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Abstract

Given a better knowledge about the driver the car’s driver assistance systems
could be specifically adapted, potentially increasing the systems’ acceptance. Our
purpose is to estimate hidden driver properties underlying the driving behavior. We
used a linear combination of different quantities as basis of the similarity calculation.
With the aid of an evolutionary algorithm we determined these quantities as well
as their weights. In a study with 26 subjects three hidden target properties were
examined and estimated. We reached a correlation of approximately 0.7 between
the predicted values and given measurements. In order to exclude overfitting of the
model, an additional optimization was carried out using random values. In this case
only a considerably smaller correlation of 0.36 could be achieved. As a consequence
we observed that the basic assumption applies at least to the three examined target
properties. We conclude that an estimation based on driving behavior is possible.

1 Introduction

In modern vehicles the incorporation of assistance systems is constantly increasing. Their
goals are, among other things, to reduce accident consequences or completely avoid them
altogether. To do so, the system activates the brake for example. The greatest challenge
these systems face is the decision when to intervene. An early intervention can increase
the efficiency of the system. This results, however, in drivers more frequently perceiving
the activation as necessary. Given a better knowledge about the driver, the systems could
be specifically adapted, potentially increasing the systems’ acceptance. Such an estima-
tion of the driver is the goal our work. The main idea how to estimate from given data
is explained in Section 2. Our purpose is to estimate hidden driver properties underlying
the driving behavior. This estimate is based on the assumption that drivers with similar
properties behave similarly concerning certain quantities. To select which properties to
use, we developed an evolutionary algorithm, which is descriped in Section 3. We tested
our algorithm with different data sets in Section 4. The results obtained could be used
to for example parameterize assistance systems. A similar approach was presented from
Bauer et al. in [1].
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2 Methods

2.1 Used Data

We used data from two different sources for our analysis. The first dataset we examined
was recorded from a driving simulator, where 21 test persons passed both a city and a
country road scenario. Additionally one target property was determined for every person.
As a second source we used a field study with 26 test persons. Every journey was split
into three parts, i.e. freeway, country road, city scenario. For every test person three target
properties were determined [2].

While driving we collected different driving parameters every 100 ms. These parameters
were distance to the vehicle driving ahead, acceleration, gas pedal value, velocity, v and
cross acceleration.

The distance was detected with the help of a radar system. The other parameters were
directly derived from the car’s CAN bus. We transformed this distance into three mea-
sures, i.e. the absolute distance dabs in meter, the time gap ∆t in seconds, and the time to
collision TTC in seconds. [3]

∆t =
dabs
vown

(1)

TTC =
dabs

vown − vahead
(2)

During the whole driving session we can distinguish the following situations: free driving
(no car ahead), driving behind a car, free stopping (no car ahead), stopping behind a car,
free start (no car ahead), starting behind a car and global behavior.

Stopping processes were detected by velocity analysis.

2.2 Generating Parameters

The question is how to generate features from collected data. One requirement is that
there should be a cumulative evaluation of the previous driving session. We used statistical
measures such as mean value, variance, and percentage above a given threshold. These
are measures which are easy to update online. In our work we used about 40 different
characteristic values from all possible combinations.

We normalized all values to the unit interval using the percentage rank method, where
fcum(xv) is the cumulative frequency of the value xv or lower and N is the size of the
sample size. [4]

PRv = 100 · fcum(xv)

N
(3)

This was necessary because we compared different parameters like velocity and acceler-
ation. So for every feature we obtained a uniform distribution in the unit interval.
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2.3 Estimating Target Values

To estimate the target values we used a case-based reasoning approach [5]. Comparing
the features of the current driving session to the values in the reference data base allows
us to compute the target value with a k-NN-algorithm with k = 3 as a weighted average,
whereas the weights represent the similarity of the current driving sessions to the three
most similar reference tracks.

The task is how to find similar reference tracks. We used a selection of some of the fea-
tures by using a similarity measure based on the euclidean distance. But not every feature
is equally significant. So, we weighted the different dimensions as well. To determine
the selected features and their weights we used an evolutionary algorithm [6] which is
presented in the next section.

3 Evolutionary Algorithm

We started with an initial population of 50 random candidate solutions. An exact descrip-
tion of these individuals follows in section 3.2. The following generations contain 10,
including the three best, unchanged individuals from the previous generation, 20 indi-
viduals generated by mutation and 20 individuals generated by crossover. The algorithm
terminates after 100 generations.

3.1 Representation of the Individuals

We represent the individuals as a vector of double values. Every field is related to the
weight of one feature. We want a bijective mapping between individual and weights
configuration. Therefore, we normalize all vectors so that the sum of all weights is 1.
This was necessary to avoid unexpected results on crossover with equal individuals with
a different scaling.

The value 0 of a field therefor indicates that this feature is not used.

3.2 Initial Population

For the initial population we generated 50 random individuals. The generation is based
on a standard normal distributed random variable Z. Every field in the individual’s vector
is calculated in the following way.

∀i ≤ N, i ∈ N : gi =
1 + Z

2
(4)

Normally, the sum of all fields is not 1, so the generated vector must be normalized.
Values lower than 0 will be set to 0.
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Figure 1: left: evolution of the fitness with standard roulette wheel method, right: using power law
scaling with k = 1.005

3.3 Fitness Function

To assign a fitness value to the individuals we made an experiment with every single
individual. We used the leave-one-out method [7] to estimate the target value based on the
other reference tracks with the weights given by the individual. After this we calculated
the Pearson correlation coefficient r between the estimated target value and the reference
value. The goal is to maximize the correlation between the estimated and the given values.

To avoid overfitting we introduced a penalty term which punishes individuals that use
many features. Altogether we derived the following fitness function

f = r ·
(
1− 1

100n
)
, (5)

where n is the number of features with a weight greater than 0.

3.4 Selection Method

To select random individuals we used the roulette wheel method [6]. Additionally the
three best individuals where part of the next generation without any change, the so-called
elitist strategy. This guarantees that the best individuals will not get lost during the op-
timization [8]. During the optimization there can be individuals with a fitness values
less than 0. To prevent an inclusion of such individuals in the roulette wheel method, a
minimal fitness of 0.01 was assigned to these individuals.

The left part of Figure 1 shows the evolution of the fitness with the standard roulette
method. You can see an increasing fitness value during the first 50 steps of the optimiza-
tion. Afterwords, only small improvements can be observed. This may be caused by the
selective pressure becoming too low. To avoid this we tried different scaling methods for
the fitness values, especially the power law scaling [9]

f ! = fk. (6)
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Figure 2: evolution of the fitness with different values of c (top left: c = 2, top right: c = 3,
bottom left: c = 4, bottom right: c = 5)

A commonly used parameter is k = 1.005. The right part of Figure 1 shows the evolution
of the fitness with the applied power law scaling with k = 1.005. It is easy to see that this
method outperforms the standard roulette method in our case. In addition to a constant
value for k it is possible to change this value over time. In our work we tried an approach
based on the fitness of the best individual of the population

k = c ∗max(f). (7)

We tested different values of c. The results are presented in Figure 2. The best results
were obtained when using c = 3 or c = 4. For higher values, e.g. c ≥ 5, the influence
of the fitness is too strong in the starting phase of the optimization. The optimization gets
stuck in a local optimum and no further evaluation of the search space is performed. On
the other hand, small values slow down the convergence of the population and do not lead
to a significant improvement compared to standard power law method. In the following,
we set c = 3 because this value allows a good evaluation of the search space and a good
evolution of the population.

3.5 Genetic Operations

There are two types of genetic operations we used in our algorithm, i.e. mutation and
crossover. As crossover operation we used the standard uniform crossover [10].
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Figure 3: Evolution of the fitness with different k (top left k = 0.1, top right k = 0.2, bottom left
k = 0.3, bottom right k = 0.4)

The other genetic operation we used is mutation. The aim of the mutation is to change
some values of the individuals randomly to explore the search space in the neighborhood
of existing individuals. To achieve this we add a standard normal distributed value X to
the previous values gi

g!i = gi + k ·X. (8)

In Figure 3, we show the evolution of the fitness for different values of k. For k = 0.1,
there is a slow increasing of the fitness. This could be due to attempts to reach local
optima. For higher values, e.g. k = 0.4, there is a fast increasing of the value. This means
good areas are found very quickly. But high mutation values prevent reaching the optima
in these areas. It is therefore good to take values around k = 0.2 and k = 0.3. These
values have similar evolutions of the fitness. We used k = 0.2 because local optima were
easier reachable.

In Figure 4 we show the evolution of the fitness for different mutation probabilities p.
The closer the average of the fitness is at the maximum, the less strong the search space
is investigated. This happens because many individuals are near local optima. Premature
convergence is an indication that a lot of individuals are stuck in local maxima.

For small values of p ≤ 2/n, the search space is examined poorly. High values, e.g.
p = 6/n, cause divergences of the individuals. Good values are reached in a random way,
but they do not tend to really optimize the target function. Rather, individuals near new
local optima are found. A higher mutation probability increases this effect.
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Figure 4: Evolution of the fitness with different mutation probability p (top left p = 1/n, top right
p = 2/n, center left p = 3/n, center right p = 4/n, bottom left p = 5/n, bottom right p = 6/n)
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Figure 5: Generation 1 - simulation study

We used p = 4/n as mutation probability as it perfoms significantly better in our case than
p = 1/n, which is often used.

4 Results

We evaluated the algorithm with both the data of the simulation and the field study. We
took snapshots of different timestamps during the driving sessions. In Figure 5 we show
the start situation of the population with the simulation data. In the top left part of Figure 5
we can see the evolution of the fitness over time. In this figure the graph is nearly empty
because we are in iteration 0. On the top right, we show the reference value and the
estimated value for every single reference measure. This estimated value is based on the
reference tracks of the other drivers. The gray line is the optimal fit line. In this iteration
the estimation fits the reference tracks poorly. In later iterations there are more data
points on the same place. To get a better feeling of the estimated points we calculated
the difference of the reference and the estimated value. We ordered these values and
plotted them in the bottom right subfigure. In the bottom left, we visualize the population
itself. Every single gray line represents one individual. It is easy to see that there are
many different configurations. The black line represents the best individual of the current
iteration. In table 1 we give some links to online videos of the simulation. In these videos
we present the whole evolution of all the experiments.

After 20 generations the estimation results are better. You can see this in Figure 6. This
also results in increasing fitness values. The individuals are less scattered.
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study link QR-code

simulation study http://youtu.be/
Zm1Y_2wYM9M

field study - value A http://youtu.be/
fbLchwuCS_g

field study - value B http://youtu.be/
ZvPaEwfpnRU

field study - value C http://youtu.be/
uL-N5uszclM

random data http://youtu.be/
cmemhKlvHV4

Table 1: links to online videos of the simulation
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Figure 6: Generation 20 - simulation study
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Figure 7: Generation 100 - simulation study

After 100 generations the algorithm terminates. The results are shown in Figure 7 and one
can see that the estimation is much better. The individuals of the population are similar to
each other, but not all individuals are near the best individual. So, the search space was
still explored properly. We finished with a fitness of 0.72 and 10 selected features. If we
leave out the penalty term for using too many features, the correlation will even rise to a
value of 0.80:

correlation =
fitness

1− #features
100

=
0.72

1− 10
100

= 0.80. (9)

In the field study we get similar results. In Figures 8 and 9 one will see the evolution of
the fitness for the first target value. We finished with a fitness value of 0.62 and a feature
set size of 13. This results in a correlation of 0.71. In Figures 10 and 11 we present the
final states for both other target values. For the second target value we still achieved a
fitness value of 0.49 with 12 selected features and for the third target value we computed
a fitness value of 0.62 with 9 selected features. These results yield correlations of 0.56
and 0.67 respectively.

To verify that these results are not based on overfitting, we tested a target value based on
random data. Every reference track was assigned to a uniformly distributed value between
0 and 100. In Figure 12 we show the results for this test. We got a fitness value of 0.3
with 16 selected features. This result yield a correlation of 0.36.

We tested the developed algorithm on different data sets. Good results were obtained on
real target values. In contrast random target values resulted in poor results, which thus
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Figure 8: Generation 1 - field study target value A
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Figure 9: Generation 100 - field study target value A
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Figure 10: Generation 100 - field study target value B
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Figure 11: Generation 100 - field study target value C
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Figure 12: Generation 100 - random data set

study max. fitness #parameter correlation
simulation study 0.72 10 0.8
field study - value A 0.62 13 0.71
field study - value B 0.49 12 0.56
field study - value C 0.62 9 0.67
random data 0.3 16 0.36

Table 2: results of the evaluation

exclude an overfitting of the algorithm to the given data. We give an overview of all
results in Table 2. We conclude that target values which reflect in the driver’s behavior
are predictable with our algorithm.

5 Conclusion and Further Work

With our work we give an opportunity to estimate drivers’ properties during driving. This
evolutionary algorithm allows optimizing the estimation for different target values. This
data could be used for parameterization of assistance systems in cars, so that maybe we
can increase the driver’s feeling and acceptance of the assistant systems. We conclude
that an estimation based on driving behavior is possible.

Yet, to use these results in real world applications, there should be a larger reference
database. This could not only increase the estimation quality but it could also allow
experiments with other target values.
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