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Abstract. Fuzzy control accounts for the biggest industrial success of fuzzy logic.
We review an interpretation of Mamdani’s heuristic control approach. It can be seen
as knowledge-based interpolation based on input-output points of a vaguely known
function. We reexamine two real-world control problems that have been fortunately
solved based on this interpretation.

1 Introduction

The biggest success of fuzzy logic in the field of industrial and commercial appli-
cations has been achieved with fuzzy controllers. It has been developed by Ebrahim
“Abe” Mamdani and his student Sedrak Assilian in 1975 [12]. Fuzzy control is a
way of defining a nonlinear table-based controller whereas its nonlinear transition
function can be defined without specifying every single entry of the table individu-
ally. Many real-world problems have been tackled successfully by Mamdani’s fuzzy
control approach.

But what exactly is the justification of this heuristic approach? This question
aroused the interests of many researchers [1, 2, 4, 5, 6, 7, 8, 14]. In our opinion,
Mamdani’s approach can be seen as knowledge-based interpolation. It is a kind
of approximate reasoning using fuzzy set theory. Given some input-output points
(i.e. some knowledge) of a vaguely known function, an approximate output for a
new input point can be deduced by interpolation. Here, the gradual nature of fuzzy
sets is very helpful to model similarity between given inputs points and unknown
ones. This view has been justified during the 1990s.
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Mamdani and Assilian developed their idea application-driven to control a steam
engine based on human expert knowledge. Our justification has been formulated
in a similar way with the industrial partner Volkswagen AG (VW) in Wolfsburg,
Germany. In the beginning of the 1990s, VW engineers and managers were skeptical
towards fuzzy control whether it is actually worth something.

Shortly after in 1993, the first workshop “Fuzzy Systems – Management of Un-
certain Information” took place in Braunschweig, Germany. About 120 participants
attended the workshop including VW engineers. The chairman was the second au-
thor — Abe Mamdani and Didier Dubois were invited speakers. The results of the
workshop have been published in an English written monograph [10]. One year
later in 1995, after the skepticism was gone the first fuzzy controller at VW went
into production.

2 Fuzzy Control

Suppose we consider a technical system. For this system, we dictate a desired behav-
ior. Generally a time-dependent output variable must reach a desired set value. The
output is influenced by a control variable which we can manipulate. Finally, there
exists a time-dependent disturbance variable that influences the output as well. The
current control value is usually determined based on the current measurement values
of the output variable ξ , the variation of the output Δξ = dξ

dt and further variables.
Hereafter we will refer to input variables ξ1 ∈ X1, . . . ,ξn ∈ Xn and one control

variable η ∈ Y . The solution of a control problem is a suitable control function
ϕ : X1× . . .×Xn →Y that determines an appropriate control value y = ϕ(x) for every
input tuple x = (x(1),x(2), . . . ,x(n)) ∈ X1 × . . .×Xn. In classical control engineering,
ϕ is commonly determined by solving a set of differential equations. It is very often
out of the question to specify an exact set of differential equations. Note that human
beings, however, are greatly able to control certain processes without knowing about
higher mathematics.

Simulating the behavior of a human “controller” can be done by questioning the
individual directly. An alternative would be extract essential information by observ-
ing the controlled process. The result of such knowledge-based analysis is a set of
linguistic rules that control the process. Linguistic rules comprise a premise and a
conclusion. The former relates to a fuzzy description of the crisp measured input,
where the latter defines a suitable fuzzy output. Thus we need to formalize math-
ematical descriptions of the linguistic expressions used in the rules. Furthermore
initialized rules need to be accumulated to result in one fuzzy output value. Finally,
a crisp output value must be computed from the fuzzy one. The whole architecture
for that knowledge-based model of a fuzzy controller is shown in Fig. 1.

The fuzzification interface operates on the current input value x0. If needed, x0

is mapped into a suitable domain, e.g. normalization to the unit interval. It also
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Fig. 1 Architecture of a fuzzy controller.

transforms x0 into a linguistic term or fuzzy set. The knowledge base comprises the
data base, i.e. all pieces of information about variable ranges, domain transforma-
tions, and the fuzzy sets with their corresponding linguistic terms. Moreover, it also
contains a rule base storing the linguistic rules for controlling. The decision logic
determines the output value of the corresponding measured input using the knowl-
edge base. The defuzzification interface produces the crisp output value given the
fuzzy output.

3 What Exactly Is Mamdani Control?

In 1975, the first model of a fuzzy controller was created by Mamdani and Assil-
ian [12]. Here, the knowledge of an expert must be expressed by linguistic rules.

First, for the set X1, p1 fuzzy sets μ (1)
1 , . . . ,μ (1)

p1 ∈ F (X1) must be defined. Accord-
ingly, each fuzzy set is named with a suitable linguistic term. Second, X1 is parti-
tioned by its fuzzy sets. To be able to interpret each fuzzy set as fuzzy value or fuzzy
interval, it is favorable to only use unimodal membership functions. Also, fuzzy sets
of one partition should be disjoint, i.e. they satisfy

i �= j ⇒ sup
x∈X1

{
min

{
μ (1)

i (x),μ (1)
j (x)

}}
≤ 0.5.

Having divided X1 into p1 fuzzy sets μ (1)
1 , . . . ,μ (1)

p1 , we partition the remaining sets
X2, . . . ,Xn and Y in the same manner. Finally, these fuzzy partitions and the linguistic
terms associated with the fuzzy sets correspond to the data base in our knowledge
base.
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The rule base is specified by rules of the form

if ξ1 is A(1) and . . . and ξn is A(n) then η is B (1)

whereas A(1), . . . ,A(n) and B represent linguistic terms corresponding to fuzzy sets
μ (1), . . . ,μ (n) and μ , respectively, according to fuzzy partitions of X1 × . . .×Xn and
Y . Hence the rule base comprises k control rules

Rr : if ξ1 is A(1)
i1,r

and . . . and ξn is A(n)
in,r

then η is Bir , r = 1, . . . ,k.

Remark that these rules are not regarded as logical implications. They rather define
η = ϕ(ξ1, . . . ,ξn) piecewise where

η ≈

⎧
⎪⎪⎨
⎪⎪⎩

Bi1 if ξ1 ≈ A(1)
i1,1

and . . . and ξn ≈ A(n)
in,1

,

...
...

Bik if ξ1 ≈ A(1)
i1,k

and . . . and ξn ≈ A(n)
in,k

.

Since the rules are treated as disjunctive, we can say that the control function ϕ is
obtained by knowledge-based interpolation.

Observing a measurement x ∈ X1 × . . .×Xn the decision logic applies each Rr

separately. It computes the degree to which x fulfills the premise of Rr, i.e. the
degree of applicability

αr
def= min

{
μ (1)

i1,r
(x(1)), . . . ,μ (n)

in,r
(x(n))

}
. (2)

“Cutting off” the output fuzzy set μir of rule Rr at αr leads to the rule’s output fuzzy
set:

μo(Rr)
x (y) = min{αr,μir(y)} . (3)

Having computed all αr for r = 1, . . . ,k, the decision logic combines all μo(Rr)
x ap-

plying the t-conorm maximum in order to get the overall output fuzzy set

μo
x (y) = max

r=1,...,k
{min{αr,μir(y)}} . (4)

In control engineering, a crisp control value is needed. Therefore μo
x is forwarded

to the defuzzification interface. Here, it depends on the kind of method that is im-
plemented to defuzzify μo

x . The most well-known approaches are the max crite-
rion method, the mean of maxima (MOM) method and the center of gravity (COG)
method. Using the first approach, simply an arbitrary value y ∈ Y is chosen for
which μo

x (y) reaches a maximum membership degree. Picking a random value
leads to a nondeterministic control behavior which is usually undesired. The MOM
method chooses the mean value of the set of elements y ∈ Y resulting in maximal
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membership degrees. The defuzzified control value η might not even be in the set
which can lead to unexpected control actions. The COG method defines the value
located under the center of gravity of the area μo

x as control value η , i.e.

η =
(∫

y∈Y
μo

x (y) · ydy

)/(∫

y∈Y
μo

x (y)dy

)
. (5)

In most control applications, this method shows smooth control behaviors. However,
it might even lead to counterintuitive results as well. For a more profound discussion
about defuzzification, see e.g. [9].

Regarding (3), it is clear that the minimum is used as fuzzy implication. Obvi-
ously this does not coincide with its crisp counterpart. Just consider p → q knowing
that p is false. Then p→ q is true regardless of the truth value of q in classical propo-
sitional logic. However, min{0,q} is always 0. One way to justify the heuristic of
Mamdani and Assilian is to replace the concept of implication by the one of associ-
ation [2]. We say that for a rule Rr an output fuzzy set Bir is associated with n input

fuzzy sets A( j)
i j,r

for j = 1, . . . ,n. This association is modeled by a fuzzy conjunction,
e.g. the t-norm min.

We retrieve Mamdani’s heuristics by extensionality assumptions [5, 6]. If the
fuzzy relation R relating the x( j) and y satisfies some extensionality properties, then
Mamdani’s approach is derived in the same way. Let E and E ′ be two similarity
relations defined on the domains X and Y of x and y, respectively. The extensionality
of R on X ×Y thus means

∀x ∈ X : ∀y,y′ ∈Y : 
(R(x,y),E ′(y,y′)) ≤ R(x,y′),
∀x,x′ ∈ X : ∀y ∈Y : 
(R(x,y),E(x,x′)) ≤ R(x′,y).

(6)

So, if (x,y) ∈ R, then x will be related to the neighborhood y. The same shall hold

for y in relation to x. Then A( j)
r (x) = E(x,a( j)

r ) and Br(x) = E ′(y,br) can be seen

as fuzzy sets of values that are close to a( j)
r and br, respectively. Naturally, ∀r =

1, . . . ,k : R
(

a(1)
r , . . . ,a(p)

r ),br

)
= 1. The user thus only needs to define reasonable

similarity relations E j and E ′ for each input ξ j and the output η , respectively. Then,
using the extensionality properties of R, one gets

R(x(1), . . . ,x(p),y) ≥ max
r=1,...,k



(

A(1)
r (x(1)), . . . ,A(p)

r (x(p)),Ar(y)
)

.

If we use the t-norm 
 = min, then Mamdani’s approach to compute the fuzzy
output is obtained. In [1, 4] indistinguishability or similarity is expressed as link
between the extensionality property and fuzzy equivalence relations. Fuzzy interpo-
lation can be also seen as logical inference given fuzzy information coming from an
vaguely known function [8]. Likewise, in [14] fuzzy rules are obtained from set of
pairs (ai,bi) and similarity relations on X and Y .
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4 Success of Mamdani Control in Automobile Industry

In the 1990s many real-world control applications have been greatly solved using
Mamdani’s approach. Among them are many control problems in the industrial auto-
mobile field. The number of publications, however, is really low. Two control appli-
cations at Volkswagen AG successfully use Mamdani’s approach, i.e. the engine idle
speed control and the shift-point determination of an automatic transmission [13].
The idle speed controller is based on similarity relations (see Section 3). This helps
to view the control function as interpolation of a point-wise known function. The
shift-point determination continuously adapts the gearshift schedule between two
extremes, i.e. economic and sporting. A sport factor is computed to individually
adapt the gearshift movements of a driver.

4.1 Engine Idle Speed Control

The task is to control the idle speed of a spark ignition engine. One way is a volu-
metric control where an auxiliary air regulator alters the cross-section of a bypass
to the throttle. This is depicted in Fig. 2.

Fig. 2 Principle of the engine idle speed control.

The pulse width of the auxiliary air regulator is changed by the controller. If
there is a drop in the number of revolutions, then the controller forces the auxiliary
air regulator to increase the bypass cross-section. The air flow sensor measures the
increased air flow rate and thus notifies the controller. The new quantity for the fuel
injection must be computed. Due to a higher air flow rate, the engine yields more
torque. This again results in a higher number of revolutions which could be reduced
analogously by decreasing the bypass cross-section.

Both fuel consumption and pollutant emissions should be ultimately reduced.
This can be reached by slowing down the idle speed. However, a switching on of



Fuzzy Control for Knowledge-Based Interpolation 97

certain automobile facilities, e.g. air-conditioning system, forces the number of rev-
olutions to drop. Hence the controller must be very flexible. More problems involved
in this control application can be found in [13].

Due to this motivating problem, VW and our working group cooperated in devel-
oping a Mamdani fuzzy controller based on similarity relations. The resulting fuzzy
controller was easier to design and showed an improved control behavior compared
to classical control approaches. Similarity relations to represent indistinguishability
or similarity of points within a certain vicinity seems to be a natural modeling way
for engineers.

In fact, indistinguishability is not produced by measurement errors or deviations.
It just expresses that arbitrary precision is not necessary to control a system. A con-

trol expert must thus specify a set of k input-output tuples
((

x(1)
r , . . . ,x(p)

r

)
,yr

)
. For

each r = 1, . . . ,k, the output value yr seems appropriate for the input
(

x(1)
r , . . . ,x(p)

r

)
.

So, the human expert defines the partial control function ϕ0.
In the 1990s the question to be answered was to compute a suitable output value

for an arbitrary input given specified similarity relations and ϕ0 [13]. Using the ex-
tensionality properties defined in (6), one obtains Mamdani’s fuzzy output directly
by computing the extensional hull of ϕ0 given the similarity relations. The partial
control function ϕ0 can thus be reinterpreted as k control rules of the form:

Rr : if ξ1 is approximately x(1)
r and . . . and ξp is approximately x(p)

r

then η is approximately yr.

A more profound theoretical analysis of this approach can be found in [5].
To control the engine idle speed controller, two input variables are needed:

1. the deviation dREV [rpm] of the number of revolutions to the set value, and
2. the gradient gREV [rpm] of the number of revolutions between two ignitions.

The only output variable is the change of current dAARCUR for the auxiliary air
regulator. The controller is shown in Fig. 3.

Fig. 3 Structure of the fuzzy controller.
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The knowledge to control the engine idle speed controller was extracted by mea-
surement data obtained from idle speed experiments. The partial control mapping
ϕ0 : X(dREV)×X(gREV) →Y(dAARCUR) has been specified as in Table 1 (left-hand side).

Fig. 4 Performance characteristics.

Using a similarity relation and ϕ0, the fuzzy controller was defined. Its induced
control surface is shown in Fig. 4 as a grid of supporting points. The center of
area (COA) method has been used for defuzzification. To obtain the corresponding
Mamdani fuzzy controller, each point of ϕ0 was associated with a linguistic term,
e.g. negative big (nb), negative medium (nm), negative small (ns), approximately
zero (az), and so on. The obtained fuzzy partitions of all three variables are shown
in Fig. 5–7, respectively. The partial mapping ϕ0 was translated into linguistic rules
of the form

if dREV is A and gREV is B then dAARCUR is C.

The complete set of rules is given on the right-hand side of Table 1.

Table 1 The partial control mapping ϕ0 (left-hand side) and its corresponding fuzzy rule
base (right-hand side).

gREV
-40 -6 -3 0 3 6 40

-70 20 15 15 10 10 5 5
-50 20 15 10 10 5 5 0
-30 15 10 5 5 5 0 0

dREV 0 5 5 0 0 0 -10 -5
30 0 0 0 -5 -5 -10 -15
50 0 -5 -5 -10 -15 -15 -20
70 -5 -5 -10 -15 15 15 15

gREV
nb nm ns az ps pm pb

nb ph pb pb pm pm ps ps
nm ph pb pm pm ps ps az
ns pb pm ps ps az az az

dREV az ps ps az az az nm ns
ps az az az ns ns nm nb
pm az ns ns ns nb nb nh
pb ns ns nm nb nb nb nh
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Fig. 5 Deviation dREV of the number of revolutions.
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Fig. 6 Gradient gREV of the number of revolutions.
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Fig. 7 Change of current dAARCUR for the auxiliary air regulator.

In [5, 13] the Mamdani fuzzy controller shows a very smooth control behavior
compared to its serial counterpart. Furthermore the fuzzy controller reaches the de-
sired set point precisely and fast. Its behavior is robust even with slowly increasing
load. Thus the number of revolutions does not lead to any vibration even after ex-
treme changes of load occur.

4.2 Flowing Shift-Point Determination

Conventional automatic transmissions select gears based on so-called gearshift di-
agrams. Here, the gearshift simply depends on the accelerator position and the ve-
locity. A lagging between up and down shift avoids oscillating gearshift when the
velocity varies slightly, e.g. during stop-and-go traffic. For a standardized behavior,
a fixed diagram works well. Until 1994, the VW gear box had two different types
of gearshift diagrams, i.e. economic “ECO” and sporting “SPORT”. An economic
gearshift diagram switches gears at a low number of revolutions to reduce the fuel
consumption. A sporting one leads to gearshifts at a higher number of revolutions.
Since 1991 it was a research issue at VW to develop an individual adaption of shift-
points. No additional sensors should be used to observe the driver.
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The idea was that the car “observes” the driver [13] and classifies him or her into
calm, normal, sportive (assigning a sport factor ∈ [0,1]), or nervous (to calm down
the driver). A test car at VW was operated by many different drivers. These people
were classified by a human expert (passenger). Simultaneously, 14 attributes were
continuously measured during test drives. Among them were variables like the ve-
locity of the car, the position of the acceleration pedal, the speed of the acceleration
pedal, the kick down, or the steering wheel angle.

Fig. 8 Flowing shift-point determination with fuzzy logic.

The final Mamdani controller was based on 4 input variables and one output.
The basic structure of the controller is shown in Fig. 8. In total, 7 rules could be
identified at which the antecedent consists of up to 4 clauses. The program was
highly optimized: It used 24 Byte RAM and 702 Byte ROM, i.e. less than 1 KB.
The runtime was 80 ms which means that 12 times per second a new sport factor
was assigned. The controller is in series since January 1995. It shows an excellent
performance.

5 Conclusions

We reviewed the fuzzy control approach of Abe Mamdani. We gave a possible inter-
pretation to justify this heuristic method, i.e. knowledge-based interpolation based
on input-output points of a vaguely known control function. This view has been de-
veloped in corporation with Volkswagen AG, Wolfsburg during the nineties of the
last millennium. We reviewed two real-world control applications that have been
successfully handled based on this interpretation.

This paper clearly demonstrates that Abe Mamdani was a man of vision. In the
ESPRIT Basic Research Action 3085, entitled Defeasible Reasoning and Uncer-
tainty Management Systems (DRUMS) [3, 11], all participants have been impressed
by his broad knowledge in different scientific disciplines. Everybody was delighted
by his sense of humor and his modesty. In the meetings of the Scientific Committee



Fuzzy Control for Knowledge-Based Interpolation 101

of the European Centre for Soft Computing1 in Mieres, Asturias, Spain the second
author regularly experienced the pleasure of friendly exchanges with Abe. The fuzzy
community will always remain grateful to Abe for having been the first to show the
road to practical applications.
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