
Cluster-based Visualization of Dynamic Graphs

Pascal Held, Julia Hempel, Rudolf Kruse
Otto-von-Guericke University of Magdeburg

Faculty of Computer Science
Department of Knowledge Processing and Language Engineering

Universitätsplatz 2, D-39106 Magdeburg
Tel.: +49 391 67 52700
Fax: +49 391 67 12018

E-Mail: {pheld,kruse}@iws.cs.uni-magdeburg.de,
julia.hempel@st.ovgu.de

Abstract

Graph visualizations are applied for describing relations between objects
in many application fields, e.g., in social network analysis and software
visualization. Several clustering strategies can be used to identify groups
of objects automatically. On the one hand, visualizing these clusters is
useful to analyse and evaluate clustering algorithms. On the other hand,
cluster visualization allows a fast estimation of similarity between objects
and provides orientation in the graph. Because objects, relations and clus-
ters might change over time, dynamic graph drawing received significant
interest in the last decades. Several algorithms have been proposed enhanc-
ing well-known static layout algorithms. However the dynamic drawing of
clusters in graphs is less considered. In this work, we propose three lay-
out algorithms for dynamic clustered graphs. While two approaches are
based on enhancing a force-directed layout, the third one uses a divide-
and-conquer approach. The approaches are evaluated and compared based
on different metrics. The results suggest that the divide-and-conquer ap-
proach is best suited for the dynamic drawing of clustered graphs since it
separates the clusters well and stabilizes the layout.

1 Introduction

Graphs are important data structures for describing relations between ob-
jects. In order to visualize those relationships, graph drawing is applied in
many application fields, e.g. in social network analysis and software visu-
alization. Therefor, objects are visualized as nodes and relations as edges

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



between nodes. Moreover, the affiliation of objects to a category or cluster
can be visualised using graphs. This can be done e.g., by grouping nodes
together or drawing a bounding box around nodes of a cluster. Drawing
a clustered graph requires laying out nodes and edges while taking into
account the cluster affiliation as well as aesthetic criteria. Especially for
a large number of nodes, finding a pleasing layout is time consuming and
error-prone [1]. Because of that, automatic layout algorithms were exten-
sively studied [2]. Since relationships might change rapidly over time, e.g.,
in social networks or computer networks, dynamic graph drawing received
significant interest in the last two decades. Several algorithms [3, 4, 5]
and specialized visualization techniques [6, 7] have been proposed for dy-
namic graph drawing. Moreover, empirical studies have been conducted to
investigate the issue of dynamic graph comprehension [6, 8, 9].

However, algorithms for drawing clustered graphs were less taken into con-
sideration. In this paper, we present three algorithms which aim to group
cluster nodes together and evaluate their success for dynamic graphs. In
order to provide a frame of reference, we will first discuss requirements on
graph layouts and common algorithms. After that, we describe our layout
algorithms in detail. Finally, the results of the evaluation are presented and
discussed.

2 Layout Requirements

Dynamic graph drawings aim to visualize the evolution of relationships be-
tween objects over time. Therefore, both the static layout at a certain time
and the evolution of the layout need to support the users’ comprehension
of the graph. Consequently, the challenge is to compute a new layout that
is both aesthetically pleasing and fits well into the sequence of drawings
of the evolving graph [5]. Below, quality metrics for static layouts and for
dynamic layouts are discussed.

2.1 Static Layout

The problem of static graph drawing has been studied extensively [2]. Dif-
ferent conventions exist which are well known for different domains. For
example, straight-line drawings are widely used in social network visual-
ization, while orthogonal drawings are common in circuit schematics and
software engineering (see Fig. 1).

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



(a) (b)

Figure 1: Straight-line drawing (a) [10] and orthogonal drawing (b) [11]

To support users in reading and understanding graph drawings, several aes-
thetic criteria developed over time. The following criteria are listed by
Battista et al.[2].

Crossings: Minimization of the total number of crossings between edges

Area: Minimization of the area of the drawing and the aspect-ratio. Ide-
ally, we would like to obtain small area for any aspect-ratio in order
to fit drawings in arbitrarily shaped windows.

Edge Length: Minimization of the sum of the edges, the maximum length
of an edge and the variance of the length of the edges

Bends: Minimization of the sum of bends, the maximum number of bends
on an edge and the variance of the number of bends on an edge (only
for orthogonal drawings)

Angular Resolution: Maximization of the smallest angle between two
edges incident on the same vertex

Moreover, the classification of vertices into clusters is desirable in some
application fields e.g. to visualize circles of friends in a social network.
Therefore, vertices are divided into a set of clusters, as presented in Figure
1 (a). Concerning the visualization of clustered graphs, additional aesthetic
criteria are named by Frishman et al. [5]:

• The size of each cluster should be proportional to the number of
vertices it contains.

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



Figure 2: Adding an edge destroys the mental map [13]

• The drawing of each cluster should be compact.

• The overlapping between cluster boundaries should be minimal.

2.2 Dynamic Layout

In interactive applications, several types of modifications, e.g. adding or
removing vertices, edges or clusters, change a graph over time. Moreover,
the underlying data of a graph might change. Therefore, the graph layout
needs to be updated. However, most of the static graph drawing algorithms
are not incrementally stable. A small change in the input set may yield
unpredictable, instable changes between successive layouts as presented
in Figure 2. This might be confusing and annoying for users since they
have to spend a lot of time relearning the new graph. To overcome this
problem, the users’ mental map should be preserved while updating the
layout [12, 13, 14]. Commonly, preservation of the mental map is defined
as moving as few nodes as possible as little as possible [14, 13]. This shall
help users to read and memorize evolving graphs. Moreover, graphical
updates should reflect actual changes in the data [14]. That means, adding
one edge should result in moving only vertices that are involved in the
change.

Additional requirements are named by Frishman et al. [5] for clustered
graphs:

• The movement of clusters between successive layouts should be small.
Especially, clusters that are not modified should remain in their pre-
vious position if possible.

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



• The change in the size of clusters between successive layouts should
be minimal, when the number of vertices in the cluster is similar.

• The movement of vertices inside a cluster should be minimized.

In the following, we will present algorithms for dynamic graph drawing
and discuss their strengths and shortcomings based on the presented re-
quirements.

3 Algorithms

Table 1: Overview of widely used dynamic graph drawing algorithms
Author Offline vs.

Online
Graph Type Static Algo-

rithm
Mental map
metric

North et al.
[14]

online directed acyclic
graph drawn in a
hierarchical manner

Sugiyama’s
heuristic [15]

node position
and order

Brandes et
al. [16]

online undirected graph generic node positions

Diehl et al.
[17, 18]

offline undirected graph generic node posistions

Erten et al.
[4]

offline weighted graphs
(nodes and edges
weighted)

force-directed
algorithm by
Kamada and
Kaiwa [19]

node positions

Frishman et
al. [5]

online directed, clustered
graph

force-directed
algorithm
Neato [20]

cluster and
node position

In the last section, criteria for dynamic graph layouts were discussed. Com-
monly, algorithms for dynamic graph layouts are based on static graph
drawing algorithms. These static algorithms were augmented in order to
preserve the users’ mental map. In order to provide a frame of reference
for our work, we present static and dynamic layout algorithms especially
for clustered graphs.

3.1 Static Layout Algorithms

For the static setting, algorithms are in general well studied. Most com-
mon algorithms are force-directed layout algorithms. They are used to

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



create straight-line drawings of undirected graphs by simulating a sys-
tem of forces and finding a local minimum energy configuration [2]. The
force-directed algorithm by Fruchterman and Reingold [21] and the spring-
embedder algorithm by Kamada and Kaiwa [19] are widely used for static
graph drawing. However, work on clustered graph drawing is less wide
spread. An algorithm for straight-line drawing of clustered graphs has
been presented in [22]. However, it only applies to planar clustered graphs
where every cluster induces a connected planar subgraph. Wang and Mi-
yamoto [1] present a more general algorithm using a divide-and-conquer
approach. They first partition the graph into subgraphs. After that, they
layout the subgraph using a force-directed layout algorithm and finally
they compose the subgraphs together. In [23], an algorithm for drawing
clustering hierarchies of a graph using a hierarchical graph drawing algo-
rithm is presented. For a discussion of clustered graph drawing refer to
[24].

3.2 Dynamic Layout Algorithms

In Section 2, we discussed requirements for static and dynamic layouts.
Unfortunately, these criteria are often contradictory [25]. On the one hand,
node and cluster positions might change radically from time-slice to time-
slice when optimizing aesthetic criteria. On the other hand, the individual
layout might become difficult to understand, when positions are fixed to
preserve the mental map. Because of that, finding a suitable trade off is
a crucial and also very challenging task in the design of dynamic graph
layout algorithms. In general, dynamic algorithms can be grouped in two
categories: offline and online algorithms. In the offline scenario, the entire
input sequence is known in advance, whereas in the online scenario the
sequence is given one graph at a time [9]. An overview of commonly used
approaches is presented in Table 1. Below, some of these approaches are
discussed in detail.

An early approach for online graph drawing is proposed by North et al. [14].
They developed DynaDAG, a dynamic layout algorithm for hierarchical di-
rected graphs. Their approach is based on the static layout algorithm by
Sugiyama [15]. To preserve the users’ mental map, they take geometric
and topological stability into account. That means, the position and the or-
der of nodes shall be stable between successive layouts. For this purpose,
a heuristic is used to move nodes between adjacent ranks, based on median
sort.

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



Brandes et al. [16] introduced a more general approach for graphs. Dif-
ferent static layout algorithms can be used as a baseline for the algorithm,
e.g., Eades’ spring-embedder [12]. Their approach is based on random
field models and Bayesian conditional probabilities. The layouts, which
are produced by the static layout algorithm for the respective graph, are
updated based on a stochastic estimator. This estimator is composed of the
static layout model and an additional stability model. The underlying met-
ric for the stability model (e.g., node movement, relative node movement)
is adaptable. Moreover, the trade-off between readability (static quality)
and mental map preservation can be changed by adapting the weight of
both models.

Erten et al. [4] developed GraphAEL, which is a package to create 2D
and 3D graph animations. Their implementation is based on the force-
directed algorithm by Kamada and Kaiwa [19]. However, they enhanced
the algorithm in order to support both node weights and edge weights. As
a result, GraphAEL tries to place heavy nodes well away from each other
and to place vertices connected by heavy edges, closer to each other. To
preserve the mental map, the algorithm aims to minimize the movement
of vertices in the evolving graph. Therefore, the different time-slices are
combined to a single graph as shown in Figure 3(a). Between vertices
with the same label in adjacent time-slices, edges are created. Because
of these edges, attractive forces exist between vertices in different time-
slices. Each vertex is attracted towards the vertices associated with it in the
adjacent time-slices and consequently, its freedom of movement is limited.
As in Brandes’ approach [16], the impact of mental map preservation can
be easily configured by changing the weight of the inter-time-slice edges.
However, no other mental map criteria can be used in GraphAEL since the
metric is built into the heuristic for minimizing forces [3].

Frishman et al. [5] developed a dynamic layout algorithm for clustered
graphs. Their approach is based on the force-directed layout component
Neato which is available in the GraphVis package [20]. In order to com-
pute a new graph layout, Frishman et al. compute the force-directed layout
of this graph using the previous layout as initial layout. Concerning men-
tal map preservation, they ranked cluster stability to be more important
than vertex stability and vertex stability to be more important than edge
stability. To implement these criteria, they added a dummy node to each
cluster and connected it to all vertices in the cluster as presented in Figure
3(b). The position of the dummy node is fixed in order to minimize cluster
movements. Moreover, spacer nodes are added to the cluster as placehold-
ers for new nodes. If a node is added to the cluster, the closest spacer is

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



(a) (b)

Figure 3: Mental map preservation by attractive forces between (a) nodes in adjacent
time-slices [4] and (b) cluster nodes and the cluster center [5]

replaced by this node. Hence, the size of a cluster is maintained with the
cost of extra screen space needed for the invisible spacers.

4 Implementation

In the previous section, we presented several algorithms for graph drawing.
However, only the algorithm by Frishman et al. [5] considers the visualiza-
tion of dynamic clustered graphs (to the best of our knowledge). In order
to provide a broader comparison and discussion, we implemented three
cluster-based graph drawing algorithms. Therefore, we used the open-
source framework GraphStream1. Moreover, the SpringBox layout was
used as a starting point for our implementation. The SpringBox is a force-

1http://graphstream-project.org

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



directed layout which is available in the GraphStream project. It is based
on the algorithm by Fruchterman and Reingold [21]. However, it is modi-
fied on the attraction. In order to stabilize the evolving layout, the degree of
nodes is taken into account. Below, our algorithms are described in detail.

4.1 Force-directed Clustered Layout

Based on the SpringBox layout, this layout algorithms aims to visually
separate clusters from each other. Therefore, we manipulate the length of
edges using the edge weights. Edges between two nodes within a clus-
ter get a higher edge weight, while edges between two nodes of different
clusters get lower weights. Hence, clusters are visually separated since the
edges between inter-cluster nodes are longer. This approach potentially
provides an easy way to enhance a force-directed layout in order to sup-
port clustered graphs. Moreover, the cohesion of the clusters can be easily
adapted.

4.2 ClusterNode Layout

The second approach is based on the algorithm by Frishman et al. [5].
For each cluster in the graph, one invisible dummy node is added to the
graph. All nodes which belong to the cluster are connected to the dummy
node through an edge. After that, the graph layout is computed using the
SpringBox algorithm. Based on the dummy node, the nodes of a cluster are
arranged closer together because of the additional attractive forces between
them. The cohesion of the cluster can be configured using the weight of
the edges connecting the dummy node. In contrast to [5], we do not fix the
position of the dummy node in order to allow a higher flexibility.

4.3 Divide-and-Conquer

The third algorithm is based on the divide-and-conquer principle. It was
proposed by [1] for drawing clustered graphs. In our algorithm, we com-
bined this principle with a force-directed layout. Therefore, we divided the
graph in subgraphs. Every subgraph contains the nodes of one cluster. We
calculate a force-directed layout for each subgraph using the SpringBox.
These layouts are combined using a meta-graph. This graph consists of the
clusters in the graph as nodes and the number of nodes within the cluster as
node weights. By calculating the layout for this meta-graph, the position

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



of the cluster’s centre was determined. Based on this position, the nodes
of the subgraphs were placed using their relative position.

5 Evaluation

In order to evaluate and compare the layout algorithms, which we pre-
sented in the previous section, we analysed the resulting layouts. The goal
of the analysis was to asses both static and dynamic quality criteria.

5.1 Criteria

To assess the quality of the cluster representation, we used the following
measures:

Overlap describes the area used by two clusters at the same time. There-
for, the area of a cluster is defined as the convex hull of all nodes.
If the same area is used by more than two clusters, the number of
overlaps is incremented pairwise. This measure is used to asses how
well the clusters are separated.

Minimum Cluster Distance is the minimal distance between pairwise two
clusters for the whole graph. If two clusters overlap, this value is 0.

Average Cluster Distance is similar to the Minimum Cluster Distance,
but it is the average of all cluster distances. Both Cluster Distance
values indicate how good clusters are separated.

Area used by Clusters describes the accumulated area of all clusters. A
high value means that the available drawing area is well exploited,
while a small value means that the clusters are to compact.

Cluster Crossing Edges describes the number of edges which cross other
clusters. Edge crossing should be avoided because they lead to an
unclear layout.

Moreover, we analysed the node movements to assess whether the algo-
rithms are well suited for dynamic graph drawings. Therefore, the dis-
placement of each node between adjacent time-slices is calculated and ac-
cumulated.

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



5.2 Graph Generation

We simulated six different graphs, which vary in their number of nodes,
connectivity, number of clusters, and number of cluster change events. An
overview of the test setting is presented in Table 2. To create a dynamic

Table 2: Overview of the test cases

Test Case #Nodes #Cluster #Noise- Intra-Cluster- Inter-Cluster-
Nodes Connectivity Connectivity

small 100 3 10 0.2 . . . 0.5 0.01 . . . 0.03
medium 260 5 10 0.2 . . . 0.5 0.01 . . . 0.05
huge 1010 10 10 0.05 . . . 0.3 0.001 . . . 0.05
many edges 260 5 10 0.3 . . . 0.6 0.01 . . . 0.05
less edges 260 5 10 0.075 . . . 0.2 0.0025 . . . 0.01
more dynamic 260 5 10 0.2 . . . 0.5 0.01 . . . 0.05

graph, we simulated 1000 time steps for each graph. In the steps from 1 to
100, the graph is growing due to the creation of nodes and edges. More-
over, the initial cluster assignments are done in this time range. After that,
we simulated cluster change events. This means, that groups of nodes are
assigned to another cluster. For each of these events, we set the time range,
the number of changing nodes, source, and destination of the movement.
The exact time step of the reassignment is chosen randomly. During the
whole time, edges are inserted and removed randomly to get the expected
connectivity. This generation procedure yields in high dynamic graphs.

At http://goo.gl/KFkOW2 you can download all the test cases as
DGS files.

5.3 Results

In the following, we present the results of the different test cases and lay-
out algorithms. In the tables, we present the mean value of the selected
measures for the whole time range. The best values is marked bold and
the worst one italic.

5.3.1 Some Impressions

In Figure 4 we showed the same graph with the four different layouts.
Some steps before this layout a huge change event has been happen. In

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



Figure 4: Sample Layouts, top left: SpringBox, top right: Force-directed Clustered Lay-
out, bottom left: ClusterNode Layout, bottom right: Divide-and-Conquer Algorithm

the SpringBox Layout the nodes from the two clusters are totally mixed,
the same for the Force-directive Clustered Layout. With the ClusterNode
Layout a lot of the nodes are already on the way to the other cluster. In the
divide-and-conquer-approach the changing nodes are seperated and next to
the target cluster.

5.3.2 Overview Measures

In the following we present the measures for the different test cases and
layout algorithms. In the tables we show the mean value of the selected
measures for the whole time range. The best values is marked bold and
the worst one italic.

In Table 3, the average node movements are shown. For most test cases,
the Divide-and-Conquer algorithm performs best. Only the high connec-
tivity example is a problem for this algorithm. Especially in small or less
connected graphs the standard SpringBox algorithm performs worst.

For the measure Overlap, see Table 4, the Divide-and-Conquer algorithm
outperforms all other algorithms. Since the algorithm is designed to layout
the graph in a way, that every cluster has its own subspace, this result

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



Table 3: Node Movement
Test Case SpringBox Force-directed ClusterNode Divide and Conquer

small 1.512 1.427 1.451 0.871
medium 6.611 3.944 3.617 1.596
huge 13.858 13.038 29.908 11.890
many edges 7.065 7.544 7.649 8.588
less edges 6.083 5.895 5.398 2.418
more dynamic 5.475 5.176 4.744 2.025

Table 4: Overlap
Test Case SpringBox Force-directed ClusterNode Divide and Conquer

small 0.097 0.098 0.001 0.000
medium 0.328 0.190 0.051 0.000
huge 1.752 1.860 0.393 0.000
many edges 0.946 0.917 0.281 0.001
less edges 0.359 0.350 0.017 0.000
more dynamic 0.856 0.843 0.200 0.000

is not surprising. However, the Clustered Node algorithm performs well,
too. The SpringBox-based algorithms have a higher number of cluster
overlappings, because the cluster has less influence on the node positions.

Table 5: Area used by Clusters
Test Case SpringBox Force-directed ClusterNode Divide and Conquer

small 0.568 0.547 0.331 0.275
medium 0.647 0.525 0.525 0.206
huge 1.231 1.277 0.683 0.162
many edges 1.319 1.300 0.889 0.278
less edges 0.732 0.722 0.405 0.147
more dynamic 1.131 1.108 0.700 0.195

The area used by the cluster, Table 5, describes how good the drawing
space is used. Concerning this measure, the SpringBox algorithms per-
formed best. Most of the space is used by multiple clusters at the same
time, so the clusters seems to be mixed. The divide-and-Conquer approach
uses less of the available space. The clusters are more compact compared
to the other algorithms.

The Minimal Cluster Distance, see Table 6, and the Average Cluster Dis-
tance, see Table 7, are measures which show how optical separable the
clusters are. In this category, the Divide-and-Conquer approach outper-
form the other ones. It is by definition able to perfectly separate the clus-
ters. Also the ClusterNode Approach is able to separate the clusters well.

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



Table 6: Minimum Cluster Distance
Test Case SpringBox Force-directed ClusterNode Divide and Conquer

small 0.013 0.013 0.068 0.120
medium 0.000 0.000 0.002 0.102
huge 0.000 0.000 0.003 0.058
many edges 0.000 0.000 0.003 0.088
less edges 0.000 0.000 0.009 0.089
more dynamic 0.000 0.000 0.002 0.111

Table 7: Average Cluster Distance
Test Case SpringBox Force-directed ClusterNode Divide and Conquer

small 0.065 0.062 0.145 0.221
medium 0.007 0.010 0.106 0.289
huge 0.011 0.010 0.070 0.349
many edges 0.013 0.011 0.052 0.231
less edges 0.006 0.006 0.094 0.279
more dynamic 0.016 0.015 0.069 0.298

The SpringBox approaches produce layouts with a high number of over-
lapping clusters.

Table 8: Cluster Crossing Edges
Test Case SpringBox Force-directed ClusterNode Divide and Conquer

small 59.8 60.0 2.8 0.8
medium 3435.5 2661.1 584.5 160.3
huge 39587.0 39307.4 16893.4 1758.8
many edges 15367.0 15517.5 8066.9 969.9
less edges 953.7 957.5 61.0 20.0
more dynamic 2776.5 2718.1 1025.7 114.1

In Table 8, we show the average crossing edges. A crossing edge is an edge
which crosses other clusters then the clusters of the corresponding nodes.
Such crossing are confusing for the reader. The smaller cluster areas from
the ClusterNode and divide-and-conquer approach are an advantage for
this measure. The smaller the area is, the smaller the probability of an
crossing edge. The divide-and-conquer algorithm outperforms all the other
ones but also the ClusterNode approch produces good results.

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



6 Discussion

Overall, the results of the evaluation suggest that the divide-and-conquer
approach is best suited for drawing dynamic clustered graphs. The clus-
ters are well separated since the layout algorithm guaranties that clusters
do not overlap. Moreover, the divide-and-conquer approach supports lay-
out stability. Because the layouts of the subgraphs are computed indepen-
dently from each other, the resulting node movements are locally restricted.
This characteristic might help readers’ to preserve their mental map of the
graph. However, the good partitioning of the graph comes with the cost of
inefficiently used screen space. If the available screen space is a critical
issue, the ClusterNode algorithm might provide a good trade off. It sep-
arates the clusters better than the SpringBox or the enhanced SpringBox.
However, since it allows overlaps, it requires less space.

7 Conclusion and Future Work

In this paper, we investigate algorithms for drawing clusters in dynamic
graphs. Based on an extensive literature review. we present three different
approaches. We implemented these approaches based on a force-directed
layout and evaluated their success using several measures.

In a nutshell, the results suggest that a divide-and-conquer approach is
best suited for the dynamic drawing of clustered graphs since it 1) well
separates the clusters and 2) stabilizes the layout. Future work involves
further evaluation of the algorithm with real world data as well as a user
study in order to test the readability of the resulting layouts. Moreover,
the performance needs to be improved to allow the usage in interactive
applications.

References

[1] Wang, X.; Miyamoto, I.: Generating customized layouts. In: Graph
Drawing, S. 504–515. Springer. 1996.

[2] Battista, G. D.; Eades, P.; Tamassia, R.; Tollis, I. G.: Graph drawing:
algorithms for the visualization of graphs. Prentice Hall PTR. 1998.

[3] Görg, C.; Birke, P.; Pohl, M.; Diehl, S.: Dynamic graph drawing of
sequences of orthogonal and hierarchical graphs. In: Graph Drawing,
S. 228–238. Springer. 2005.

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��



[4] Erten, C.; Harding, P. J.; Kobourov, S. G.; Wampler, K.; Yee, G.:
GraphAEL: Graph animations with evolving layouts. In: Graph
Drawing, S. 98–110. Springer. 2004.

[5] Frishman, Y.; Tal, A.: Dynamic drawing of clustered graphs. In:
Information Visualization, 2004. INFOVIS 2004. IEEE Symposium
on, S. 191–198. IEEE. 2004.

[6] Archambault, D.; Purchase, H.; Pinaud, B.: Animation, small multi-
ples, and the effect of mental map preservation in dynamic graphs.
IEEE Transactions on Visualization and Computer Graphics 17
(2011) 4, S. 539–552.

[7] Federico, P.; Aigner, W.; Miksch, S.; Windhager, F.; Zenk, L.: A vi-
sual analytics approach to dynamic social networks. In: Proceedings
of the 11th International Conference on Knowledge Management and
Knowledge Technologies, S. 47. ACM. 2011.

[8] Purchase, H. C.; Samra, A.: Extremes are better: Investigating mental
map preservation in dynamic graphs. In: Diagrammatic Representa-
tion and Inference, S. 60–73. Springer. 2008.

[9] Brandes, U.; Mader, M.: A quantitative comparison of stress-
minimization approaches for offline dynamic graph drawing. In:
Graph Drawing, S. 99–110. Springer. 2012.

[10] Heer, J.; Boyd, D.: Vizster: Visualizing online social networks. In:
Information Visualization, 2005. INFOVIS 2005. IEEE Symposium
on, S. 32–39. IEEE. 2005.

[11] Bridgeman, S. S.; Tamassia, R.: A user study in similarity measures
for graph drawing. J. Graph Algorithms Appl. 6 (2002) 3, S. 225–254.

[12] Eades, P.; Lai, W.; Misue, K.; Sugiyama, K.: Preserving the men-
tal map of a diagram. International Institute for Advanced Study of
Social Information Science, Fujitsu Limited. 1991.

[13] Misue, K.; Eades, P.; Lai, W.; Sugiyama, K.: Layout adjustment and
the mental map. Journal of visual languages and computing 6 (1995)
2, S. 183–210.

[14] North, S. C.: Incremental layout in DynaDAG. In: Graph Drawing,
S. 409–418. Springer. 1996.

�� 3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG��������������



[15] Sugiyama, K.; Tagawa, S.; Toda, M.: Methods for visual understand-
ing of hierarchical system structures. Systems, Man and Cybernetics,
IEEE Transactions on 11 (1981) 2, S. 109–125.

[16] Brandes, U.; Wagner, D.: A Bayesian paradigm for dynamic graph
layout. In: Graph Drawing, S. 236–247. Springer. 1997.

[17] Diehl, S.; Görg, C.; Kerren, A.: Preserving the mental map using
foresighted layout. In: Proceedings of the 3rd Joint Eurographics-
IEEE TCVG conference on Visualization, S. 175–184. Eurographics
Association. 2001.

[18] Diehl, S.; Görg, C.: Graphs, they are changing. In: Graph Drawing,
S. 23–31. Springer. 2002.

[19] Kamada, T.; Kawai, S.: An algorithm for drawing general undirected
graphs. Information processing letters 31 (1989) 1, S. 7–15.

[20] Ellson, J.; Gansner, E.; Koutsofios, L.; North, S. C.; Woodhull, G.:
Graphviz open source graph drawing tools. In: Graph Drawing, S.
483–484. Springer. 2002.

[21] Fruchterman, T. M.; Reingold, E. M.: Graph drawing by force-
directed placement. Software: Practice and experience 21 (1991)
11, S. 1129–1164.

[22] Feng, Q.-W.; Cohen, R. F.; Eades, P.: How to draw a planar clustered
graph. In: Computing and Combinatorics, S. 21–30. Springer. 1995.

[23] Eades, P.; Feng, Q.-W.; Lin, X.: Straight-line drawing algorithms
for hierarchical graphs and clustered graphs. In: Graph drawing, S.
113–128. Springer. 1997.

[24] Brockenauer, R.; Cornelsen, S.: Drawing clusters and hierarchies. In:
Drawing graphs, S. 193–227. Springer. 2001.

[25] Purchase, H. C.; Hoggan, E.; Görg, C.: How important is the mental
map? – an empirical investigation of a dynamic graph layout algo-
rithm. In: Graph drawing, S. 184–195. Springer. 2007.

3URF�����:RUNVKRS�&RPSXWDWLRQDO�,QWHOOLJHQFH��'RUWPXQG�������������� ��


