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Abstract

Dynamic graphs are ubiquitous in real world applications. They can
be found, e.g. in biology, neuroscience, computer science, medicine, social
networks, the World Wide Web. There is a great necessity and interest
in analyzing these dynamic graphs efficiently. Typically, analysis methods
from classical data mining and network theory have been studied separately
in different fields of research. For dealing with complex networks in real
world applications there is a need to perform interdisciplinary research by
combining techniques of different fields. In this paper, we analyze dynamic
graphs from the social science. For the representation of edge weights in
a social network graph we propose a method to efficiently represent the
strength of a relation between two entities based on events involving both
entities. The Butterworth filter is used to describe the continuous relation
that can otherwise only be represented by a series of discrete events.

1 Introduction

Complex dynamic networks are ubiquitous. They can be found, e.g. in
biology [1], neuroscience [2], computer science [3], medicine [4], so-
cial networks [5], and the World Wide Web [6]. There is a great ne-
cessity and interest in analyzing these dynamic graphs efficiently as pat-
terns inside of these structures might reveal knowledge about the underly-
ing system. Classically, analysis methods from both network theory and
knowledge discovery in databases have been studied separately in differ-
ent fields of research. The analysis of complex networks as they occur in
real world applications can be supported by combining techniques of these
two fields [7, 8]. In this paper, we present a real-world problem of dy-
namic graphs from the point of social sciences. We propose a method to
efficiently represent the strength of a relation between two entities based
on events involving both entities.
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Figure 1: Rippling effects for different filter types

1.1 Butterworth Filtering

Representing the structure of a social network not only by the friendship
relation (i.e. nodes represent persons, edges represent the relation), which
results in a more or less static description of the graph, but also by adding
weights to such edges where the weight reflects the amount of activity be-
tween the two corresponding nodes, requires a way to describe this activity.
Event-based weighting of edges in a social graph could be accomplished
by simply storing all the timestamps at which events between two nodes
occurred. Obviously this approach would become unfeasible very soon
due to the amount of memory required for such a procedure. An additional
disadvantage of such an approach would be that, while we can make state-
ments about the point in time when an event occurred. If possible at all,
we can roughly estimate the current weight that should be assigned to an
edge at a given point in time. Operations like a sliding average would be
able to adapt to such a problem with the major drawback, that only a small
time frame can be used to determine the current average due to memory re-
strictions — no further information about the past is available if only such
a value is used.

Obviously using all the bins to calculate an interpolating polynom would
suffice to give a continuous time representation of the data along with a
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very high precision. Yet is memory efficiency of such an approach vastly
high if such information needs to be stored for each and every each in a
(possibly even fully connected) graph. Beside this challenge, interpolating
between each timebin is very sensitive to outliers. From electronic signal
processing the Butterworth filter is a well-known variant of an infinite im-
pulse response filter that produces an output signal as response to its input
signal without causing the rippling effects in the number of frequencies
removed from the signal (see Figure 1 other filters suffer from. The result-
ing signal that such a filter calculates can in some terms be interpreted as
an approximation of the interpolating polynom, enveloping the originally
discrete signal.

In general such a filter is defined by two sets of coefficients B and A. These
sets depending on the selected passband frequency f . The filter’s response
y for a signal x at the bin n can be obtained by computing

yn =
nb∑

i=1

(bi · xn−(i−1))−
na∑

j=2

(aj · yn−(j−1)), where

{b1, . . . , bnb} = B and {a1 = 1, a2, . . . , ana} = A.

This recursive representation makes it possible to avoid enumerating all
signal values from negative to positive infinity.

Other parameters that either influence the shape of the resulting curve or
the set of possible edges that are considered are:

• Step width: Length of time bin

• Grade: The grade of the filter determines the two sets B,A of coef-
ficients responsible for the shape of the resulting filter response. The
number of coefficients depends directly on the grade and describes
how many past signal (and response) values are considered for the
calculation.

2 Related Work

2.1 Social Network Analysis

Social network analysis has already been popular long before websites like
Facebook, XING or Google+ — now commonly understood/known as so-
cial networks — were launched. In [9] a comprehensive approach of mod-
eling social network data as (un)directed graphs has been proposed and has
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been widely accepted. Over the years a lot of research has been performed
on e.g. cohesiveness of groups of members in social graphs [10] or seg-
mentation of social networks [5]. In [11] or [12] web communities were
targeted by the research and graph-based algorithms were used to distin-
guish between different groups. In [13] the authors analyzed mobile phone
communication and used the sum of calls from each subscriber as weights
in a graph representation. Social networks like Facebook have been the
subject of analysis in [14] where a snapshot of the friendship relation for
five American universities was analyzed by means of graph analysis tools.
All these methods have in common that they use a static representation of
the social graph underlying the respective social network.

Attempts have been made to infer information from dynamic graphs (e.g.
in [15]) but they either restrict themselves to fairly simple questions like
connectivity or to path finding problems in order to cope with the changing
structure of the graph. Every binning leads to a loss of information, namely
the exact time when an event has happened. Such approaches do not take
into account the frequency with which events occur but rather lists their
absolute number.

2.2 Butterworth Filter

The Butterworth filter [16] is one of the best-known infinite impulse re-
sponse filters. One of its most interesting features is its flat frequency
response, i.e. it does not generate rippling effects, when the signal strength
changes. Interpreting the binned events of a social graph as a time- and
strength-discretized signal the filter response of such a Butterworth filter
should have the desired properties that events (dirac pulses) can be binned
while keeping some information on the frequency.

In [17] the authors describe how the Butterworth filter can be used to re-
duce the computation time in online electroenzephalograms (EEG) while
in [18] the Butterworth filter is reduced to describe trends in oscillating
oceanographic data. This is particularly interesting because the number of
messages sent in a social graph w.r.t. their time bins can also be seen as a
oscillating (or at least fluctuating) signal that we want to represent by the
filter output.
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2.3 Enron Data Set

For the analysis and validation of our method we used the Enron data set1.
The Enron mail corpus is a collection of email boxes from 150 employ-
ees of the Enron company. It contains the mail communication of these
employees in a timeframe of about one year [19]. Like in every group
of people there are subgroups (clusters) of people which are communi-
cating together more often then with other employees. We removed both
external contacts from the data (Enron employees sending mails to non-
Enron employees) and all mail contacts with mailing lists. Duplicates
(firstname.lastname vs. firstnamelastname) have been reduced to one sin-
gle node and mails that were sent to several users at once were treated as
separate events (such that a mail sent from A to B and C was considered as
two identical mails that were sent from A to B and from A to C).

3 Methodology

As the Butterworth filter produces a continuous signal we want the filter
response to be #msgs/l for a time step of length l to give a better generaliza-
tion. This restriction and the fact that it produces an equal sum of values
over a continuous time span directly lead to two adversing goals in finding
an optimal frequency to describe the filter:

1. Minimize the difference between the discretely binned signal and the
filter response.

2. Find a frequency f ∈ (0, 1) that produces a continuous, smooth and
locally linear approximation of the signal (i.e. has only a few local
extrema).

While the number of extrema can be reduced by lowering the passband
frequency (which at some point will result in a nearly constant response),
the error can be reduced by increasing it. This interrelation is illustrated
by Fig. 2, which shows the filter response for three different passband fre-
quencies when applied to event data from the Enron data set (for simplicity,
the data were treated as if belonging to a single edge). Of course the data
should be split up into the real edges for any further analysis.

To evaluate the total complexity of the resulting model depending on the
frequency we adapted Akaike and Bayesian Information Criterion (AIC /

1Obtained from http://www.cs.cmu.edu/~enron/.
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BIC) [20, p. 110] to include the parameters we want to optimize on. For
any given frequency f we can compute the mean squared error (MSE) for
the resulting signal and count the number of extrema. The number ne of
extrema can be used as a measure for the complexity of the resulting curve
by assuming we have to store this curve as a polynomial with a degree of
ne + 1.

Thus, the objective functions we need to minimize are

AIC (f) = 2k − 2 · ln (L) and BIC (f) = k · ln (n)− 2 · ln (L),

respectively, where k is the number of parameters and L is the likelihood
of the model. Assuming the error in the model is standard normally dis-
tributed both functions can be simplified to [20, p. 110]

AIC (f) = 2k+n · ln (MSE ) and BIC (f) = k · ln (n)+n · ln (MSE ).

The MSE for a frequency f can be computed from the signal X with bins
x1, . . . , xt, t = ‖X‖ and the produced (w.r.t. the frequency f) filter re-
sponse Yf = (y1, . . . , yt) as

MSEf (X, Yf) =
1

t

t∑

i=1

(xi − yi)
2,

the number of parameters equals ne + 2.

These functions can then be optimized using standard optimization tech-
niques like simulated annealing [21] or gradient descent [22] techniques.
According to the resulting shape of the curves for both objective functions
(see Fig. 3) the optimal passband frequency for the depicted example data
set lies near f = 0.0075, when limited to (0, 0.2]. Higher frequencies re-
sult in a filter response that does never fulfill the smoothness requirement
although they might lead to lower values of the objective functions (see
also Sect. 4).

For the purpose of storing event information in a coherent way across mul-
tiple edges in the interaction graph it is useful to only use one global fre-
quency to apply the same filter on all edges. This removes the need to store
the individual filter parameters, and results in only storing the last few sig-
nal and filter response values to be able to calculate the new filter response
with the given, global parameter set.

Analyzing the distribution of optimal frequencies yields the curve from
Figure 4. The optimal frequency found by the optimization algorithm em-
ployed is marked as dotted line and almost coincides with the lower marker.
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Figure 2: Filter response for different passband frequencies for Enron data set, time bin-
ning: 10’000 ms/bin.

The central marker gives the median of the distribution while the two outer
markers indicate the points where the the curvature of the distribution goes
toward zero. The frequencies falling between these outer markes roughly
correspond to the frequencies which produce the minimal values for the
AIC measure (see Figure 3) which makes this interval particularly inter-
esting.

4 Evaluation/Results

4.1 Experimental Results

Naturally, when compared to a moving average filter, the MSE of our ap-
proach as compared to the original signal will be significantly higher (see
Tbl. 1). As we never aimed at solely minimizing the error but also the com-
plexity of the response signal, our method outperforms the moving average
when using the BIC as optimization criterion. Though it may seem that the
moving average performs better when considering AIC this is owed to this
measure being biased toward models with very high complexity (i.e. very
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Figure 3: Left: AIC and BIC for the Enron data set, plotted against different passband
frequencies (filter grade = 4). Right: Development of the two information criteria used
over a larger interval. The interval (0.9, 1] has been left out as the MSE heads towards
zero in these cases which in turn leads to a term in AIC becoming negative.

low error). This effect can be seen on the right-hand side in Fig. 3. Here
can be seen clearly, that the AIC has its true minimum for a frequency
above 0.8. Hence we restricted optimization already to find an optimum
only in the interval (0, 0.2] where desirable (in terms of number of local
extrema) results are achieved.

The comparison with other filters such as the Chebychev [23, p 36ff] or
elliptical [23, p 44ff] may seem of interest here as well. Other filters tend
to let frequencies pass that the Butterworth filter would not allow to pass.
The optimal frequency derived for other filters will certainly differ from the
one found by our method as the description because the set of parameters
is langer for any of these filters while not changing the error measures
very much. One of our goals was to increase the memory efficiency when
storing edge weights so that the increased storage need for other filters is
not justified by the at best slightly increased quality.

Moving Average Butterworth Filter
MSE 19.3163 33.3691
AIC 31068 33445
BIC 38814 34367

Table 1: Different evaluation measures to compare the moving average with the Butter-
worth Filter for the Enron data set.

As already described above, we observed during the evaluation of the error
measures, that depending on the passband frequency the filter response
shows some offset (see Fig. 5), which decreases with increasing frequency.
We tried to find a best offset which could be applied to the filter response
in order to reduce the overall error that occurs simply due to the offset.
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Figure 4: Distribution of optimal cutoff frequencies. Frequencies > 0.1 were dropped.
The curvature of this distribution tends toward zero in the outer parts (outside the mark-
ers). The central marker gives the median of the distribution.

Plotting these offsets against the frequency they correspond to leads to
Fig. 6.

Simple curve fitting yields that the optimal offset o(f) can be calculated
directly from the passband frequency used by the filter with the following
formula: o(f) =

⌈
a
f + b

⌉
, where a = 0.8347 [0.8341, 0.8352] and b =

0.3388 [0.2085, 0.4691], (in brackets 95% confidence bounds). Actually
the exponent for the factor f is not −1 but it is so close that we fixed it
at −1 for simplicity. As we only have discrete bins, such a simplification
seems reasonable as the following discretization of the result will obliterate
most imprecisions. All of our experiments show that this formula seems
to be independent from the given data set. That led us to the assumption
to introduce this as a correction term into the objective function. This may
be an important step for scenarios where the behavior of a user abruptly
changes (increases or decreases). The filter will only adapt to this change
after a certain amount of time. During adaption it will naturally deviate
from the current process.

5 Conclusions

Applying a Butterworth filter can be used to describe event frequencies in
event-based graphs as continuous signal as opposed to the inherent dis-
crete nature of the signal. The resulting curve is continuous, smooth and
without overfitting it gives a generally good approximation of the original
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Figure 5: Offset between the true (left) and the response signal in the cumulated signal
function (right).

signal. The filter itself can be described only by its coefficients and a few
historical entries for each edge based on the grade of the filter, leading to
an overall efficient memory usage. Still this approach leaves enough space
for adjustments, e.g. by weighting the extrema or the MSE differently in
the objective functions and thus leading to curves being either smoother
or closer to the discrete signal. When changing the grade of the filter an
even better approximation of the original curve is possible, decreasing the
overall error at the cost of memory efficiency.

We investigated a complex network problem demanding hybrid analysis
methods from both intelligent data analysis and network theory. We dealt
with the analysis of dynamic graphs from social science. Firstly, we pro-
posed a method to efficiently represent the strength of a relation between
two entities based on events involving both entities. Using the Butterworth
filter we were able to establish a continuous series of edge weights and
thus graphs. Based on this data, the elements within the graph could be
clustered. In Figure 7 such an clustering is proposed.
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