationarity and additionally for

the degree or certainty of stationarity. we will begin by introducing a simple statistical

test to identify stationarity of a price series, namely, the Augmented Dickey Fuller test

described in the following subsection.

2.1 Augmented Dickey Fuller Test

The Augmented Dickey Fuller Test (ADF) (Dickey and Fuller, 1979) is used to de-

termine (or respectively test) whether a price series is indeed stationary or not. If the

former is the case then we would expect a dependency between formerly obtained prices

and future prices, thus, if the previously obtained price was above the mean we would

expect (with a probability strictly > 0.5) that the upcoming price event will tend to go

down towards the mean and, analogously, if the the previous price is less than the mean,

that the upcoming price will go up towards the mean.

The change of the prices while observing a price series can be written as

Δy = λy(t −1)+μ +β t +α1Δy(t −1)+ ...+αkΔy(t − k)+ εt (1)

where Δy(t)≡ y(t)− y(t −1).

As can be seen in eq. 1 the overall aim of the ADF-test is do determine whether the

hypothesis of λ = 0 can be rejected or not (assuming that the price’s change is described

linearly like above). Thus, if the Null-hypothesis of λ = 0 cannot be rejected we would

conclude with some specific certainty that the price changes (new incoming data points)

are completely independent (y(t) |= y(t − 1)) w.r.t previously obtained data, hence, we

would conclude that the series follows a random walk as described in section 1.

In the work of (Dickey and Fuller, 1979) the test statistics (the regression coeffi-

cient λ as the independent variable and Δy(t) as the dependent variable divided by the

standard error (SE) of the regression), the corresponding distribution, and critical val-

ues where found and explained in detail. Therefore, we may use the findings directly

to check, with what amount of certainty we can reject the Null-hypothesis (λ = 0), and

thus, whether the price series follows a random walk or not. Though the ADF-test was

implemented in C++ due to performance gains it is also part of the R Package "tseries".



As an example we will download daily prices of the MSFT (Microsoft) stock and chart

the year 2011 as can be seen below:
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The chart of the price series indicates that the series consists of both, mean revert-

ing and trending parts. E.g., the first quarter of the year seems to indicate a trending

downward move while the rest appears to go sideways and, thus, mean reverting. We

will therefore calculate the p-value of the ADF-test using R for both subsets.
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As can be seen in the test results above there is indeed evidence that the MSFT stock

followed a random walk from 2011-01 to 2011-04 and contrarily had mean reverting

behaviour from 2011-05 to 2011-12.

3 Cointegrating Time Series

Now that we introduced a test statistics to evaluate whether we have random walk or

mean reverting behaviour we will focus on the concept of cointegration. Unfortunately,

not many price series are intrinsically mean reverting by definition. Usually, most price

series’ will follow a random walk or consist of alternating trending and sideways pe-

riods. To cope with this rareness of mean reverting stocks and price series we will try

to construct a stationary pair based on linear combinations of multiple non-stationary

pairs. Thus, we combine multiple price series’ that are not stationarity to a new syn-

thetic price series that will be stationary. Two methods of doing this are described in the

following two subsections.

3.1 Covariate Augmented Dickey Fuller Test

The Covariate Augmented Dickey Fuller Test is used to combine two non-stationary

price series to form an artificial cointegrated and stationary price series linearly. The

idea behind it is quite intuitive: First, an ordinary linear regression (with one price
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series as the dependent and the other as the independent variable) is performed to fit

the two price series. Afterwards, we apply the normal Augmented Dickey Fuller test as

described in subsection 2.1 to test for stationarity. The method was firstly proposed by

(Engle and Granger, 1987) and is widely used in econometric applications. Since this

approach is (in its simplest form) dependent on the choice of the dependent variable

and is only applicable when working with two price series we will not go into more

details. However, since we would like to deal with an arbitrary amount of input series’

the Johansen test is more appropriate for our analysis and is further elaborated in the

following subsection.

3.2 Johansen Test

Since we want to form a stationary price series out of an arbitrary number of price

series’ we can rewrite equation 1 using vectors and matrices for the data and there

coefficients:

ΔY (t) = ΛY (t −1)+M+A1ΔY (t −1)+ ...+AkΔY (t − k)+ εt (2)

Thus, Λ and A are matrices and Y (t) is in vector representation. Similar to the argu-

mentation in subsection 2.1 (see also (Chan, 2013)) we need to test whether our Null-

hypothesis that Λ = 0 (hence, no dependence between previously obtained and recent

data and therefore no cointegration) can be rejected and at what certainty (Johansen,

1991).

To actually find the linear coefficients for constructing a stationary price series a

Eigenvalue decomposition of Λ is applied. Let r be the rank of Λ (r = rank(Λ)) and n
the number of price series’ to be cointegrated than the Johansen test (Johansen, 1991)

performs an Eigenvalue decomposition of Λ and test whether we can reject the n null-

hypothesis’ r ≤ 0, r ≤ 1,r ≤ 2, ..., and r ≤ n−1. Thus, for an arbitrary positive integer

n (the number of price series to be cointegrated) the Johansen test calculates the test

statistics for the null-hypothesis’ that r ≤ i;where i = 0,1, ...,n− 1. If all n− 1 null

hypothesis are rejected within a high degree of confidence (e.g., α = 0.05) we may

conclude that indeed r = n. Therefore, the Johansen test borrows the idea from the PCA
(principle component analysis) and transforms our data using linear combination to a

new coordinate system. Furthermore, since we basically applied PCA we now may use

the eigenvector corresponding to the highest eigenvalue for our hedge ratios. Critical

values for the test statistic results can be found in (Johansen, 1991).

To demonstrate the application of the Johansen test we choose three currency pairs

(GBPUSD, NZDUSD , USDCAD) normalized to a pip-value (a PIP is the unit that de-

termines price changes in the foreign exchange market, usually, for all but JPY (Japanese
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YEN) it is the 4th decimal point and for JPY-pairs it is the 2nd). The detailed steps are

explained in the source code below:

����������	
 � ��� ���� 	����	

�������������
��
 � ��� 
������


������������
 � ��� �����	�� ��	�

�� ������
 �������� 
����
�� ����

� ����� ��	 ��
��� ���� ���������� � ��� �	 �� ������ ������

�������������������


� 	��� ���	� � ���� 
����	 �	 �� ����
��

����������


�� ������ ������ ���� �

�� !"#$%#"%"! "!&""&"" #'#() (!') #"$$!

�� !"#$%#"%"! "$&""&"" #'#)* (!+, #"$!(

�� !"#$%#"%"! ",&""&"" #'#)# (!*' #"$$+

�� !"#$%#"%"! "*&""&"" #'#'+ (!*# #"$$(

�� !"#$%#"%"! "'&""&"" #'#', (!!+ #"$,*

�� !"#$%#"%"! "+&""&"" #'#++ (!") #"$,"

� 
������ �����	�� ��	� ���� 
����
� ����

��	��� -% ���.���/�����0 �12�/���3���0 �����/����	��0 4/!


� ��	��� 	������ 
���� ���

	�

��1���	���
5��	�	���

�� 6#7 #�)#) #"�*!! #'�!#,

	�

��1���	���
5�8��

�� #"2�� *2�� #2��

�� � -/ ! 9 +�*! )�!, #!�)+

�� � -/ # 9 #$�+* #*�'+ !"�!"

�� � / " 9 #)�++ !!�"" !'�(#

� 	���� �����������	 ����	� ��
�������� 

���::	 -% 8������


���::	6#&$7 -% ��	���5;6#&$7

� ���	����� ��� 
��� 	�������� 
��� �������
����� 

������3��������� -% �	���	������ <=< ���::	0 �����������



����������	�������3���������


8



−4220

−4200

−4180

−4160

−4140

−4120

cointegratedPair [2013−10−02 02:00:00/2014−01−02 01:00:00]

Last −41529.9530069845

Okt 02 02:00 Okt 28 01:00 Nov 18 01:00 Dez 09 01:00 Jan 02 01:00

As can be seen when comparing the test statistics

������������	
��
��
�
�




 ��� ����� ������ ������

with the critical values provided by (Johansen, 1991)

������������	
�����	



 ����
 ���
 ���




 � �� � � ���� ���� �����



 � �� � � ����� ����� �����



 � � � � ����� ����� ��� �

9



since 1.919 < 7.52 we know that the originally time series may not be mean revert-

ing at hand. Secondly, 10.522 < 13.75 tells us that there also is no good linear combina-

tion of only two of the three currency pairs to form a stationary pair. In this case, even

a linear combination of all three pairs might not result in truly stationary pair, since

16.214 < 19.77 (at least our confidence is not very high, thus, strictly below the 10pct).

However, even if we can not guarantee stationary with high confidence (≤ 10pct) we

still might be able to profitable trade this pair as the chart looks promising.

Therefore, more features have to be calculated on the created new price series to

verify its tradability and usefulness.

4 Further Measurements and Tests

We have shown how to test a price series for the property of stationarity using the ADF-

test and also how to construct an artificial cointegrated pair using the Johansen test.

Since in the financial world we are dealing with a tremendous amount of different price

series’ such as stocks, futures, options, and all kinds of other derivatives (e.g., currency

pairs) there are numerous possibilities to form cointegrated pairs using the Johansen

test. Even if we only take the seven most liquid currency pairs (USDJPY, USDCAD,

USDCHF, EURUSD, GBPUSD, AUDUSD, NZSDUSD) and construct pairs consisting

of three of those currencies we have 7∗6∗5
1∗2∗3 = 35 different possibilities of pair combina-

tions. Obviously, we will reject those pairs for trading whose confidence for cointegra-

tion is below a certain percentile (e.g., 10pct) or sort them w.r.t. decresing confidences

but in practice it is often useful to calculate more quantitative measures such as the

Hurst Exponent to evaluate the quality of a cointegrated pair.

4.1 Hurst Exponent

The idea behind the Hurst-Exponent (H) was already discussed in section 1. Generally

speaking, the Hurst-Exponent tells us if our underlying series is a Geometric Brownian

Motion (H ≈ 0.5), mean reverting (H < 0.5), or trending (H > 0.5), where 0 < H < 1.

With H being smaller than 0.5 and close to 0 we can be more confident to have an

underlying mean reverting price series.

There are several ways to approximate H. One simple approach can be seen in the

following code snippet:
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Unfortunately, our sample space is finite and, thus, the approximation might not be

good at all. To verify our approximation of H we can however use another statistical

test, namely, the Variance Ratio Test (VRT) explained in the following subsection.

4.2 Variance Ratio Test

To test for the statistical significance of our previously approximated Hurst Exponent

we need a new statistical test to check whether our Null-hypothesis of H = 0.5 can

be rejected or not. Therefore, (Lo and MacKinlay, 1988) developed a test statistics to

address this issue (for more details see (Lo and MacKinlay, 2001)).

The idea behind this test is rather simple: It tests whether the equation

Var(z(t)− z(t − τ))
τVar(z(t)− z(t −1))

= 1 (3)

holds or not (or can be rejected or not respectively). In other words, if we hypoth-

esize that our price series is indeed stationary than we expect that the variance of the

11



series will not increase over time, contrarily, if our series has a unit root and thus is

trending or non-stationary we expect increasing variance over time. The idea is now to

compare the variances of differently sampled subsets of our price series over time and

check what happens with the ratio of the obtained variance (see eq. 3). Thus, the vari-

ance of the price series is calculated at Δ t time periods. If we now sample every k ∗Δ t
periods the variance is expected to be kσ2 under a random walk, thus, equation 3 holds.

Summarizing, equation 3

– equals 1 if the price series follows a random walk,

– is (strictly) smaller than 1 under mean reversion (stationarity),

– and is (strictly) greater than 1 under mean aversion (trending up- or downwards).

Multiple values for k (usually k = 2,4,8,16,32, ...) can be tested for different sam-

pling periods allowing us to see at which intervals a price series may be trending and at

which it may be mean reverting.

The Variance Ratio Test (VRT) is included in the R package vrtest (function Lo.Mac).

Since it is too slow for the huge amount of data we have also implemented it in C++

with bindings to R.

4.3 Half Life of Mean Reversion

Now that we introduced tests and properties of a stationary price series one last helping

feature will be discussed, namely, the Half Life of mean reversion.

The Half Life of the mean reversion is not directly used to measure or excess the

quality of stationarity but will help us to develop a proper strategy to apply mean rever-

sion within a trading framework. The Half Life time tells us how much time the price

usually needs to revert to the series’ mean.

The Half Life is accessed using the differential equation known as the Ornstein-
Uhlenbeck formula (Uhlenbeck and Ornstein, 1930):

dy(t) = (λy(t −1)+μ)dt +dε (4)

with dε being some Gaussian noise added to the process. As can be seen in the

above single differential equation λ measures the "speed of the diffusion to the mean"

or simply put the mean reversion speed. Though we can obtain the Half Life using

equation 4 for us it is more appropriate to exploit some features we calculated be-

forehand, namely, the eigenvalues we obtained from the Johansen Test in subsection

3.2. To compute the approximate Half Life time of mean reversion we therefore use:

HL = log(2)/Eigenvalue.

12
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As it follows from above, our price series from subsection 3.2 has a Half Life time

of mean reversion of about 65 periods (or 65h, since one period corresponds to one

hour). Later we will use the Half Life time as an initial value for our lookback period

optimization to compute moving averages and standard deviations to determine our

trading entries and exits. Note: negative eigenvalues are invalid as they clearly state that

no mean reversion exists.
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Application on Foreign Exchange Markets

5 Introduction

In the previous chapter 1 we have introduced all important techniques and concepts of

stationarity and cointegration. In the following section we will now continue to apply

these concepts for a specific trading strategy used in the Foreign Exchange (Market)

(FX). we will start to outline the general idea first and subsequently discuss important

details. Additionally, we will provide a complete backtest using the major USD-pairs

using hourly closing data from 2008-2013. Finally, we will end with some final notes

about further considerations w.r.t. the presented strategy.

6 A Strategy for FX Markets

Though cointegration analysis and pair trading can be used on arbitrary markets we

have chosen to focus exclusively on FX markets. This has rather practical reasons: First,

the retail FX brokers provide customers with a tremendous amount of freely available

data without any subscriptions fees or forced lags (e.g., when price data is lagged by a

specific amount of time - often 10-15 minutes). Secondly, there are almost no technical

and financial obstacles to trade the FX markets because of the vast amount of retail

trading software and low capital requirements due to leverage.

6.1 Data, Data Processing, and Time Period

The underlying data used to evaluate the strategy was extracted from the Metatrader 4

software 1 which was connected to an Alpari 2 trading account. Note that Metatrader

4 was only used to have a historical and real time data feed and not for processing

the data. The data was then forwarded using a slightly modified version of the freely

available mt4r DLLs from Bernd Kreuss 3 into an R session for actual processing.

Additionally, since the PIP-decimal point of different currency may differ the price

data was normalized to PIPs (e.g., a price quote of 1.34128 EUR/USD was normalized

to 13412.8 PIPs and a quote of 102.582 USD/JPY was normalized to 10258.2 PIPs).

We restricted ourselves to USD currency pairs to have only pairs with high liquidity

and to make sure that risk measurements (in $) are straightforward since the trading

1 http://www.metaquotes.net/en/metatrader4
2 http://www.alpari.co.uk
3 https://sites.google.com/site/prof7bit/r-for-metatrader-4



Fig. 3: A cointegrated pair with standard deviation (white horizontal lines) as potential

entry signals.

account currency is assumed to be in U.S. Dollars ($) as well. E.g., when a trade would

be opened for a non-U.S.-$ pair like AUD/CAD but the account base currency is in

U.S.-$ then we have an additionally risk since we need to convert our transaction in

AUD and CAD back to U.S.-$. Thus, we restrict ourselves to U.S.-$ pairs.

Furthermore, to reduce processing time and handle the complexity of the huge

amount of data that could be used we have restricted ourselves to use one-hour closing

times (1H closings) for this strategy though arbitrary time periods are possibly if the

hardware in use is sufficient.

In summary, the strategy explained below was developed for the 1H closings of the

conversion rates of EUR/USD, AUD/USD, GBP/USD, NZD/USD, USD/CHF, USD/JPY,

and USD/CAD.
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6.2 A Basic Strategy

The basic idea of the strategy is to find highly stationary pairs consisting of three coin-

tegrated currency pairs (three pairs were chosen arbitrarily but with the benefit of hind-

sight it provides good results with acceptable monetary risk) and trade the mean rever-

sion of the price of this cointegrated pair. Thus, we would enter a long position if the

price is significantly below the mean price and enter a short position if the price is sig-

nificantly above the mean (see Figure 3 for a simple example). In both cases we would

exit our trade if the price has reverted, thus, the price hit the mean.

The above description of how to trade the cointegrated pair is rather intuitive but

very vague. Therefore, we need to be more detailed in a few things, namely, we need

to define what a good or highly stationary pair is and what quality criteria we can use

to measure its "tradability". Finally, we need to be more precise of our trading rules,

specifically, when to enter a trade.

The general process can be seen in the diagram below:

Fig. 4: The software’s operating work flow.

Search Market for
Cointegrated Pairs

Number of Cointegrated 
Pairs (#)

Set Parameters & Start 
Trading (Automatically)

#=0

#=1

Apply Sorting Criteria &
Choose Best Pair# >1

Check if Pair is Stil Cointegrated

For Every New 
Price Arriving...

Yes

No

Wait n Time Periods
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we have already discussed the first step of scanning the market for cointegrated pairs

and will now continue to explain which sorting and filter criteria were used to chose the

most suitable pair for trading and when we have to stop trading and need to repeat

the search for new cointegrated pairs. Finally, we will briefly present some evaluation

results and conclude this report with a short discussion of what can be improved and

what needs to be tested more extensively.

6.3 Sorting Criteria for Choosing a Pair to Trade

In chapter 1 we have already discussed several measures which can be directly used to

sort all potential cointegrated pairs found for trading. Generally, we have to distinguish

between two major ways when choosing which pair we want to use for trading: First,

we can use intrinsic properties of the cointegrated price series such as the certainty of

cointegration and stationarity which can be measured using the p-value of the ADF test

(subsection 2.1), the variance ratio test result (subsection 4.2), or the Hurst-Exponent

(subsection 4.1). Second, it is a good idea to use properties derived from backtesting

the pair in question such as profits and losses, number of trades, balance/ equity draw

downs, and average holding time for a position (note that we can use the Half Life time

to get a good approximation about the expected holding time, see 4.3).

Though, we have not found a good general optimization scheme to directly chose

the optimal pair for trading since we do not know which constraints and weights are

best to set up an optimization task we found that it is best practice to first sort the found

cointegrated pairs using intrinsic price series’ characteristics (in this case the p-value

of the ADF-test in increasing order - the lower the p-value the higher the certainty

that we can reject the Null-hypthesis of a random walk) and subsequently scan the

pairs w.r.t. trading properties such as profit & loss and average gain per trade. Figure

5 shows the implemented software after it found 6 cointegrated pairs and sorted them

w.r.t increasing p-values.

6.4 Entries and Exits

Intuitively, we could calculate the standard deviation of the prices from a cointegrated

pair and open a short trade if the price hits or crosses the standard deviation (betting

that the price will go down to reach the mean price) or a long trade if the price hits

or crosses the negative standard deviation (betting that the price will go up to reach

the mean price). Here, we would exit our positions if the price hits the mean. However,

there are two major problems that we encounter with this method: First, we do not know

a-priori if the standard deviation is a good entry signal (note that the prices might not

follow a Gaussian distribution) or if we should better use some multiple k of the standard
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Fig. 5: Overview of the software after the search for cointegrated pairs was invoked.

The found pairs are ordered by increasing p-value and backtesting results are presented

in the lower left corner in tabular view.

deviation (k∗StandardDev) for our entries. Secondly, though the process might remain

stationary the actual mean of the price series might change slightly with increasing

times, thus, a continuous updating of the mean might be appropriate to allow for small

shifts of the time series’ mean.

Hence, we have two parameters that need to be optimized in our lookback period

before trading a pair: a) the so called z-score (the k used as a coefficient for the standard

deviation) and b) the window length for computing the entry bound (k ∗StandardDev)

and the mean of our price.

We need to optimize the two parameters to evaluate how the chosen pair performed

if we would have traded it. Intuitively, we chose the Half Life of mean reversion as an

initial value for our window length for computing a moving mean and moving standard

deviation as any window length below the estimated Half Life is not expected to be re-

liable since it would be "faster" than the mean reversion itself. After choosing the initial

window length to be the approximated Half Life time we furthermore test multiples of

this window length to get optimal backtest trading results (in this case the software tests

up to a multiple of 4 in steps of 0.5). For the second parameter, the z-score, we need

to test different parameters for k (k ∗StandardDev) to find the optimal lower and upper

moving bounds (moving bounds, since they are computed using a moving window with
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a window length as described before) for our trading entries (those band are commonly

known as Bollinger Bands w.r.t. trading and technical analysis). Therefore, we start

with k = 0.1 and test until k = 5 in steps of 0.1. Note that the upper trade entry bound

for short trades is, thus, k∗StandardDev+MovingMean and the lower entry bound for

long entries is −k ∗StandardDev+MovingMean.

As it can be seen in Figure 5 the software automatically performs backtests with

the above described parameter combinations and presents the result in the lower left

corner as a column wise sortable table. Moreover, the software allows us to get more

detailed backtest result when a parameter combination is selected in the table and the

backtest button is invoked (see Figure 6). This allows to include more information when

choosing which pair will be traded and with what trading parameters. Please note that

for all backtests and forward tests bid/ask spreads are always included into the results
4.

With all the information above we then decide for one of the pairs to be traded and

either trade it live using the Metatrader 4 Software or simulate a forward test using the

implemented software. Although we have presented multiple ways of sorting the found

cointegrated pairs it still has to be stressed that the decision of which pair to trade is

highly subjective and has to be the topic of further research.

6.5 When to Stop Trading

Albeit the possibility of manually stopping the trading strategy (e.g., after a huge equity

draw down or major news events) we need to check automatically when the cointegra-

tion of the pair we currently trade breaks, thus, if the p-value of the ADF-test exceeds a

certain threshold (here we chose 0.2). Hence, if a new period is added (one hour passed)

the software automatically reapplies the ADF-test on the cointegrated pair and if the p-

value of the ADF-test exceeds 0.2 we close all position regardless if in profit or loss

and stop trading. We then go back and try to find new cointegrated pairs and continue

trading a new pair.

Notes about the Stop Loss Obviously, we can set an arbitrary stop loss helping us to

exit a position if our equity draw down is too high for our current account balance. In

common momentum (e.g., trend following) strategies this technique is useful and helps

to protect traders against going broke in case of unlikely events such as significant

news, flash crashes, or simply bad trading decisions. While it is useful to implement

an emergency stop loss to prevent going broke a normal stop loss might be unwise

4 The overall s-max spread from http://www.mt4i.com/spread/broker.aspx?brokerid=12 was

chosen as a fixed spread for each corresponding pair.
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Fig. 6: Example of the detail view for backtesting a selected pair with chosen parame-

ters. The parameters for the backtest were chosen by selecting the corresponding row

out of the table as shown in Figure 5. Green line: equity; red line: balance.

when trading mean reverting pairs. Assume, we have entered a long position 100PIPs
below the mean of a cointegrated pair hoping that the price will go up to revert to its

moving mean, however, the price does the oppositite, thus, going down even more till

it is 200PIPs below the mean. We have now a net loss of 100PIPs. We could have

had avoided this situation if a simple Stop Loss of e.g. 50PIPs was used. However, our

statistical assumption of mean reversion tells us that the price is more likely to mean

revert the more away it is from its mean. Thus, when we would have exited after a loss

of 50PIPs our basic strategy would have told us to re-enter the trade and still wait for

mean reversion. So in the end it would have made no sense to exit the trade with a Stop

Loss beforehand.

Because of the reasoning above, the only "Stop Loss" used during my backtest

and forward tests was an emergency Stop Loss, that is, all position were closed when

the trading pair was not stationary anymore or the current equity draw down while

holding a position was higher than the highest equity draw down during the previously

investigated backtests of the current pair (e.g., Figure 6 tells us that the maximum equity

draw dawn was ≈ 345PIPs and subsequently our emergency Stop Loss would have been

set to 345 when trading this cointegrated pair).
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6.6 Forward Test Results

The trading software we have implemented is capable to perform forward tests of coin-

tegrated pairs using history data from Metatrader 4 as described before. Therefore, after

a cointegrated pair and its parameters were selected the forward simulation is invoked

and the trading is simulated until the pair is not cointegrated any more.

As a lookback period we have chosen a time span of two years. Hourly closing

data of EUR/USD, GBP/USD, AUD/USD, USD/CAD, USD/JPY, NZD/USD, and US-

D/CHF were used to form the cointegrated pairs. Afterwards, a pair is chosen from

the cointegrated series’ found and was traded until cointegration broke. When this hap-

pened, the cointegration test was repeated from this hour on and a new pair was chosen

to trade with. Though the lookback time can be chosen arbitrary it generally seems to

hold that the longer the lookback is the more stable the cointegration seems to be - but

the lookback itself might also be a optimization parameter for further research in this

topic. Please note that the pairs were not cherry picked in any way but chosen after

evaluating all the criteria discussed in 6.3 and 6.4.

The forward test results are displayed in Figure 7. The green line represents the

equity curve and the red line the account balance (the initial balance was set to 0 so that

a negative balance is possible). Furthermore, all returns, profits, losses, draw downs, etc.

are measured in PIPs to be independent of ones individual capital and chosen leverage.

The overall performance of this rather simple strategy is astounding though a rela-

tively high initial account balance is necessary to cope with rather large absolute draw

downs. Though this forward test is made as realistic as possible we do not want to go

into any more detail w.r.t. performance analytics despite the values shown below the

equity/ balance chart in Figure 7 since this forward test was only made to illustrate the

general capabilities of the trading strategy and its underlying software written in R.

7 Improvements and Further Considerations

In 6.2 we have presented a basic strategy which applies the theoretical foundations of

chapter 1 into a rather simple framework for trading on the Foreign Exchange Markets.

Though the strategy performed well in the past it has to be stressed that there is a

tremendous amount of work to fully incorporate a complete and reliable backtesting of

such a trading system. Therefore, several questions have to be revisited and answered

carefully for further applications of such trading systems:

– What time frame should be used for mean reversion trading?

– Which price information should be used to cointegrate the data (Open, High, Low,

Close, or a combination of them)?
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– What is a good time horizon for the lookback period? Could we exploit cointegra-

tion within a one year lookback or even one week?

– Are there any better signals of when to enter a trade despite using Bollinger Bands

(e.g., Relative Strength Index (RSI))?

– Are there any better markets then the FX market to apply this strategy on?

To answer the questions raised above one has to extensively evaluate different parametrized

and optimized instances of the basic strategy we have introduced. In summary, the ba-

sic idea behind cointegration has high potential to be further optimized and extended

in almost every aspect. To do so the software was implemented platform independent

and generic to allow testing of arbitrary data, time periods, number of pairs, and entry

signals for further testing.
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Fig. 7: Evaluation results for the simulated forward test from 2008−2013. Green line:

equity; red line: balance.
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